

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

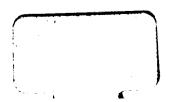
It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:


- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

General Library System University of Wisconsin-Madison 728 State Street Madison, WI 53706-1494 U.S.A.

•

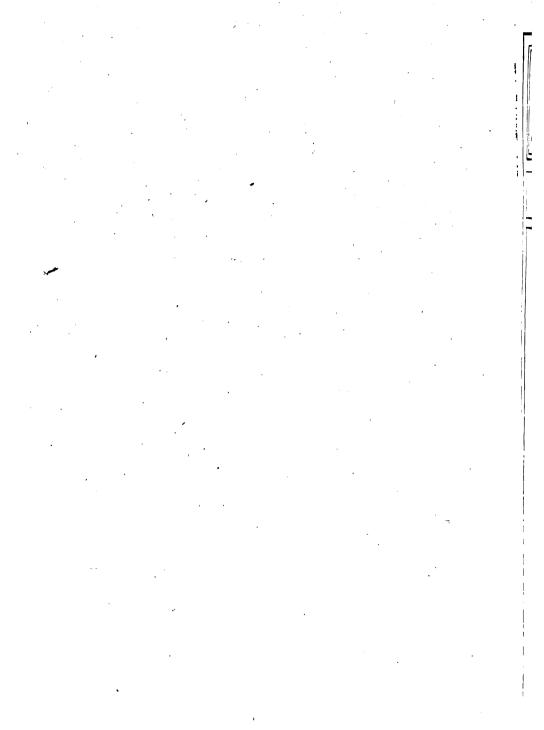
.

•

.

.

٠


,

.

.

Digitized by Google

Digitized by Google

EACH PAMPHLET IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DE-SIGN AND SHOP PRACTICE REVISED AND REPUBLISHED FROM MACHINERY

No. 51

PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS

Part II

By ALFRED SPANGENBERG

CONTENTS

Assembling an Engine Lathe		-		•		-		-	3
Assembling a Motor-Driven Planer	-		-		-		-		16
Laying-out and Aligning Operations		-		-		-		-	32

Copyright 1910, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City

100

Digitized by

MACHINERY'S REFERENCE SERIES

This treatise is one unit in a comprehensive Series of Reference books, originated by MACHINERY, and including an indefinite number of compact units, each covering one subject thoroughly. The whole series comprises a complete working library of mechanical literature in which the Mechanical Engineer, the Master Mechanic, the Designer, the Machinist and Tool-maker will find the special information he wishes to secure, selected, carefully revised and condensed for him. The books are sold singly or in complete sets, as may be desired. The price of each book is 25 cents, and it is possible to secure them on even more favorable terms under special offers issued by MACHINERY's circulation department and sent to any one on request.

The success of the Reference Series was instantaneous and copies are now widely distributed in machine shops and metal working plants everywhere.

CONTENTS OF REFERENCE BOOKS

No. 1. WORM GEABING.—Calculating Dimensions for Worm Gearing; Hobs for Worm-Gears; Location of Pitch Circle; Self-Locking Worm Gearing; etc.

No. 2. DEAFTING-ROOM PEACTICE.—Drafting-Room System; Tracing, Lettering and Mounting; Card Index Systems.

No. 3. DRILL JIGS.—Elementary Principles of Drill Jigs; Drilling Jig Plates; Examples of Drill Jigs; Jig Bushings; Using Jigs to Best Advantage.

No. 4. MILLING FIXTURES.—Elementary Principles of Milling Fixtures; Collection of Examples of Milling Fixture Design, from practice.

No. 5. FIRST PRINCIPLES OF THEORETICAL MECHANICS.

No. 6. PUNCH AND DIE WORK.—Principles of Punch and Die Work; Suggestions for the Making and Use of Dies; Examples of Die and Punch Design.

No. 7. LATHE AND PLANEB TOOLS.—Cutting Tools for Planer and Lathe; Boring Tools; Shape of Standard Shop Tools; Forming Tools.

NO. 8. WOBKING DRAWINGS AND DRAFTING-ROOM KINKS.

No. 9. DESIGNING AND CUTTING CAMS.—Drafting of Cams; Cam Curves; Cam Design and Cam Cutting; Suggestions in Cam Making.

No. 10. EXAMPLES OF MACHINE SHOP PRACTICE.—Cutting Bevel Gears with Rotary Cutters; Making a Worm-Gear; Spindle Construction.

No. 11. BEARINGS.—Design of Bearings; Causes of Hot Bearings; Alloys for Bearings; Ball Bearings; Friction of Roller Bearings.

No. 12. MATHEMATICS OF MACHINE DESIGN.—Compiled with special reference to shafting and efficiency of hoisting machinery.

No. 13. BLANKING DIES.—Making Blanking Dies; Blanking and Piercing Dies; Construction of Split Dies; Novel Ideas in Die Making.

No. 14. DETAILS OF MACHINE TOOL DESIGN.—Cone Pulleys and Belts; Strength of Countershafts; Tumbler Gear Design; Faults of Iron Castings.

No. 15. SPUE GEARING.—First Principles of Gearing; Formulas for Spur Gearing; Design and Calculation of Gear Wheels; Strength of Gear Teeth.

No. 16. MACHINE TOOL DRIVES.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. STRENGTH OF CYLINDERS.—Formulas, Charts, and Diagrams for Thick Hollow Cylinders; Design of Thick Cylinders; Cast Iron Cylinders.

No. 18. SHOP ABITHMETIC FOR THE MACHINIST.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirels; Angles.

No. 19. USE OF FORMULAS IN MECHANICS.—Mathematics (Signs and Formulas; Strength of Materials; Graphical Methods; Levers; Center of Gravity.

No. 20. SPIEAL GEARING.—Calculating Spiral Gears; Rules, Formulas, and Diagrams for Designing Spiral Gears; Efficiency of Spiral Gearing, etc. Og See inside back cover for additional titles

MACHINERY'S REFERENCE SERIES

EACH NUMBER IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DESIGN AND SHOP PRACTICE REVISED AND REPUB-LISHED FROM MACHINERY

NUMBER 51

PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS

Part II

By ALFRED SPANGENBERG

CONTENTS

Assembling an Engine Lathe		-	-		-		•	3
Assembling a Motor-Driven Planer	-		-	-		-		16
Laying-out and Aligning Operations		-	-		-		-	32

Copyright, 1910, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City

162764 MAR 12 1912 TB ·M 18 57-60

CHAPTER I

ASSEMBLING AN ENGINE LATHE*

While the problems encountered in assembling engine lathes are not as difficult of solution as those met with in assembling machine tools of a more complicated nature, thorough and careful consideration of the methods employed is essential in order to minimize the cost. The most important operations involved are the scraping of the bed and carriage and the lining up of the head- and tail-stock. To a large extent the cost of these operations is dependent on the accuracy of the machine work.

It is the object of the present chapter to discuss the methods employed in machining, and to illustrate and describe the erecting process on the bed. The principles involved in assembling the units have been fully outlined in Part I of this treatise. (MACHINERY'S Reference Series No. 50.) For the purpose of giving a concrete example, a 24-inch engine lathe with quick-change gear device is selected, the general features of which are shown in Fig. 1.

Planing the Bed and Carriage

The practice of some makers to rough out the surfaces to be planed on the bed and carriage, and allow them to season before taking the finishing cuts is indicative of the modern tendency toward accurate machine work as a means to avoid unnecessary scraping. The seasoning process simply consists in letting the casting stand in some convenient place in such a way that it will not be subjected to any outside forces, and allowing the stresses in the casting itself to become equalized.

Next in importance to providing accurate planers on which to machine the bed and carriage, is the necessity for gages that will enable interchangeable work to be produced. The gages shown in Fig. 2 are particularly well adapted to this class of work, and are far superior to the common type having a bearing on both sides of each V. Feelers or thickness gages are used in connection with the gages illustrated, in order to measure the amount of error. The advantages this form possesses over the common type are that the V's on the casting being fitted will both be of the same width, and no difficulty is experienced in keeping the gage level, since it always lies in a horizontal plane by resting on the top of each V. At A and B are shown gages for the bed and carriage respectively; these gages are made of steel $\frac{1}{4}$ inch thick.

Assuming, for example, that the V-surface on the bed at C is tight to the gage, and a 0.002 inch feeler will just pass between the bed and the gage at D, then 0.002 is the exact amount that must be planed off the surface C. When these two surfaces fit the gage so that no error

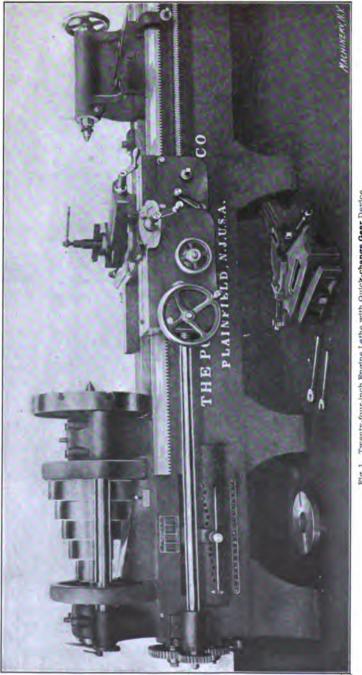


Fig. 1. Twenty-four-inch Engine Lathe with Quick-change Gear Device

can be detected with a 0.001 feeler, the gage is turned end for end, and the surfaces E and F are tested in the same manner. It is, of course, necessary to set the gage square with the bed and this is accomplished by trying the feelers on both sides of the gage. The same remarks apply to the carriage gage B. At G and H in the same engraving are shown gages in the form of cast-iron blocks about 6 inches long which are used for testing the ways on bed and carriage as indicated; I is a sheet steel strip fastened to one end of gage H and this is used to test the apron seat J. All other measurements are tested with ordinary height blocks or caliper gages, as the case may require.

Referring now to the carriage, the sequence of operations in finish planing it is to plane the bearing for the shoe, and square up the ends, and then turn it over in the position shown in the engraving and plane the V's and other surfaces on this side. It is good practice to plane lathe carriages of this size in lots of six at a time by placing them in

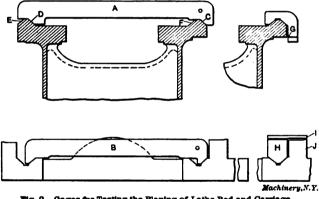


Fig. 2. Gages for Testing the Planing of Lathe Bed and Carriage

a "string" on the planer table. When completing the final operation, that of planing the V's, it is evident, however, that the carriages farthest away from the angle plate by which they are squared up, are particularly liable to error. With careful setting up, this error should not exceed 0.003 inch, which is easily and quickly scraped off by the assemblers.

Machining the Head- and Tail-stock

The methods of machining head- and tail-stocks vary greatly in different shops, and also with different sizes. Some makers first finish all the planing and then perform the boring operations and scrape in the head-stock spindle, while others leave a finishing cut to be taken on the bottom of the head- and tail-stock after the boring and scraping are completed, by setting up the castings on arbors held in V-blocks on the planer table. Both systems, or modifications of both, are frequently used in the same shop. While the first-mentioned system is the most economical in that it saves setting up the work on the planer twice, it is essential that the machining be such that very little scrap-

5

ing is required on the head-stock boxes; otherwise the head-stock will be thrown out of line in fitting the spindle, which necessitates replaning the head-stock and possibly the tail-stock.

In any event, it will always pay to leave 1/16 inch stock to be bored out of the bearing boxes, so that after the boxes are fitted in the headstock it can be replaced in the boring jig and a finishing cut taken in the boxes, allowing 0.005 inch to be reamed out. Adjustable shell reamers are mounted on the boring bar for this purpose. When this precaution is taken, and the spindle is accurately ground to size, very little scraping should be necessary to make a good bearing. The object of leaving the 1/16 inch to be bored out with a cutter before ream-

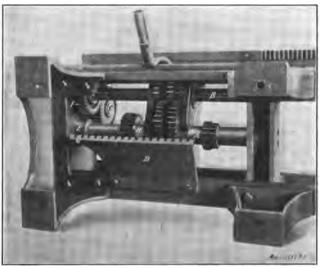


Fig. 8. Quick-change Gear Mechanism of Lathe shown in Fig. 1

ing, is to insure that the reamer has an even cut and that sufficient stock is left for reaming.

Boring and Drilling the Bed

When all the planing is finished on the bed, it is next sent to the drilling department where the first operation consists in boring the shaft holes for the tumbler mechanism shown in Fig. 3. This operation is performed on a horizontal drilling and boring machine with the aid of a jig which also locates the sweep clamping bolt hole. The shafts A and B run in long cast-iron bushings that are a light drive fit in the bed, and to provide for standardization and enable the bushings to be finished in large quantities, the holes in the bed are reamed to gage, adjustable shell reamers being mounted in the boring bar for this purpose. The hole for stud C is drilled and then finished with a rose reamer, after which it is hand reamed to gage. This hole and the sweep clamping bolt hole are the only ones that require facing, the method of taking the measurements being apparent from Fig. 4; A

is a sheet-iron templet having an outline indicated by the heavy line; the opening at B locates the surface to which the stud boss is faced, while at C is shown whether there is sufficient clearance cored out for a feed gear. The templet is located sidewise by the spline D which is riveted to the templet and fits the keyway in the bed; and endwise by being brought flush with the end of the bed. When in this position lines are scribed at B and C, after which the templet is removed and the hole counterbored to the line; C is chipped out later on if necessary.

To locate the surface E for the sweep clamping bolt hole, the gage F is used, its construction being clearly shown in Fig. 4. All lateral measurements on the bed are taken from the surface B. Facing surface E completes the operations for this setting, and the bed is then moved around for drilling and tapping the lead-screw box bolt holes.

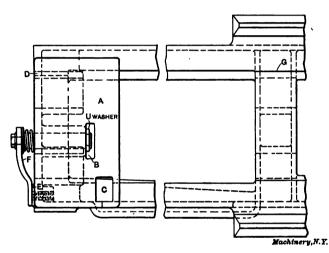


Fig. 4. Templet and Gage used when Boring the Bed, shown in Position

In Fig. 12, A and B are jigs for drilling the front and rear lead-screw box seats, respectively. As will be seen, both jigs are located from the flat surface on top of the bed, the rear jig clearing the front V. Jig A is located endwise by seating against the hub C; the wooden pole D is used to set jig B. This pole has lines cut on one side, giving the settings for various lengths of beds up to 16 feet, so that the distance between the boxes, when bolted on, will be correct for the leadscrew. For longer beds, especially those in two sections, jig B is set from the rear end of the bed, and after the boxes are bolted on, the measurement is taken for the length to cut the lead-screw; it is not practicable to set the rear box or cut the lead-screw in the same way in this case as in the previous one, due to the error that is likely to occur in the length of the bed. This completes the work at the horizontal drill, and the bed is now moved to a radial drill, where the holes for the rack are next drilled. Special eccentric clamps are used for

holding the rack in place, one of which is seen resting on top of the bed in Fig. 5. The advantages of this clamp over the common C-form are that it does not mar the work, no copper packing is needed, the clamping and loosening is quickly accomplished, and there is no danger of shifting the rack when clamping it.

When the holes for the rack are all drilled, including the pin holes, the drill-hand taps and enters one screw in each rack section, so as to keep the rack in place after the clamps are removed, and until the bed reaches the assemblers. This avoids tying up the radial drill while the rack is being fastened on the bed, which is the practice in some shops.

On top of the bed in Fig. 5 are shown two fixtures A and B, respectively, which are used to locate the tumbler locking bar D, Fig. 3. Fix-

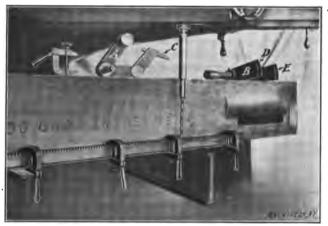


Fig. 5. Special Clamps for Holding Rack in Position when Drilling, and Fixtures used for Locating Tumbler Locking Plate

ture A is also used to set the bushings E and F, Fig. 3, by inserting the stud in the fixture in place of the stud C, and bringing the bushings (which are straight) up against the hubs shown on the fixture. Now, with fixture B in position in the tumbler shaft hole, the locking bar is set so that its first notch G, Fig. 3, fits over the projection C of fixture A, Fig. 5. The plates D and E on fixture B are then moved so as to enter slots near the ends of the locking bar, after which the locking bar is set so that its slots bottom in the fixture plates. In this position the bar is marked off, and after drilling the two bolt holes, which have 1/16-inch clearance, it is again placed in position and clamped by its bolts. It is then shifted so as to bring it in the correct relation to the fixtures, and then the pin holes are drilled. With the bushings E and F (Fig. 3) located as previously mentioned, their set-screw holes are now drilled.

The legs are set and marked off on the bed with the aid of a wooden pole having lines scribed on it representing the center line of each inner leg. After these holes are drilled and tapped and the legs bolted

on, the bed is next turned right side up for drilling the head-stock clamping bolt holes. The jig for drilling these holes is located on the bed by the keyway D, surface G, and hub B. Fig. 4, so that when the head-stock, which also was drilled by this jig, is bolted on, the feed gear on the spindle will line up with the intermediate feed gear in the bed, and the head-stock casting will match the end of the bed. This completes the drilling, and the bed is next sent to the assemblers, where the actual work of assembling proper begins.

Scraping the Carriage and Assembling the Tumbler Mechanism

It is the general practice to keep the head-stocks, tail-stocks, carriages, tumbler members, etc., in stock, completely assembled, these units being identical for any length of bed. This method will be considered here, it being assumed that the units already have been brought to the assemblers. Two men usually are employed in assembling a lathe of this size, since a larger number cannot advantageously be used. Two men should be able to assemble such a lathe in 40 hours, total time. The operations of scraping on the carriage and assembling the tumbler mechanism are, of course, carried on simultaneously, one man working on each job; but for the purpose of description, each operation will be considered separately.

The preliminary operations on the bed consist of rough scraping the V's and inside bearing for the tail-stock, fastening on the rack, and polishing the sides and top. When fastening on the rack, and polishing the sides, the bed is turned over for the convenience of the workmen. The rack, which was temporarily fastened on by the drillhand, is now removed and all the holes tapped, after which it is screwed fast, the pin holes reamed, and the pins driven in. A carpenter's brace is used for the taps and reamer. As the rack already has been polished on a disk grinder, it is only necessary to rub it with emery cloth to obtain a good finish. The bed is now turned right side up and carefully leveled, using iron wedges. During these preliminary operations the painting and any necessary chipping is done.

For scraping the carriage to fit the bed a special lifting device is used to facilitate turning the carriage over. This device is described by the author in MACHINERY'S Reference Series No. 50. When the carriage is being pulled along the bed for the purpose of finding the bearing, the lifter bolts are slackened off so as to prevent any danger of springing the carriage.

Fig. 6 clearly indicates the method of squaring the carriage with the bed. As will be seen, the sweep bar A is held in firm contact with the angle and bottom bearing of the carriage by means of two flat steel springs B, bent to the shape shown. Brass shoes C, riveted to these springs, prevent the latter from cutting or scratching the bar. The function of coiled spring D is to hold the sweep bar collar E in close contact with the end of the carriage. With this device, the sweep is easily and quickly applied or removed, more precise measurements are obtained than by having an operator hold it, as is the usual practice; and besides, only one man is required to perform the operation of testing. In operation, micrometer point F is set to one position as shown, using a piece of cigarette paper as a "feeler"; then the sweep is rotated to the opposite side and a measurement taken as before. The carriage is scraped so as to turn the face-plate about 0.001 inch concave.

Very little scraping is necessary on the bed, merely enough to smooth the V's and break up the bearing, the tool marks being visible after the scraping is completed. When this work is accomplished, the carriage gibs are fitted, the apron is bolted in place, and the cross-feed screw, shoe, etc., are placed in position. Next, the tail-stock cricket is placed on the bed and its packing fitted, after which it is pulled the entire length of the bed to determine if the latter is straight. After any high spots on the bed are scraped off, the tail-stock traverse bracket

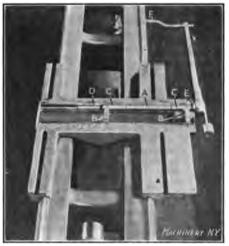


Fig. 6. Top View of Carriage, showing Method of Squaring the Carriage with the Bed. Springs B and D hold the Sweep in Position, enabling One Man to make the Test

is bolted onto the cricket, and then the tail-stock and its shoes are placed in position.

Referring again to Fig. 3, the tumbler mechanism is assembled in the bed as shown in the illustration, the operation being so simple that no explanation is necessary. Holes in the bed for the oil pipes (not shown) are drilled by means of a pneumatic drill, this being done, of course, preceding the assembling operation. The slot in the interlocking plate H is now marked off, the plate removed, and the slot cut. The position of this slot is determined by having the tumbler gears in a central position between the largest change gears. With the interlocking plate again screwed onto the tumbler, the thirty-four holes in the bed for the tumbler locking pin are now ready to be drilled.

Drilling these holes is the most interesting operation on this part of the lathe, the manner of accomplishing it being immediately ap-

ASSEMBLING AN ENGINE LATHE

parent from Fig. 7, which shows the tools used, some of them being seen on top of the bed. The method of holding the tumbler in engagement with the various change gears while drilling the holes in the bed is clearly shown in Fig. 8. Paper, to the thickness of about 0.005 inch, is placed between the teeth of the engaging gears before they are brought into mesh, and when the jack screw A is tightened sufficiently to hold the tumbler rigidly in place, the gears are in proper mesh. The holes are first drilled with a special drill that fits the locking pin hole in the tumbler and has flutes milled only a short distance up from the point, so as to avoid cutting the hole in the tumbler. Fig. 7 shows this drill in position in the air drill. For finishing the holes, a special rose reamer, shown at B, is used in the same manner.

The tools are fed into the work by means of the bar C, which is pointed on one end so that it can be driven into the floor to prevent

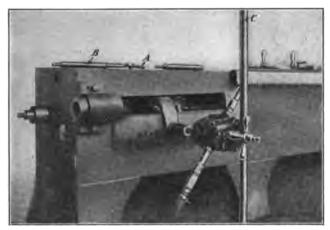


Fig. 7. Method of Drilling and Reaming the Holes in the Lathe Bed for the Tumbler Locking Pins

slipping. The operator presses his shoulder against the upper end of the bar, holds the throttle of the air drill with the left hand and pulls on the bed with the right hand. Each hole is drilled in succession, alternating between the top and bottom rows. The record for drilling and reaming these thirty-four holes, including the time required to set the tumbler, is 50 minutes. In setting the tumbler for drilling, its lateral movement for the various positions is controlled by the interlocking plate engaging the respective slots in the locking bar. (See Fig. 8.)

To mark off the groove which is seen between the two rows of holes in Fig. 1, a special scriber is used that fits the tumbler locking-pin hole, the tumbler being held in a neutral position by the locking bar. Two circles are scribed, one at each end of the groove to be cut, and then a straightedge is used in scribing lines connecting the two, the lines acting as a guide when chipping the groove with an air hammer. Inserting the handle, chipping the groove, and fastening on the number and index plates completes the operation on the tumbler mechanism.

Lining Up the Head-stock and Tail-stock

The bed is now ready to receive the head-stock and while this is being fitted on by one of the assemblers, the other is working on the lead-screw, lead-screw boxes, and change gear sweep. As the headand tail-stock were tested for alignment before being sent to the storeroom, it is now only necessary to line up the head-stock on the bed and fit the taper dowel pins.

The method of testing these parts is interesting, inasmuch as the test arbor used is somewhat out of the ordinary. A jig is used that represents the head-end section of a 24-inch lathe bed. The jig and whole outfit of fixtures used, together with a head- and tail-stock in

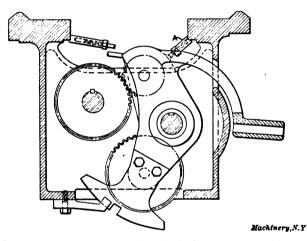


Fig. 8. Method of Holding Tumbler when Drilling and Reaming the Locking Pin Holes by the Method shown in Fig. 7

position for testing, are shown in Fig. 9. As will be seen, the test bar is square at A, near each end, the object being to use the indicator on a flat surface when testing the spindle for parallelism with the V's, and on a cylindrical surface when testing the spindle taper hole for concentricity. The two squares are integral with a sleeve that can be turned independently of the bar, and in this way one plane surface can be set at a mean between the "high" and "low" point on the bar. This adjustment is obviously necessary, since the bar is particularly liable to run out at its free end, due to a number of conflicting elements, the error in any one of which may be infinitesimal. When using the plane surfaces, one of these is always trued up with the square B, as shown in the engraving.

The reason for providing a plane surface on which to indicate is this: Suppose, for example, that we are testing the spindle for alignment sideways, and further that the axis of the spindle actually is

ASSEMBLING AN ENGINE LATHE

parallel sideways with the bed, but that the axis does not lie in a horizontal plane, it being high on the front end, say 0.005 inch in the length of the test bar. Then in indicating on the older type of bar with cylindrical collars, the line of motion of the indicator point in traveling from one collar to the other is not parallel with the axis of the test bar and therefore the readings are false. Now, with the form of bar having plane surfaces, assuming the conditions to be the same as regards the alignment of the spindle, the reading will show that the alignment is perfect sideways, because the indicator point is moving on a plane surface.

Referring again to Fig. 9, the fixture C is guided on the V tracks of the bed and is constructed so that it is adjustable for holding a Starret indicator D either on the side or top of the bar as the case may require Having explained the use of the tools and fixtures, the method

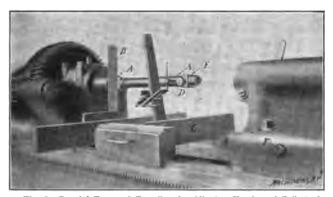


Fig. 9. Special Form of Test Bar for Aligning Head- and Tail-stock. Plane Surfaces are used for Testing Parallelism, and Cylindrical Surfaces for Testing Concentricity

of "lining up" the head-stock and tail-stock, both with reference to the V's and to each other, is to place them on the bed and approximately set the head-stock true sideways by inserting keys in the keyways planed in the head-stock and bed for this purpose.

With the clamping bolts tightened lightly (the bolts have 1/16-inch clearance), the head-stock spindle taper hole is first tested for concentricity by indicating on the cylindrical surface E while slowly rotating the spindle. Then with the squares A set as previously explained, the head-stock is moved around by knocking it with a babbit hammer until the reading on both surfaces is the same. The bar is then moved over into the tail-stock spindle hole, and after the set-over screw F is adjusted so as to bring this spindle in line with that in the head-stock (the reading being the same as before) the tail-stock spindle is tested for alignment sideways. Now the indicator is set on top of the bar, with the latter turned so as to use the same surface, and then the tail-stock spindle is tested for alignment in a horizontal plane, after which the bar is again set into the head-stock spindle hole and that spindle tested both with reference to the V's and to the tail-stock spindle. It

is understood, of course, that if any errors are discovered which exceed the allowable limits of variation, the part at fault is either filed and scraped to bring it true, or machined, if the circumstances warrant.

Turning again to the lathe bed, we will assume that the head-stock is lined up as just described, and the clamping bolts are tightened down hard. The taper dowel pin holes are then drilled, reamed, and the pins driven in, care being exercised to see that the pins are a good fit. Next the faceplate is screwed on, ready to be turned off.

Lining Up the Lead-screw Boxes

As was previously stated, work has been progressing on the leadscrew boxes and other minor details. For the purpose of lining up the boxes and also to test the alignment of the lead-screw bearings in the apron, a short arbor is used that represents the lead-screw. First the apron is tested, and then the lead-screw boxes are bolted onto the bed and lined up with the apron. Sometimes it is necessary to file the apron seats or adjust the boxes to bring them into proper alignment; but with careful planing and thorough inspection of the parts, this should not be required. Two special gages are used to facilitate the aligning; one gage reaches down from the flat track on top of the bed for horizontal measurements, while another is held against the side of the bed just below the V to test sideways. Both gages are provided with micrometer points to enable the accurate measurement of error.

Referring to Fig. 1, the head-end lead-screw box is set longitudinally when the change gear sweep is in place, so as to line the box with reference to the sweep bearing on the end of the bed. When properly set, the boxes are drilled and reamed for the taper dowel pins; then the lead-screw is put in place, its checknuts screwed on, and the gears on the sweep brought into proper mesh.

The Finishing Operations and Inspection

With the cone belted up to a countershaft or other source of power, the bearings are thoroughly oiled, and the lathe is run idle for a while preparatory to turning off the face-plate. The V's on the bed and bearings on top of the carriage are now spotted with a scraper, while all other finished surfaces receive their final polishing. The centers and their respective holes in the spindles were fitted to male and female gages during the machining process, so that now it is only necessary to place the centers in position. Clamping on the center-rest is the final assembling operation.

All machines are more or less defective, as it is practically impossible to make anything absolutely perfect. Knowing this, the builder establishes a limit within which the error will not materially affect the working of the machine, and furnishes the inspector with a list of allowable limits.

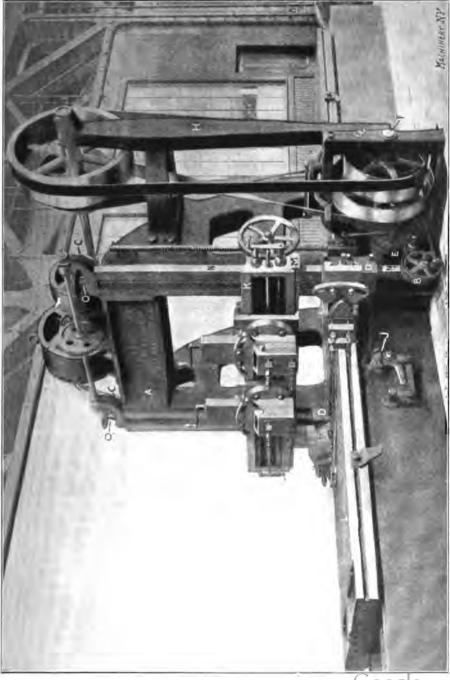
The inspection is carried on as the work proceeds, so that no part is neglected, and no defective material or faulty workmanship is allowed to pass. Gearing of all kinds is inspected and tested for alignment and smoothness of operation. The fits of all wearing surfaces are tested, as well as the fit of the various screws and binding and

clamping fixtures. All information obtained from the inspection is entered on a printed form. Each machine is given a serial number, and the reports are filed in the office, so that in case of any trouble arising or any repairs being required for a given lathe, an exact record of its condition when it left the shop is available.

After truing up the face-plate, it is tested by means of a straightedge and cigarette paper, this kind of paper being the best for the purpose. The spindle is tested for end motion when running, by application of the Starrett indicator to the face of the spindle nose. To prove the alignment of the head spindle with the shears of the lathe and the alignment of the taper hole with the spindle under actual working conditions, a steel test bar is provided which fits the taper hole and projects 18 inches from the spindle. This bar carries three cast-iron collars, placed one at each end and one in the middle, from which all measurements are taken. A light cut is taken across these collars with a keen diamond-point tool, and the collars are then measured with a micrometer. As it is desirable when boring a hole, to have the taper, if any, large toward the front end, the front end of the headstock was purposely set slightly toward the rear of the bed so that the outer collar should be found 0.0005 inch larger than the collar next the spindle. The alignment of the spindle in the vertical plane is again tested by attaching the indicator to the tool-post and traversing the carriage along its ways with the contact point of the indicator pressing against the top surface of the collars.

In testing the alignment of the taper hole with the spindle itself, after the collars have been turned off, the test bar is removed, turned half way round and replaced in the spindle; the indicator is then put in the tool-post in place of the turning tool, and with the contact point on the center line, the indicator is traversed past the collars, the variation in readings showing twice the error in the alignment of the taper. The alignment of the tail-stock spindle is now tested, the method being the same as in the previous instance.

CHAPTER II


ASSEMBLING A MOTOR-DRIVEN PLANER*

In planer erection, the principal points to be observed are that the housings must be parallel with each other and square with the bed: accuracy is essential in the fit of all sliding members and in the truth of all plane bearing surfaces; the gears should mesh properly and run smoothly; and the system must be such as to permit the various parts to be easily and quickly assembled, and avoid the necessity of fitting the members together for the laying-out operations. This, of course, presupposes the employment of jigs and gages, but, owing to the fact that planers of the 48-inch size and upwards are seldom built in large numbers at a time, and further, that there are many different types of drive, it is impracticable to indulge very freely in the use of elaborate jigs for duplicating the larger parts in the larger sizes. However, many of the members used in the construction of planers are common to several different sizes and different types of drive. so that with a few very simple jigs and gages, the standard members can be made interchangeable, and in this way much expensive handling in laying-out, and the consequent lost time, is avoided.

This chapter will deal principally with the erecting process on the bed, since the methods and processes employed in assembling the smaller units do not differ greatly from the practice used in assembling those of other machine tools. All the principles involved in the erection of a small planer are encountered in the case of a large machine, and many other complicating factors are added; hence, the erection of a planer of the latter class will be described in detail. For this purpose a 48-inch motor-driven planer is selected, the general features of which are apparent from a study of the half-tone Fig. 10.

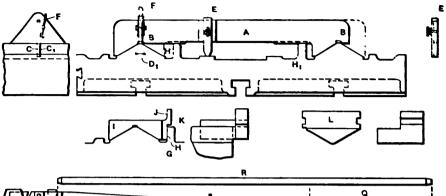
As the machining processes are so intimately correlated with those of assembling, and as the methods employed in the latter are controlled to a great extent by the former, a brief description of the points to be observed in machining, together with the gages used for testing the larger members, will be illustrated and described. Referring to Fig. 11, A indicates a gage for testing the V-surfaces on both the bed and table, it being shown in position on the latter. The surfaces B, which support the gage, are finished first, and in this way the gage is always kept in a horizontal plane and both tracks are the same width, so that when the table is placed in position on the bed, the top of the table will be square with the housings. Another advantage of this gage over the usual form having a bearing on both sides of the V, is that only two parallel surfaces are finished and tested at a time, which often saves changing the planing tools and resetting the tool-heads. The gage is squared by trying a 0.001-inch feeler on both sides of the gage at C and C_1 . To determine the width of the

^{*} MACHINERY, December, 1909, and January, 1910.

t

17

V-tracks on the bed and table, measurements are taken at D and D_i , respectively.


The gage just described is not adapted for measuring the rack seat, however, and, therefore, another gage is provided which fits both sides of the V's, and is represented by the dotted lines. This gage carries a slide E which measures the rack seat. At F is shown a sheet-iron support which fits either gage and prevents it from tipping over.

In the same illustration, at G, is shown the method of testing the table on surfaces H and H_1 , which have a clearance of 0.005 inch between corresponding surfaces on the bed. As will be seen, the cast-iron gage block I fits the V on the table and is provided with two surfaces. one, J, for setting the planer tool, and another, K, for testing surface H after the finishing cut is taken. To the right, at L, is shown another cast-iron gage, this being used for setting the tools and testing the surfaces M and N; at L_1 the gage is shown in position in the V-track of the bed. As will be pointed out later, the object of finishing the surface N last is to provide a locating surface for the jig for boring the bed. In this way, the rack gear shaft hole is bored the correct distance from the V-tracks, so that when the table is in position, the table rack will mesh properly with its gears. Length gages O, P, Q. and R are for testing the measurements indicated, the latter also being used for taking the length of the arch A, Fig. 10.

It is essential, of course, that the housing cheeks on the bed be perfectly square with the V-tracks and parallel with each other. To accomplish this, the sweep S, carrying the Starrett indicator T, is used in connection with the straight-edge U, which reaches across the bed and extends a sufficient amount beyond one side to accommodate the swing of the indicator. By this means very accurate results are obtained. The operator holds the bar V in contact with the bed, and the flanged bearing W, being of ample diameter and ground true with the bar, keeps the bar in a vertical plane.

Boring and Drilling the Bed

The bed, having passed inspection with regard to the accuracy of the planing operations, is now sent to the horizontal boring and drilling machine where all the boring, drilling, and tapping operations are completed; one setting only is required, as the machine is provided with two separate columns carrying spindle heads, both working on the sides of the bed simultaneously. In the line-engraving Fig. 13 the bed is seen resting on parallels A with the jig B in position ready for the operations just mentioned. As will be observed from the top view, the jig consists of three main castings C, D, and E, respectively, which are bolted to the three cast-iron tie bars F; this construction permits adjustment of members D and E to compensate for beds having different widths over the housing cheeks. The jig rests on the top of the bed, and is located endwise with reference to the jig members D and Ematching the bed casting, so that when the housings, which have been drilled by a separate jig, are bolted onto the bed, the castings will match properly. Set-screws G square the jig with the bed by holding

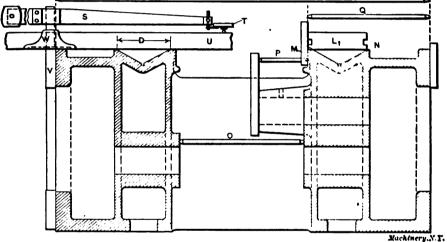
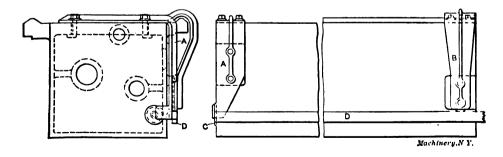



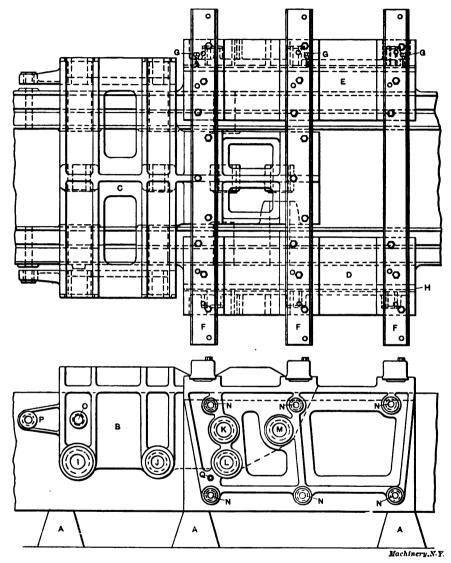
Fig. 11. Gages used for Testing Planing of Bed and Table

i

Fig. 12. Jigs used for Drilling Lead-screw Box Boit Holes in the Bed

the jig against surface H. Suitable stops, straps and bolts secure the jig and bed to the base-plate during these operations.

For boring and reaming the shaft holes I, J, K, L, and M, two boring bars having suitable cutters and reamers are used.[•] The jig is provided with removable hardened steel drill bushings for the housing bolt holes N, the tapping being accomplished at the same setting of the spindle. Drill and reamer bushings are used at O and P, while a fixed drill bushing Q permits a small hole to be drilled for the taper dowel pin, ample stock being left for reaming after the housings are bolted on and properly located. After the boring and drilling operations are completed, the bed is moved over to the erecting foundation where the erecting process proper begins.


Drilling the Housings

In Fig 14, the front housing is shown at A, with jigs B and C in position for drilling the cheek bolt holes and the arch seat tap holes, respectively; the same jigs are used for the back housing, and jig C is also used for drilling the arch casting. The locating points and method of clamping the jigs are indicated in the engraving; as a matter of precaution, after the first hole is drilled in each case, a pin is inserted through the jig bushing into the drilled hole.

All drilling and tapping on this side of the housing being completed. jig C is removed, while B is secured by four bolts D having round heads fitting in place of the drill bushing collars, after which the housing is turned over in the position shown in Fig. 16. The drilling operations are performed on a cast-iron base plate provided with a portable motor-driven radial drill, this base also serving the purpose of a surface plate for laying out the work. It is important that the driving shaft bracket hole A and feed box shaft hole O line up nicely with corresponding holes in the bed, so that the shafts will run perfectly free when assembled. In order to accomplish this without having to assemble the members and housing on the bed, jig B is provided with flanged bearings, as at D, which support arbors located in the exact center position of the respective driving and feed shafts. The location of the bearings in this jig, and also of the bolt holes E is found by clamping the jig to the bed jig member D, Fig. 13, and boring the former in this position, so that the two jigs are identical with respect to the locating points and center distances of the holes.

Referring again to Fig. 16, driving shaft bracket F is first centered by the bushing G being pushed down into the hole; then the outboard bearing H and its member I are set approximately correct by means of shaft J and jig K, and held in this position by C-clamps, after which the truth of bearing H with respect to its being square is tested by means of sweep L, indicator M and the test block N, as shown in the engraving. When it is determined that bearing H is square and properly set, so that bushing O enters the hole in jig Kwithout springing the shaft, all the clamping bolt holes are marked off,

[•] These boring bars are similar to those shown in Figs. 137 and 142, page 21, of MACHINERY'S Reference Series No. 43, Jigs and Fixtures, except that in the present case a middle support enables each bar to carry two cutters and two reamers.

(

í

Fig. 13. Combination Boring and Drilling Jig in Position on the Bed

the brackets removed, and the holes drilled and tapped; then the brackets are bolted on, reset in the same manner, and the dowel pins fitted. In setting and testing these bearing brackets, particular care is exercised to insure the accuracy of the work, thereby saving much time when assembling the parts. As was stated at the outset, the fact that these driving works gener-

Fig. 14. Front Housing with Jigs in Position for Drilling Clamping Bolt Holes. Same Jigs are used for Similar Operations on the Back Housing

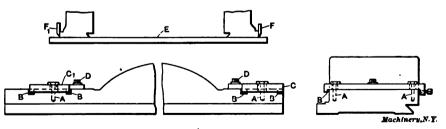
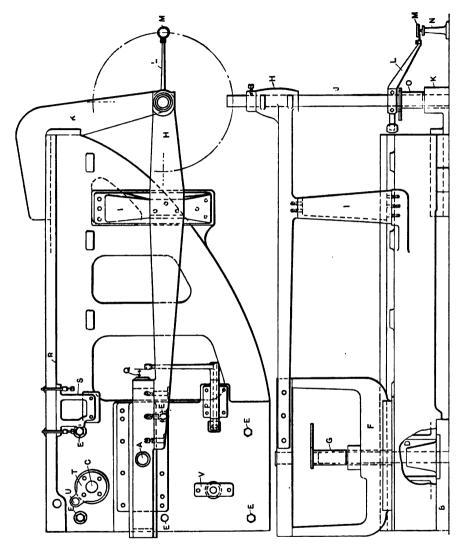



Fig. 15. Jigs for Drilling Stud Holes in Back of Cross-rall. Setting of Jig C1 endwise is accomplished by transferring Measurement from Housings by Means of Wooden Straightedge E

ally are of a special nature, is the reason why jigs are not provided for each individual member.

The cam operating lever bracket P is marked off after being set lengthwise to the correct dimension Q, and sidewise so that the center line of its shaft will coincide with a line laid off on the housing the right distance

(

ł

Fig. 16. Method of Setting and Laying out Holes for the Driving and Feed Members on the Front Housing

from surface R. A simple jig for drilling the feed rack casing holes is shown at S, the method of locating and clamping it being immediately apparent. Jig T is for drilling the feed-box clamping bolts holes; the jig consists of a flat plate centered by means of an arbor the same as at D, and located by a pin fitting into housing dowel pin hole U. A jig of similar construction and cen-

23

24

tered in the same manner, is illustrated at V; this jig drills the clamping bolt holes for a bracket carrying the side-head feed shaft. Simple jigs, not shown, are provided for drilling for the feed bracket B and elevating screw brackets C, Fig. 10, these two operations being performed on a horizontal drill. This completes the drilling on the front housing, and after the necessary drilling is performed on the back nousing, using the same jigs as previously explained, the housings are tested to determine the accuracy of the planing.

Testing the Housings

One of the essential requirements of a first-class planer is that it must produce accurate work when using the side-heads, and this means that the ways on the housings must be true and parallel. When making this test, as shown in Fig. 17, the housings occupy the same position as when assembled on their bed, and it is at once apparent that whether or not the front faces stand perfectly plumb, is a matter of little consequence, so long as the faces lie in the same plane. With respect to the side faces and angles, however, the conditions are different; these must be square with the bed. Casting A which corresponds to the cheeks on the planer bed is bolted to a suitable concrete foundation and carries two V-blocks B, forming bearings for the sweep bar C which in turn supports sweep D and indicator E. The bar is held in the V-blocks by straps F and wooden blocks G, while collar Hand its thrust bearing I take up all lateral motion. The construction of sweep proper, D, is such that clamp J, carrying the indicator, may be secured in any position of its travel between the two seamless steel tubes K, which enables readings to be taken at various points.

After being bolted onto the jig, the housings are located against strap L by means of screws as at M. It is desirable that the front faces show about 0.001 inch low at their outer edges, as at N, so that when the cross-rail is in position it will surely have a bearing across the entire face of each housing. Measurements are also taken across O at various heights, and between the arch seats P, to determine the parallelism of these surfaces. It should be explained that, in the side view, the front housing only is shown for the purpose of more clearly illustrating the sweep bearings. The housings having passed inspection in this test, are next turned face uppermost in a suitable pit for convenience in scraping on the side-head shoes D, Fig. 10, after which the housings are ready to be placed in position on the bed.

As has already been stated, the principal points to be observed in planer erection are: housings parallel with each other and square with the bed; accurate fit of all sliding members and truth of all plane bearing surfaces; proper mesh and smooth working of gears, and a system that permits the various parts to be easily and quickly assembled, and avoids the necessity of fitting the members together for the laying-out operations. We have now completed the boring and drilling of the bed, the drilling of the housings, and the testing of the housings. We will now take up the laying out of the arch bars, the assembling operations on the bed, the setting of the housings. the assembling of t

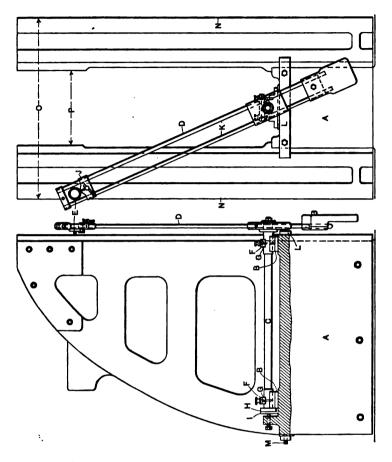


Fig. 17. Special Fixture used for Testing Alignment of Housing Faces, provided with Sweep for Carrying Starrett Indicator

the driving, feed and arch members, the laying out and setting of the cross-rail, and the final testing and inspection.

Laying Out the Arch Members

The first drilling operation on the arch is for the housing bolts, the jig for this being shown at C, Fig. 14; then the arch is set under the drill in its normal position and the brackets and motors are located for marking off the bolt holes, as illustrated in Fig. 18. When these holes have been drilled and tapped, the arch members are bolted in place for drilling the dowel pin holes, this time more care being exercised in the setting. This is another instance where the varying character of the parts precludes the use of drill jigs, and a method of laying out the work must be resorted to. For convenience in obtaining

accurate measurements, and to facilitate the work, a pair of adjustable angle-plates are used, as shown at A, the idea being to use an arbor in the bracket hole B and to provide a positive locating surface at each end, against which the arbor just touches.

The location endwise not being as particular, a line is scribed on the arch the correct distance from end O, and the bracket, with a scale held against the end, is set so that the edge of the scale coincides with the line just mentioned. As will be seen from the detail view, the angle-plate is adjustable on its base D, and may be turned end for end and clamped in any position as the case may require, fine adjustment being made by the screw E. Fastened to base plate D is a scale, while attached to angle-plate F is a vernier, this combination enabling very accurate settings; all readings are taken from the lip G to surface H, and it is necessary, of course, to add half the diameter of the shaft to

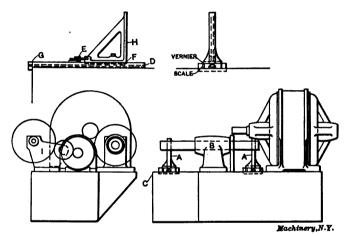


Fig. 18. Arch with Bracket Members and Motor in Position for Laying Out

obtain the center distance. Bracket I, for the top elevating shaft, is set in the same manner, except that the angle-plates are reversed on account of the bracket being so close to the edge of the arch. With both brackets bolted fast and pinned, and their gears in place supported on short arbors, the motors are set so that their pinions mesh properly with the respective gears; then the motor clamping bolt holes are marked off, drilled and tapped, and the motors reset for pinning. In case the design is such that the entire top surface of the arch casting is not planed, *i. e.*, where finished seats are provided for the brackets and motors, additional spots are required for the angle plates. These spots are conveniently located on the casting and are finish planed with the other seats.

Assembling Operations on the Bed

The first assembling operations proper on the bed consist of drilling the various set-screw and oil pipe holes; drilling and fitting the track oiling device, a drill jig for which is shown in Fig. 19, and assembling

the rack gear, its shaft, and the two intermediate compound gears and shafts. These operations, together with placing the housings on the bed, are done before the leveling operation, as otherwise the consequent hammering and additional weight of the housings might throw the bed out of level.

During erection, the bed is supported on cast-iron parallel blocks placed about six feet apart along the whole length of the bed and also under the housings. Planed cast-iron wedges, having screw adjustment, are placed between the parallel blocks and the bed, thus enabling very accurate leveling to be accomplished. The arrangement of all the blocking is such that none of it will interfere with the driving and feed mechanism during erection, and as these details vary in different machines, the blocking must be arranged to suit each machine.

Several methods may be followed in leveling a planer bed, any one of which will give good results if the work is carefully done. The

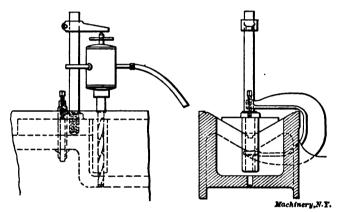


Fig 19. Combination Drill Jig and "Old Man" for Drilling Hole in Oil Pockets for Oiling Device. Jig insures Hole being drilled in Center of Way

prime requisites are, of course, a first-class, sensitive, spirit-level one at least 18 inches long—and an accurate parallel that will reach across both tracks. It is obvious that since the tracks in a new bed are not worn, just as good results are obtained in leveling by using the top surface on the tracks as by using either V-shaped parallels or cylindrical pieces in the ways. The leveling is done as follows: The level is used on the top surface of one track, and that side of the bed is carefully leveled by moving the instrument short distances at a time, over the entire length. Then, by placing the level on the parallel, the bed is leveled crosswise; the operation of first leveling one side and then cross-leveling to the other is repeated several times, or at least until no further errors can be detected.

Setting the Housings

Fig. 20 is a top view of the planer, and shows the general method of setting the housings; the operation involves the alignment of the driving shaft bearing in bracket A with that in the bed at B, and

NO. 51—ASSEMBLING MACHINE TOOLS

28

also includes bringing the faces of the housings into the same plane. With the housings bolted to the bed only sufficiently tight to hold them in place, and with driving shaft bracket A bolted and pinned fast to the front housing C, an arbor D is used as indicated. This arbor is ground true and is a wringing fit in the bed at B, and, being of smaller diameter where it passes through bracket A, permits it to be easily introduced into the bed bearing even though the bracket hole is out of alignment. This condition is possible, of course, since the clamping bolts E have $\frac{1}{6}$ inch clearance in the housings. Now, with bushing Fin position to enter hole G, the front housing is driven with a babbitt hammer, either forward or backward as the case may require, until the bushing enters the hole freely without springing the arbor.

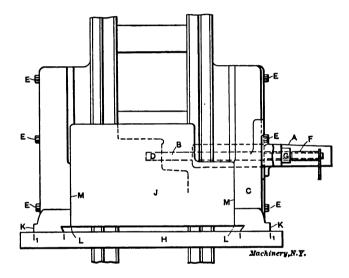


Fig. 20. Method of Setting the Housings. First the Front Housing is set for Alignment of Driving Shaft Bracket A; then the Back Housing is brought into the Same Flane by means of Straightedge H

To set the back housing, a straightedge is laid across the bed as shown at H, and narrow strips of tissue paper are introduced at Iand I_1 ; then, by moving the back housing until papers I are tight and I_1 can just be moved, it is determined that both housings are in proper alignment. The fact that the outside papers are slightly loose is due to conditions already stated. After reaming the housing dowel pin holes by means of an air drill, and driving in the pins, measurement is taken for arch casting J, and the housings are calipered over surfaces K just above the bed, and at the top, to test their parallelism.

While an attempt is made at interchangeability with respect to the length of the arch member, it sometimes happens that certain elements make it necessary to slightly deviate from the standard measurement. For instance, the above test may show the measurement over K to be from 0.002 to 0.003 inch wide or narrow at the top, in which

case the housings are made parallel by means of a jack-screw, or tierod, as the case may require, and then the arch is machined to suit. The arch is now bolted in place, and set to match the housings at L and M, after which it is pinned.

Assembling the Driving, Feed and Arch Members

The cross-rail, side-saddles, and the various driving and feed units are assembled in a department separate from the erecting department, and these parts usually are duplicated in quantities and come from the store-room to the erectors completely finished. In all cases where possible in assembling these units, standardization is provided for, and in this way much time is saved by the erectors avoiding unnecessary adjustments.

Referring back to Fig. 10, the feed box E is next bolted in place, and after assembling the driving shaft F with its members, and bolting on the bracket member G, the outboard bearing H is bolted in position. The arch bearing for the fiy-wheel shaft I already being secured in place, this shaft is red-leaded and tried in its bearings to test their alignment. When proper care is exercised in the aligning operations, very little scraping is necessary on these bearings.

While work is proceeding in assembling the top works, elevating screws, and motors, other erectors are busy with the side-heads D, rocker mechanism J, and the feed mechanism for the side-heads and cross-rail; each unit is assembled in logical order, and as many operations as possible are carried on simultaneously. The planer is now ready for the cross-rail K and table L, preliminary work on these members being completed far enough ahead so as to cause no delay at this point.

The operations on the table consist of drilling and reaming the stoppin holes, drilling and bolting on the rack, and rough scraping the tracks; the oil grooves were cut in the machining process. A large motor-driven multi-spindle drill is used for drilling and reaming the stop-pin holes. This machine carries sixteen spindles, arranged in two rows; one row of spindles carries the drills, and the other the combination mills and countersinks. After the first row of holes is drilled and the table is indexed along the space of one row, the combination mills and countersinks are inserted, and the sixteen tools are used simultaneously, thus producing very rapid work. The table is supported on a special truck running on a track between the drill uprights, and a suitable mechanism for moving and indexing the table completes the equipment. Previous to placing the table on the bed, the ways on the latter are also rough scraped, and then the bearing surfaces receive a coat of red lead which serves the double purpose of marking material and lubricant.

Laying Out and Setting the Cross-rail

The stud holes A for the cross-rail gibs are drilled in the manner shown in Fig. 15. As will be seen, spots are planed off at B which serve to square jigs C and C_1 , and the holes for the elevating screw nuts are utilized for clamping the jigs by means of bolts D. Endwise location of jig C is determined by matching the end of the cross-rail as shown; then jig C_1 is set by transferring the measurement from the housings by means of the wooden straightedge E. A flat scriber, shown at F and F_1 , is used to mark lines on the straightedge which is chalked for this purpose, and when corresponding lines on the jigs coincide with those on the straightedge, jig C_1 is properly set.

When the studs are screwed in place and the back surface of the cross-rail is scraped, the cross-rail is placed in position on the planer and clamped by its gibs. Squaring the cross-rail with the housings is accomplished by holding the bar of a sweep in the angle M, Fig. 10, and applying an indicator to the front housing at N and N_1 . The low end of the cross-rail is raised a sufficient amount by either moving the teeth in bevel gear O or O_1 (Fig. 10), as the case may require, in relation to its pinion, or by adjusting one of the nuts on the gear end of the elevating screws, final adjustment being obtained by the

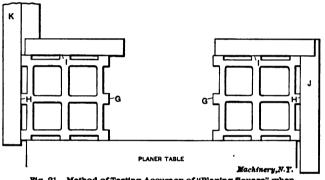


Fig. 21. Method of Testing Accuracy of "Planing Square" when using the Side-heads

latter method. It is always better to raise the low end rather than lower the high end of the cross-rail, on account of the fact that this will take up any lost motion or backlash between the nuts, the feedscrews, and the housings. As the studs have 1/16 inch clearance in the gib, it is necessary to pin the latter after setting the cross-rail.

Final Test and Inspection

With the motors wired up, the belts in place, and the machine thoroughly oiled, the driving works are run for a while before moving the table into mesh with its rack gear, the idea being to prevent possible heating of the bearings by running without load. Next the table is brought into mesh and the bed is again carefully leveled in the same manner as before. When this is accomplished, the ways and tracks are scraped to a bearing, after which the ways are oiled and one or more cuts taken across the table to true it up for the purpose of testing the planer. A straightedge tried on the table crosswise, lengthwise, and across corners, is used to test the truth of the planing.

The side-heads are next tested for "planing square" by the method illustrated in Fig. 21. Two cast iron parallels G are clamped one on

ASSEMBLING A PLANER

each side of the table as shown, and then light cuts are taken down faces H with tools in the side-heads. Now, with the faces H clamped to the table, cuts are taken down faces I, after which the parallels are turned back to their original positions and a square tried as at J. To "prove" the square, it is used in connection with a straightedge (on the same parallel) as at K, any error detected between the blade of square and the straightedge showing double the amount of actual error.

The accuracy of setting the cross-rail is now determined by taking a light cut across faces I, using a tool in one of the cross-rail heads, and testing with the square and straightedge as in the previous case. The object in making these tests is a precautionary measure, for by testing the planer under actual working conditions, the accuracy of the tests made during erection are thus proved.

Final inspection includes running the cross-rail to the top of the housings to test the elevating mechanism and ascertain the fact that there is clearance between the cross-rail and arch. All gearing is tested for quiet and smooth running; the fits of all bearing surfaces are inspected; the slides and saddles are run by hand to test the parallelism of their ways and also the ease with which the slides operate, after which the power feed is applied and tested in various ways; the balance of the driving motor armature, and of the fiy-wheels and pulleys also, receives careful inspection; in fact, no part is neglected and all errors must be within allowable limits of variation. All tests are made under the personal supervision of an inspector, who enters all data on a form prepared for the purpose, and this report bears the serial number of the planer, and is filed away for future reference.

As opportunity offers during erection, the filling, rubbing down, and priming has progressed, so that after inspection, all that remains to be done is to give the bright parts their final polish, and apply the last coat of paint.

ŧ

CHAPTER III

LAYING-OUT AND ALIGNING OPERATIONS*

In general, laying out is the process of placing such lines on castings, forgings, or partially finished surfaces, as will designate the exact location and nature of the operations specified on the drawing; an aligning operation, as its name implies, consists in lining-up a shaft bearing, bracket, or other similar machine element, in its proper place relative to other members. The first-named operation usually is associated with the process of machining, while the last-mentioned is generally included in the work of assembling. Laying-out and aligning operations may be divided into two parts; the preliminary and the final. The preliminary operation consists in approximately locating a machine element in place for the purpose of marking the clamping bolt holes on its supporting member; in the final alignment, the exact location is ascertained for the purpose of drilling the dowel pin holes, the work being held by its clamping bolts. Clearance in the bolt holes permits of this adjustment.

As the ultimate results obtained in assembling are controlled to a large extent by the accuracy of these operations, it is of the utmost importance that means be provided for insuring the refinement that the nature of the case demands. Jigs and fixtures have, of course, been a dominant factor in dispensing with much of the ingenuity and skill required in this work, but owing to special considerations a preclusion of these valuable adjuncts to manufacturing work may be advisable. In this case a simple gage or templet, or even a wooden jig provided with steel bushings, will greatly facilitate the operation of laying out or aligning, and, in fact, when proper care is exercised in using these comparatively crude devices, work may be produced on an interchangeable basis as good as with more expensive tools; although it is to be expected that more skilled labor will be required.

As regards the different methods of laying out and aligning, no definite rules can be given. The machinist must consider the means at hand and the nature of the job; he must then use his ingenuity and be guided by his practical experience. A few special cases are illustrated in the accompanying line-engravings; the methods and processes shown and the remarks made in regard to them are intended only as suggestions of how the work may be accomplished without the employment of drill jigs. It is not to be inferred that the way shown is, in each instance, the best method possible and the only one applicable. Circumstances alter cases; while the methods shown may be eminently suitable for one set of conditions, they may either be too refined or not refined enough for other requirements.

^{*} MACHINERY, February and March, 1910.

Special Tools and Appliances

Aside from the more common laying-out tools such as the dividers, surface gage, steel scale, etc., there are a number of tools of a special form used for laying-out operations, some of which are shown in Fig. 22. The form of center punch shown at A will greatly facilitate marking off holes through brackets and templets, or in laying off pin holes for cams. It is necessary to provide a number of different sized center punches of this type, as the body of the punch must fit the

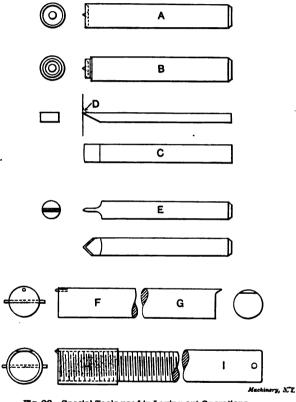


Fig. 22. Special Tools used in Laying-out Operations

clearance hole in the work. For obtaining a circle, the diameter of the tap drill, the punch or marker may take the form shown at B, while a combination of the two will provide a guard circle.

A flat scriber C is very useful for marking a line on a plane surface at right angles to another plane surface when the corner is rounded as shown at D. The form of marker illustrated at E is for giving permanence to lines intersecting on surfaces at right angles, as for instance, in marking the relative position of a gear on a shaft. At Fis shown a special marker for laying out a circle, the center of which

Digitized by GOOGLE

NO. 51-ASSEMBLING MACHINE TOOLS

34

must coincide with a hole already bored. The body of the marker fits the bored hole and a circle is scribed in the piece to be marked off by rotating the marker when the point is in contact with the work. Two methods of making the scribing point are clearly indicated in the engraving, the one shown at end G producing a circle the diameter of the body. In marking off a hole in alignment with a threaded hole, a bushing H having a scribing point is made to fit the threaded arbor I. This arbor fits the threaded hole, and the bushing is rotated to mark the circle.

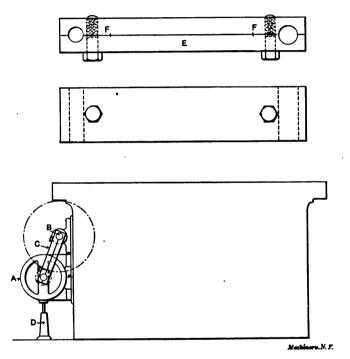
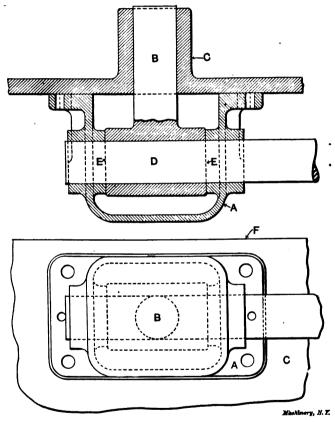



Fig. 28. Locating a Small Motor by the Use of a Link

One of the most convenient and accurate methods of locating gear centers is by the use of links. For drilling or boring operations the link may take the form of a casting provided with hardened steel bushings to guide the cutting tools. Again, a link may be used for cases similar to the one shown in Fig. 23, which illustrates the method of accurately setting a small motor A so that its pinion will mesh properly with a gear on shaft B. The work is accomplished as follows: With the link C and the motor in position as shown, the jackscrew D is adjusted until the motor frame just touches the finished seat on the bed. This adjustment is determined by means of tissue paper placed between the motor and bed, after which the bolt holes are marked off on the bed; the special marker B, Fig. 22, is used for

the purpose. The construction of the link is clearly shown at E, Fig. 23; this form, being made of two pieces bolted together, permits of ready application to a shaft supported between bearings, without removing the shaft. Such a case is frequently met with in applying a geared pump to a machine already built. For ordinary cases, however, the link may be made in one casting or forging, as the circumstances require, and provision for clamping may be made by sawing through the ends as far as indicated at F.

ľ

Fig. 24. T-jig for Locating a Bevel Gear Bracket

In Fig. 24 is shown a T-jig for locating a bearing bracket A relative to the hole B in the main casting C. The requirements are that the axes of hole B and shaft D must intersect, and the faces of hubs Emust be equidistant from the axis of B. It is evident, however, that the T-jig will not take care of the alignment of the shaft D with reference to its being parallel with the surface F. This may be accomplished by measuring down from surface F with either a combination square or surface gage or, in case the adjacent bearing for shaft D

is already located, bracket A will find its own alignment by using this bearing to support the shaft.

The Use of Templets

When a number of pieces are to be made interchangeable without the use of jigs or fixtures, this can be accomplished by the employment of templets for laying out the work. While these devices greatly simplify laying-out and aligning operations, they are not intended for guiding the cutting tools. Templets are particularly well adapted for work

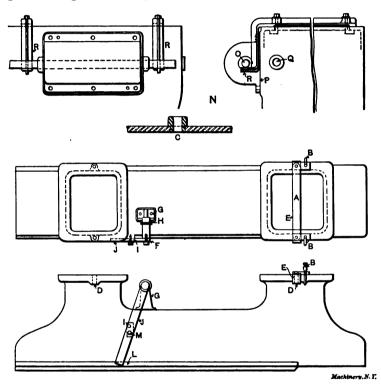


Fig. 25. Special Gages and Templets for Laying-out and Aligning Operations on a Turret Lathe Bed

where the holes to be laid out lie in the same horizontal plane, and owing to this condition, the templet usually takes the form of a flat plate of sheet iron, or a wooden piece, having the same general outline as the work to be laid out. Again, many irregular forms are drawn on work from accurately filed templets, after which permanence is given the lines by dotting them with prick-punch marks placed directly on the line.

In making a templet for the first-mentioned class of work, holes are drilled in the templet to conform to the drawing of the piece to be laid out. In use, the templet is laid on the work and is then clamped

to it by suitable and convenient means, so that its outline coincides with that of the work. The layout may be transferred to the work by means of a marker as already explained, or, in the case of comparatively large holes, an ordinary scriber is used to mark the circles, and after the templet is removed from the work, the center of each circle is laid out with dividers, permanence being given the lines by a prick punch. Witness circles are often placed on the work to make sure that the original lines were closely followed in drilling, *i. e.*, a circle is drawn in each case 1/32 inch larger in diameter than the one worked to; then, if the hole is correctly drilled, it will be concentric with this circle.

For a certain class of work where great accuracy is not required, templets may be made provided with hardened steel bushings for guiding the cutting tools independently of the skill of the operator, in which case, however, the templet takes the form of a jig. Owing to the lack of rigidity due to the thin material of which such jigs or templets are constructed, no attempt is made to provide clamping arrangements. The templet may be clamped to the work by means of ordinary C-clamps, or with machinists' clamps. Very frequently, however, it is desirable to provide locating points which may consist of pins extending from one or both sides of the templet, as the case may require, or the locating points may be formed by bending the edges of the metal to a right angle.

The application of a jig such as just described is illustrated in Fig. 25, which shows the method of drilling foundation bolt holes in a turret lathe bed, the holes being drilled from the bottom. As will be seen, the jig or templet A consists of three pieces of flat iron riveted together and clamped to the bed by means of clamps B. The method of inserting the drill bushings is shown in detail at C. To facilitate setting the jig with reference to the bosses D on the under side of the bed casting so that the holes when drilled will be concentric with these bosses, jig member E is bent to a right angle as each end so as to extend down the casting; the location is determined by matching these ears with the bosses on the bed.

In Fig. 26 is shown the application of sheet-iron templets for laying out cross-rail members for lathe planers. Templet A for swivel member B is located by the hub C, and is lined up to match the end D. A separate templet is provided for laying out the swivel clamp E; edge F of the templet is bent over to form a locating point. But one templet is required for laying out slide G and its clapper-box H. This is lined up on each member as shown. It is obvious that these templets are more advantageous than cast-iron jigs for this class of work, since very large and heavy jigs would be required, and furthermore, no great accuracy is necessary, as the bolt holes have 1/16 inch clearance.

As already stated, a very cheap and serviceable jig for certain classes of work can be constructed of wood. At A, Fig. 27, is shown a jig of this character for drilling the clamping bolt holes in an engine lathe head-stock—in this case for a 30-inch lathe. The jig is located by pin B and keys C, the latter fitting a keyway in the headstock; having these keys on both sides of the jig as shown at D, it is also used for drilling

NO. 51—ASSEMBLING MACHINE TOOLS

the tap holes in the lathe bed, not shown. Steel lining bushings E are provided for the drill bushings. The jig and work are clamped to the drill press table by straps and bolts. The frame consists of four pieces of ash fastened at the corners with glue and wood screws, the joints being made as shown. Ash is the best wood for the purpose, since, if well seasoned, it is less likely to warp than any other, but where this wood is not available, maple is a good substitute.

A slightly more expensive, but more durable jig, for the same purpose is shown at F in the same engraving. This jig is made of flat

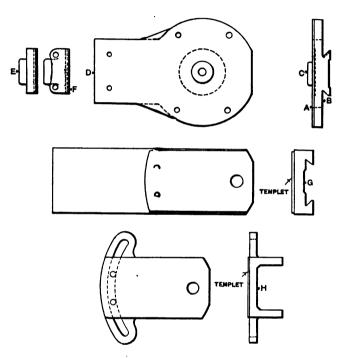


Fig. 26. Sheet-iron Templets for Laying out Planer Cross-rail Members

bar steel riveted together, and is of the same general construction as the wooden one.

Gages for Aligning Operations

A gage may briefly be defined as any standard of comparison; as. here used, the term gage will have reference to special devices for aligning work without the employment of ordinary tools such as a combination square, surface gage, etc. Besides greatly facilitating aligning operations, the particular advantage of using gages is that the possibility of error due to carelessness in transferring scale measurements is avoided. It is assumed, however, that the gages here shown are intended only for duplicate work; it would not be economy to make gages for aligning only a few pieces.

38

L

Turning back to Fig. 25, F represents a simple gage for aligning bracket G on the bottom of a turret lathe bed. The requirements are that face H of the bracket must be a certain definite distance from seat I on the bed, but the alignment in a longitudinal direction is nonessential. The gage merely consists of two pieces; a straightedge J, planed only on one side and one end, and a gage which is fastened to the end of the straightedge as shown. As surface L on the bed lies in

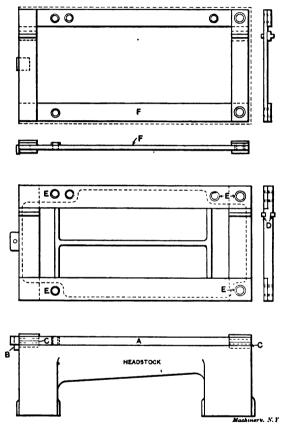


Fig. 27. Application of a Wooden Jig for Drilling a Lathe Head-stock. At F is shown a Similar Jig Constructed of Flat Bar Steel

the same plane with seat I, the straightedge is made long enough to reach this surface, thereby obtaining greater accuracy in the alignment. Bolt hole M, already tapped, is utilized for clamping the gage. In aligning the bracket, its face is brought into contact with the gage, and the bracket is then set longitudinally to match its seat on the bed.

Another gage, or more properly speaking, a pair of gages, for aligning a feed-box on the turret lathe bed shown in the lower part of the same engraving, is shown at N. The requirement of the present case is simply that the feed-box shaft hole O be located a certain definite distance from the top of the bed; seat P on the bed takes care of the center distance from hole Q. It is obvious then, that the gage castings R should only provide a positive locating surface with reference to the top of the bed; this is accomplished in the manner shown. The location endwise is determined by scale measurements from the end of the bed.

An aligning operation on a vertical boring mill bed, and the gage

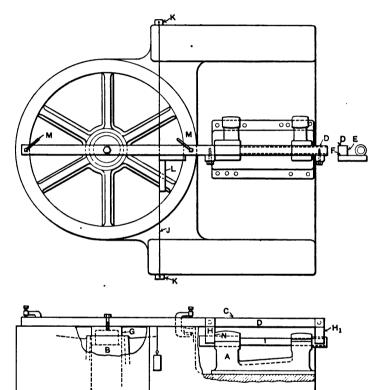


Fig. 28. Gage for Aligning the Driving Shaft Bracket on a Vertical Boring Mill of the Bevel Gear Driven Type

used, is illustrated in Fig. 28. This boring mill is of the bevel gear driven type, in which the pinion meshing into the table bevel gear is carried on the driving shaft in bracket A. The problem of aligning this driving shaft bracket with reference to the spindle hole B in the bed, is easily solved by using gage O. As will be seen, this gage consists of a bar D planed on two sides, E and F; a bushing G fitting the spindle hole; and two gage pieces H and H_1 . A special arbor I, having both its ends ground to the same diameter, fits bracket A.

When in use, a line wire J is stretched across the bed by means of weights K. This wire lies in a small groove or mark planed in the bed for the double purpose of squaring the gage and setting the housings. Square L is used in setting the gage before it is clamped by means of clamps M, so that when the bed members are assembled, the driving shaft will be approximately square with the housing faces. With the gage in this position, bracket A is set so that its arbor just touches the gage blocks H and H_1 . The location with reference to the distance from spindle hole B in the bed is determined by simply bringing the hub face N on bracket A into contact with the side of gage block H. After the operation of marking off the tap holes in the bed is accomplished, and the holes are drilled and tapped, bracket A is reset in the same manner and clamped by its bolts, for drilling and reaming the dowel pin holes.

Laying-out and Aligning Operations without the Use of Special Tools and Appliances

In the absence of special tools and appliances for laying-out and aligning operations, the principal points to be observed are the selection of a proper starting point from which to lay out all dimensions, the employment of efficient means to compensate for the deflection in horizontal aligning arbors when the bracket seats lie in a vertical plane, *i. e.*, when it is impracticable to place the bed of a machine in such a position that the bracket seats will lie in a horizontal plane and thus carry the bracket members unsupported; and the avoidance of assembling all the correlated members together for the laying-out operations.

The first two points brought out above are exemplified in the aligning operations on a vertical boring mill of the spur pinion driven type, which is illustrated in Fig. 29. The operations involved are the alignment of the driving pinion bracket A, the driving shaft bracket B, the feed shaft bracket C, and the housings; only one housing D is shown. The hubs on the brackets have clearance in cored holes in the bed. It is the general practice to bore out the table spindle hole E, and table gear pinion hole F, by means of a boring jig, previous to aligning the brackets; hole F in the bed is then used as a starting point for the aligning operations.

For convenience in setting bracket A, which forms the lower bearing for the table driving pinion, and also carries inner bearings G and H for the driving and feed shafts, the bed casting is turned bottom side up, the process being as follows: The table pinion is placed in position in its hole F, for the purpose of centering the bracket; next the driving shaft I is put in place in its bearing G, and then the bracket is squared with seat J by means of a square held against the seat and the shaft. This setting is for marking off the bolt holes in the bed, and after the drilling and tapping is accomplished, the bracket is reset in the same manner as before and clamped by its bolts; then the dowel pin holes are drilled and reamed, and the pins fitted.

The next logical step is to turn the bed right side up and place reference lines on seats J and K respectively. A separate operation

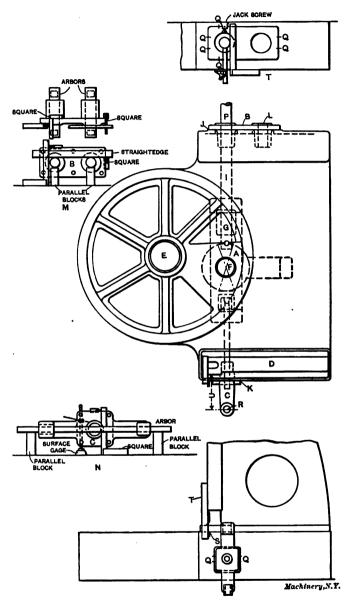


Fig. 29. Laying-out and Aligning Operations on a Vertical Boring Mill of the Spur Gear Driven Type. By the Method shown, no Special Gages or Tools are required

.

L

ŧ

involves placing reference lines on the bracket members B and C. The reference lines represent, on each separate member, the outside diameter of the shaft used in aligning; then, in assembling the bracket members on the bed for the aligning operations, it is simply necessary to match the lines on the brackets with those corresponding on the bed. During this operation the brackets are supported on screw-jacks. This method of setting brackets illustrates the second point stated above, the employment of efficient means to compensate for the deflection in aligning arbors when the bracket seats lie in a vertical plane; another point of advantage, however, is that this method insures proper alignment of the shafts, any inaccuracy in the machining of the seats being immediately apparent when the members are assembled. For instance, another method of setting the driving shaft bracket would simply be to place the bracket in position on its shaft, support it on screw-jacks, and then shift the bracket around until a feeler indicated that all sides of the bracket were tight against its seat on the bed, attention being paid, of course, to the location of the back-gear hole L with reference to the top of the bed. With this method it would be possible to have all sides of the bracket tight against the bed as just explained, but in the event of the bracket seat not being perfectly square with the hole, the shaft would be thrown out of proper alignment with reference to the planing on the bed and also to hole G.

Turning back now to the question of reference lines, the method of placing these lines on the driving shaft bracket is clearly illustrated at M in Fig. 29, while at N is shown the same operation on the feed shaft bracket; both cases are essentially the same. To place lines on the bed seat J, a surface gage is first set to the driving shaft at O; next the gage is moved to position P and the shaft jacked up until the surface gage indicates parallelism with the top of the bed; and then, after testing the shaft with a square on seat J to insure that the screw-jack is not holding the shaft out of alignment sideways, a combination square and an ordinary square are used as shown at T. Similar operations are involved on seat K. Permanence is given all reference lines by driving a thin chisel into the casting directly on the line. These lines are indicated in the engraving by the letter Q.

The housings are located on the bed with reference to hole R for the vertical feed shaft. Previous to placing the housings on the bed, however, lines are drawn at S on each housing and on the bed casting, which lines are in the same plane as the front face of the housings. This is accomplished in the former case by means of a straightedge T, and in the latter case by laying off on the bed the correct distance from the center line of brackets A and C. In placing the housings on the bed the corresponding lines on each member, are matched, and then the housings are moved so that measurement U is correct; this measurement is taken with a straightedge and combination square. The housings are set for the pinning operations in the same manner. It may be of interest to state that the housings are first set on a large surface plate for the purpose of bolting on the arch casting and fitting the top-works, thus enabling the accomplishment of several operations

simultaneously, as the cross-rail gibs also can be laid out at this time.

By observing the third principle laid down before, the avoidance of assembling all the correlated members for the laying-out operations, it is often possible to advance work that otherwise could not be accomplished. This point is illustrated in Fig. 30, which shows an oil pumping arrangement attached to an engine lathe carriage and driven by a shaft carried in bearings on the back of the bed. This outfit is special in its nature and is furnished as an attachment; considering this fact it will be apparent that the bed member is likely to reach the assemblers last, and therefore the work can be greatly advanced by laying out and fitting up the carriage members independently of the bed.

After bolting the oil tank A to carriage B, its bolts fitting T-slots in the carriage, the oil tank is set and then dowel-pinned, the operations being so simple as to need no explanation. As bracket C is already bored out on a boring mill, the first laying-out operation involves the location of stud hole D in the oil tank. Since this hole must be laid out with reference to surfaces E and F on the bed (surface G on the carriage is merely planed for clearance) very effective use can be made of a jig consisting of a short bed section; but if this is not available, a gage block H similar to that used in planing the carriage, can be substituted. A graduated try-square is used first on surface E and then on surface F; the measurements are read directly from the graduations. Next, the hole is drilled and tapped using a pneumatic drill, and then bracket C is clamped in place by the intermediate gear I.

The next operation involves the alignment of hole J with reference to surface E, the object being to provide standardization for the planing of shaft bearing K and its seat on the bed. This is accomplished by swiveling bracket O around, using stud I as a pivot, until a combination square and scale indicate that the measurement is correct. The slide of the combination square rests against surface E, while its base is held in contact with surface F; the scale is then used to measure from the combination square slide to the center in the hole. After the bolt holes L and M are located, drilled and tapped, bolts are entered and the bracket is reset for pinning; the clearance in the bolt holes permits of adjustment.

To set the oil pump N it is merely necessary to bring gears O and P into proper mesh. The driving shaft brackets on the bed, one of which is shown at K, are located as follows: A short arbor representing the driving shaft is inserted in the bearing hole, and then the measurement is taken from surface F on the bed. These brackets are located and drilled on the bed while it is under a radial drill for other drilling operations, and the bed is turned over on its side at this time for convenience. The dowel pin holes in the driving shaft brackets are not drilled until all the parts are assembled on the bed; then the final alignment is accomplished by moving the carriage close to each bracket alternately and slackening off the bolts, thus allowing the adjacent bracket to be self-aligned, after which the bolts are tightened for the pinning operations.

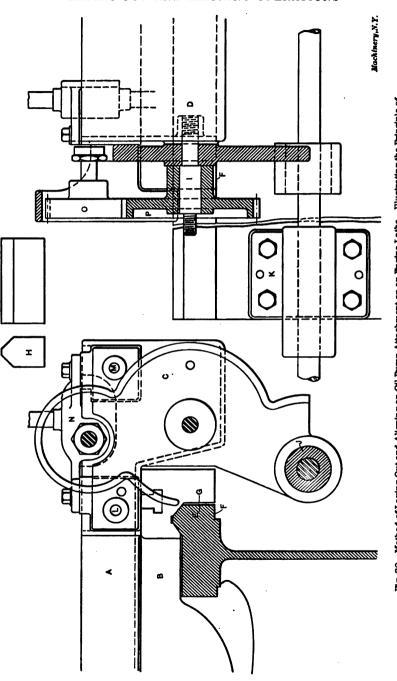


Fig. 30. Method of Laying Out and Aligning an Oil Pump Attachment on an Engine Lathe. Illustrating the Frinciple of Avoidance of Assembling all the Members together for the Laying-out Operations

Laying Out Angles

In machine tool work it frequently becomes necessary to lay out angles, and as a general rule it may be stated that a much greater degree of accuracy can be obtained by the following methods than is possible by laying off angles with the ordinary bevel protractor made for machine shop work. The correctness with which an angle can thus be produced, however, naturally depends on the skill of the workman in working to the scribed lines and on the accuracy with which they have been located. If it is not convenient to lay off the lines directly on the work, the given angle or taper may be laid off on a piece of sheet steel, which is then carefully filed to the lines scribed thereon.

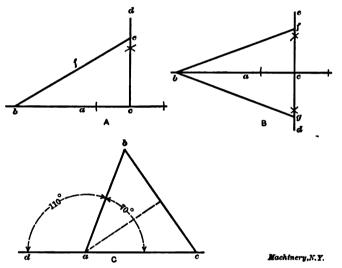


Fig. 81. Graphical Methods of Laying out Angles

Scribe a straight line a, as at A in Fig. 31; then make two very fine center punch marks, b and c, on this line, as far apart as circumstances will permit. At c erect a perpendicular, as cd. The distance bc being laid off to some convenient dimension, take the tangent of the required angle and multiply the distance bc by this tangent, using a table of natural tangents. Then, on cd lay off as accurately as possible the product of bc and the tangent, marking it by a fine center punch mark as at e on the line cd. Scribe a line through b and e; the angle ebcwill then be the required angle.

When the required angle is greater than 45 degrees, it is more convenient to use the method shown at B. Scribe the line a and on it lay off bc as long as convenient. At c erect the perpendicular line de. From a table of natural tangents take the tangent corresponding to one-half the required angle; multiply the distance bc by this tangent and lay off the distance thus found on both sides of c, marking it at f and g. Join f and g to b by straight lines. The angle fbg is the required angle.

When the required angle is greater than 90 degrees, instead of laying off that angle, its supplement is laid off. Subtract the required angle from 180 degrees and lay off the angle thus formed. Thus, if the required angle is 110 degrees, lay off the angle bac, as at C, Fig. 31, equal to 180 degrees — 110 degrees = 70 degrees by the method illustrated at B. The angle dab is then 110 degrees. All other factors remaining as before, the accuracy attainable will be greater as the base line, as bc, at A and B, or ac, at C, is made longer.

The laying-out and aligning operations on machine tools require, as we have seen, a thorough understanding of the purpose of the various parts making up the machine, and the accuracy required in their alignment. Besides this, a general knowledge of elementary geometry is not only helpful but in many cases almost indispensable. The examples of aligning operations given in the present treatise are, of course, intended to be primarily of suggestive value. Individual judgment will have to be used in each particular case, and definite rules cannot be laid down that would be applicable under all conditions. The general outlines presented above, however, and the simple methods given for the laying out of angles will be found useful in operations of this kind not only on machine tools but on all classes of machinery where the accuracy of the alignment of interdependent parts is necessary for the successful working of the machines.

No. 21. MEASUBING TOOLS.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc.

No. 22. CALCULATION OF ELEMENTS OF MACHINE DESIGN.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. THEORY OF CHANE DESIGN.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys, etc.

No. 24. EXAMPLES OF CALCULATING DESIGNS.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. DEEP HOLE DRILLING.—Methods of Drilling; Construction of Drills. No. 26. MODERN PUNCH AND DIE CONSTRUCTION.—Construction and Use of

Sub-press Dies; Modern Blanking Die Construction; Drawing and Forming Dies. No. 27. LOCOMOTIVE DESIGN, Part I.—Boilers, Cylinders, Pipes and Pistons.

No. 28. LOCOMOTIVE DESIGN, Part II.-Stephenson Valve Motion; Theory,

Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. LOCOMOTIVE DESIGN, Part III.—Smokebox; Exhaust Pipe; Frames;

Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels. No. 30. LOCOMOTIVE DESIGN, Part IV.—Springs, Trucks, Cab and Tender.

No. 31. SCREW THREAD TOOLS AND GAGES.

No. 32. SCREW THREAD CUTTING.-Change Gears; Thread Tools; Kinks.

NO. 33. SYSTEMS AND PRACTICE OF THE DRAFTING-ROOM.

No. 34. CARE AND REPAIR OF DYNAMOS AND MOTORS.

No. 35. TABLES AND FORMULAS FOR SHOP AND DRAFTING-ROOM.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. IBON AND STEEL .- Principles of Manufacture and Treatment.

No. 37. BEVEL GEARING.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. GRINDING AND LAPPING.—Grinding and Grinding Machines; Disk Grinders; Bursting of Emery Wheels; Kinks; Lapping Flat Work and Gages.

No. 39. FANS, VENTILATION AND HEATING.—Fans; Heaters; Shop Heating.

No. 40. FLY-WHEELS,-Their Purpose, Calculation and Design.

No. 41. JIGS AND FIXTURES, Part I.—Principles of Jig and Fixture Design;

Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. JIGS AND FIXTURES, Part II .- Open and Closed Drill Jigs.

No. 43. JIGS AND FIXTURES, Part III.—Principles of Boring Jig Design; Boring, Reaming and Facing Tools; Milling and Planing Fixtures.

No. 44. MACHINE BLACKSMITHING .- Systems, Tools and Machines used.

No. 45. DROP FORGING .- Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. HABDENING AND TEMPERING.—Hardening Plants; Treating High-

Speed Steel; Hardening Gages; Case-hardening; Hardening Kinks.

No. 47. ELECTRIC OVER-HEAD CRANES.-Design and Calculation.

No. 48. FILES AND FILING .- Types of Files; Using and Making Files.

NO. 49. GIRDERS FOR ELECTRIC OVERHEAD CRANES.

No. 50. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part I.

No. 51. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part 11.

NO. 52. ADVANCED SHOP ABITHMETIC FOR THE MACHINIST.

No. 53. Use of Logabithms, and Logabithmic Tables.

No. 54. Solution of TRIANGLES, Part I.—Methods, Rules and Examples for Practice.

No. 55. Solution of TRIANGLES, Part II.—Tables of Trigonometric Functions.

The Industrial Press, Publishers of MACHINERY 49-55 Lafsyette Street Subway Station, Work Street New York City, U.S.A

EACH PAMPHLET IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DE-SIGN AND SHOP PRACTICE REVISED AND REPUBLISHED FROM MACHINERY

No. 52

ADVANCED SHOP ARITHMETIC FOR THE MACHINIST

By ERIK OBERG

CONTENTS

Square Root	3
Cube Root	
The Use of Formulas	9
Time Required for Drilling, Milling and Planing	
Pulley and Gear Drives	
Horsepower of Belting	
Change Gears for Cutting Metric Threads	
Areas of Plane Figures	
Volumes of Solids	
Specific Gravity and Weights of Bar Stock and Castings	
Use of Tables of Sines, Cosines, Tangents and Cotang-	10
ents	49

Copyright 1910, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City

MACHINERY'S REFERENCE SERIES

This treatise is one unit in a comprehensive Series of Reference books, originated by MACHINERY, and including an indefinite number of compact units, each covering one subject thoroughly. The whole series comprises a complete working library of mechanical literature in which the Mechanical Engineer, the Master Mechanic, the Designer, the Machinist and Tool-maker will find the special information he wishes to secure, selected, carefully revised and condensed for him. The books are sold singly or in complete sets, as may be desired. The price of each book is 25 cents, and it is possible to secure them on even more favorable terms under special offers issued by MACHINERY's circulation department and sent to any one on request.

The success of the Reference Series was instantaneous and copies are now widely distributed in machine shops and metal working plants everywhere.

CONTENTS OF REFERENCE BOOKS

No. 1. WOBM GEABING.—Calculating Dimensions for Worm Gearing; Hobs for Worm-Gears; Location of Pitch Circle; Self-Locking Worm Gearing; etc.

No. 2. DRAFTING-ROOM PRACTICE.—Drafting-Room System; Tracing, Lettering and Mounting; Card Index Systems.

No. 3. DRILL JIGS.—Elementary Principles of Drill Jigs; Drilling Jig Plates; Examples of Drill Jigs; Jig Bushings; Using Jigs to Best Advantage.

No. 4. MILLING FIXTURES.—Elementary Principles of Milling Fixtures; Collection of Examples of Milling Fixture Design, from practice.

No. 5. FIRST PRINCIPLES OF THEORETICAL MECHANICS.

No. 6. PUNCH AND DIE WORK.—Principles of Punch and Die Work; Suggestions for the Making and Use of Dies; Examples of Die and Punch Design.

No. 7. LATHE AND PLANEB TOOLS.—Cutting Tools for Planer and Lathe; Boring Tools; Shape of Standard Shop Tools; Forming Tools.

NO. 8. WOBKING DRAWINGS AND DEAFTING-ROOM KINKS.

No. 9. DESIGNING AND CUTTING CAMS.—Drafting of Cams; Cam Curves; Cam Design and Cam Cutting; Suggestions in Cam Making.

No. 10. EXAMPLES OF MACHINE SHOP PRACTICE.—Cutting Bevel Gears with Rotary Cutters; Making a Worm-Gear; Spindle Construction.

No. 11. BEABINGS.—Design of Bearings; Causes of Hot Bearings; Alloys for Bearings; Ball Bearings; Friction of Roller Bearings.

No. 12. MATHEMATICS OF MACHINE DESIGN.—Compiled with special reference to shafting and efficiency of hoisting machinery.

No. 13. BLANKING DIES.—Making Blanking Dies; Blanking and Piercing Dies; Construction of Split Dies; Novel Ideas in Die Making.

No. 14. DETAILS OF MACHINE TOOL DESIGN.—Cone Pulleys and Belts; Strength of Countershafts; Tumbler Gear Design; Faults of Iron Castings.

No. 15. SPUB GEARING.—First Principles of Gearing; Formulas for Spur Gearing; Design and Calculation of Gear Wheels; Strength of Gear Teeth.

No. 16. MACHINE TOOL DRIVES.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. STRENGTH OF CYLINDERS.—Formulas, Charts, and Diagrams for Thick Hollow Cylinders; Design of Thick Cylinders; Cast Iron Cylinders.

No. 18. SHOP ABITHMETIC FOR THE MACHINIST.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. USE OF FORMULAS IN MECHANICS.—Mathematical Signs and Formulas; Strength of Materials; Graphical Methods; Levers; Center of Gravity.

No. 20. SPIEAL GEARING.—Calculating Spiral Gears; Rules, Formulas, and Diagrams for Designing Spiral Gears; Efficiency of Spiral Gearing, etc.

See inside back cover for additional titles Digitized by

MACHINERY'S REFERENCE SERIES

EACH NUMBER IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DESIGN AND SHOP PRACTICE REVISED AND REPUB-LISHED FROM MACHINERY

NUMBER 52

ADVANCED SHOP ARITHMETIC FOR THE MACHINIST

By ERIK OBERG

CONTENTS

Square Root	3
Cube Root	
The Use of Formulas	9
Time Required for Drilling, Milling and Planing	
Pulley and Gear Drives	18
Horsepower of Belting	20
Change Gears for Cutting Metric Threads	22
Areas of Plane Figures	27
Volumes of Solids	37
Specific Gravity and Weights of Bar Stock and Castings	43
Use of Tables of Sines, Cosines, Tangents and Cotang-	
ents	49

Copyright, 1910, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City

Students whose knowledge of elementary arithmetic and its application to simple problems is too limited for intelligent study of this treatise, are advised to first study MACHINEER'S Jig Sheets 5A to 15A, inclusive, Common Fractions and Decimals, and MACHINEER'S Reference Series No. 18, Shop Arithmetic for the Machinist. Not until the principles of elementary arithmetic and its application to simple shop problems are well understood can the student expect to derive the full benefit from the study of the present book.

CHAPTER I

SQUARE ROOT

The square of a number is the product of that number multiplied by itself. The square of 2 is $2 \times 2 = 4$, and the square of 10 is $10 \times 10 = 100$; similarly the square of 177 is $177 \times 177 = 31,329$. Instead of writing 2×2 for the square of 2, it is often written 2^2 , which is read *two square*, and means that 2 is multiplied by 2. In the same way 128³ means 128 \times 128. The small figure (²) in these expressions is called *exponent*.

The square root of a number is that number which, when multiplied by itself, will give a product equal to the given number. Thus, the square root of 4 is 2, because 2 multiplied by itself gives 4. The square root of 25 is 5; of 36, 6, etc. We may say that the square root is the reverse of the square, so that if the square of 24 is 576, then the square root of 576 is 24. The mathematical sign for the square root is $\frac{1}{2}$, but the *index figure* (³) is generally left out, making the square-root sign simply $\sqrt{}$, thus:

 $\sqrt{4} = 2$ (the square root of four equals two),

 $\sqrt{100} = 10$ (the square root of one hundred equals ten).

The operation of finding the square root of a given number is called *extracting* the square root.

Assume that the square root of 119,716 is to be found. Write the number as below, leaving space for the figures of the root as shown. Beginning at the unit figure (the last figure at the right of a whole number), point off the number into periods of two figures each. Should there be an odd number of figures in the given number, the last period to the left will, of course, have only one figure.

11'97'16 | Space for root.

Now find the greatest whole number the square of which does not exceed the value of the figures in the left-hand period (11), and write this number as the first figure of the root. In the example this number is 3, the square of which is 9. Subtract this square from the left-hand period, and move down the next period of two figures and annex it to the remainder, thus:

$$3 \times 3 = 9$$
297

Now multiply the figure of the root obtained by the constant 20 which is always used when extracting the square root by this method $(3 \times 20 = 60)$, and find how many times this product is contained in the number 297. This gives us a trial figure for the second figure of the root; 60 is contained 4 whole times in 297, and 4 is, therefore, placed as the next figure of the root.

$$\begin{array}{r}
 11'97'16 | 34 \\
 3 \times 3 = 9 \\
 3 \times 20 = 60 \quad 297
\end{array}$$

Now subtract from 297 the product of 60 plus the figure of the root just obtained (4), multiplied by the same figure (4); $(60 + 4) \times 4 = 256$. If this product were larger than 297 it would indicate that the trial figure is too large, and a figure one unit smaller should be used.

Then move down the next period of two figures and annex it to the remainder.

Now multiply the figures of the root thus far obtained by 20 (34×20) = 680), and find how many times this product is contained in 4116. This gives us a trial figure for the third figure of the root; 680 is contained 6 times in 4116, and 6 is therefore placed as the third figure of the root. Then subtract from 4116 the product of 680 plus the figure of the root just obtained (6), multiplied by the same figure (6).

$$\begin{array}{r}
11'97'16 \mid 346\\
3 \times 3 = 9\\
3 \times 20 = 60 \quad 297\\
(60 + 4) \times 4 = \quad 256\\
34 \times 20 = 680 \quad 4116\\
(680 + 6) \times 6 = \quad 4116
\end{array}$$

If, as in the present case, this last subtraction leaves no remainder, and if there are no more periods of figures to move down from the given number, the obtained root 346 is the exact square root of 119,716.

If there is a remainder when the last period of figures has been moved down, place a decimal point after the figures already obtained in the root, annex two ciphers (00) to the remainder, multiply the number so far obtained in the root by 20, and proceed as before until a sufficient number of decimals have been obtained to give the root with sufficient accuracy.

Example:

$$1 \times 1 = 1$$

$$1 \times 1 = 1$$

$$1 \times 20 = 20$$

$$25$$

$$(20 + 1) \times 1 = 21$$

$$11 \times 20 = 220$$

$$400$$

$$(220 + 1) \times 1 = 221$$

$$111 \times 20 = 2220$$

$$17900$$

$$(2220 + 8) \times 8 = 17824$$

t

SQUARE ROOT

It will be seen from the calculation that when multiplying by the constant 20, the decimal point is disregarded, and the figures obtained in the root considered as a whole number. The decimal point must, however, be placed in the root as already explained before annexing the two first ciphers (not in the given number) to the remainder, in order to give a correct value to the root.

When extracting the square root of a decimal fraction, or when the square root of a whole number and a decimal is required, always point off both the whole number and the decimal in periods of two figures each, beginning at the decimal point, thus:

2'17'63.56'78'5

If the number of decimal places is not an even number, the period to the right will have only one figure instead of two. By placing a cipher after the decimal in such cases, the last period is made complete without changing the value of the number, thus:

2'17'63.56'78'50

It should be borne in mind that the pointing off of periods of two figures, each should always be begun at the decimal point, both for the whole numbers and for the decimals. Thus, for instance, the pointing off in the first line below is correct, while the pointing off in the second line is incorrect:

Correctly pointed off:	0.76'34'5	3'26.75'4
Incorrectly pointed off:	0.7'63'45	32' 6.7' 54

When extracting the square root of a decimal fraction, the decimal point is placed in the root when the first period of decimals is moved down.

Example:

$$5.71'21 | 2.39$$

$$2 \times 2 = 4$$

$$2 \times 20 = 40 \quad \overline{171}$$

$$(40 + 3) \times 3 = 129$$

$$23 \times 20 = 460 \quad 4221$$

$$(460 + 9) \times 9 = 4221$$

When it is found that the next figure in the root is a cipher, place it as usual in the root, and move down the next period of two figures, in all other respects following the procedure already explained.

Example:

$$3 \times 3 = 9^{9'12'04} | \frac{302}{9}$$

$$3 \times 20 = 60$$

$$30 \times 20 = 600$$

$$1204$$

$$(600 + 2) \times 2 = 1204$$

The square root of a common fraction may be obtained by extracting the square root of both numerator and denominator, thus:

$$\sqrt{\frac{25}{49}} = \frac{\sqrt{25}}{\sqrt{49}} = \frac{5}{7}$$

When the terms of the fraction are not perfect squares (squares of whole numbers), it is preferable to change the common fraction to a decimal fraction, and extract the square root of this.

When there is no remainder after all the periods of figures in the given number have been moved down, and the last figure of the root found, the calculation may be proved by multiplying the root by itself, in which case the product must equal the number given, of which the square root has been extracted. If there is a remainder, the figures obtained do not represent the exact root, but a close approximation; if this approximate root is multiplied by itself, the product should very nearly equal the given number; if not, an error has been made.

CHAPTER JI

CUBE ROOT

The cube of a number is the product obtained if the number itself is repeated as a factor three times. The cube of 2 is $2 \times 2 \times 2 = 8$, and the cube of 12 is $12 \times 12 \times 12 = 1,728$. Instead of writing $2 \times 2 \times 2$ for the cube of 2, it is often written 2³, which is read "two cube." In the same way 128³ means $128 \times 128 \times 128$. The small figure (³) in these expressions is called *exponent*. An expression of the form 18° may also be read the "third power of 18."

In the same way as square root means the reverse of square, so cube root means the reverse of cube; that is, the cube root of a given number is the number which, if repeated as factor three times, would give the number given. Thus the cube root of 27 is 3, because $3 \times 3 \times 3 =$ 27. If the cube of 15 is 3,375, then the cube root of 3,375 is, of course, 15. The mathematical sign for the cube root is $\sqrt[3]{7}$, thus:

 $\sqrt[3]{64} = 4$ (the cube root of sixty-four equals four),

 $\sqrt[4]{4096} = 16$ (the cube root of four thousand ninety-six equals sixteen). In the case of all roots, except the square root, the index, or the small figure in the radical sign (\vee), must be given.

Assume that the cube root of 80,621,568 is to be found. Write the number as below, leaving space for the figures of the root as shown. Beginning at the unit figure (the last figure at the right of a whole number), point off the number into periods of *three* figures each. According to the total number of figures in the given number, the last period to the left will, of course, have one, two or three figures.

80'621'568 | Space for root.

Now find the greatest whole number, the cube of which does not exceed the value of the figures in the left-hand period (80), and write

this number as the first figure in the root. The cube of 4 is 64 (4 \times 4 \times 4 == 64), and the cube of 5 is 125 (5 \times 5 \times 5 == 125). Hence 4 is the greatest whole number, the cube of which does not exceed 80, and 4, therefore, is the first figure of the root. Subtract the cube of 4 from the left-hand period and move down the next period of three figures, and annex it to the remainder, thus:

$$4 \times 4 \times 4 = \frac{64}{16621}$$

Now multiply the square of the figure in the root by the constant 300, which is always used when extracting the cube root by this method $(4^2 \times 300 = 4 \times 4 \times 300 = 4,800)$, and find how many times this product is contained in the number 16,621. This gives us a trial figure for the second figure of the root; 4,800 is contained three whole times in 16,621, and 3 is therefore placed as the next figure of the root:

$$4 \times 4 \times 4 = \frac{80'621'568 | 43}{64}$$

$$4^{2} \times 300 = 4.800 \quad 16621$$

Now subtract from 16,621 the sum of the following products:

1. The square of the figure or figures already obtained in the root, excepting the last one, multiplied by 300, and this product multiplied by the figure just obtained in the root, thus:

$$4^{2} \times 300 \times 3 = 16 \times 300 \times 3 = 14,400.$$

2. The figure or figures already obtained in the root, excepting the last one, multiplied by 30, and this product multiplied by the square of the last figure obtained, thus:

$$4 \times 30 \times 3^{2} = 4 \times 30 \times 9 = 1,080.$$

3. The cube of the last figure obtained, thus:

 $3^3 = 3 \times 3 \times 3 = 27.$

The method followed will be understood by studying the example and comparing the different quantities with the worded explanations just given. If the sum of these various products is larger than 16,621, it indicates that the trial figure is too large, and a figure one unit smaller should be used.

Now move down the next period of three figures, and annex it to the remainder.

$$4 \times 4 \times 4 = \underbrace{64}^{80'621'568} \underbrace{43}_{4^{2} \times 300} = \underbrace{4,800}_{16621} \underbrace{16621}_{15507} \\ \underbrace{4^{2} \times 300 \times 3 + 4 \times 30 \times 3^{2} + 3^{3}}_{1114568} = \underbrace{15507}_{1114568}$$

Multiply the square of the figures of the root thus far obtained by $300 (43^2 \times 300 = 43 \times 43 \times 300 = 554,700)$, and find how many times this product is contained in 1,114,568. This gives a trial figure

No. 52-ADVANCED SHOP ARITHMETIC

for the third figure of the root; 554,700 is contained two times in 1,114,568, and 2 is therefore placed as the third figure of the root. Now subtract from 1,114,568 a sum made up of the three products previously given, and shown in the example below:

 $4 \times 4 \times 4 = \underbrace{64}^{80'621'568 | 432}_{4^3 \times 300 = 4,800 = 4,800 = 16621}_{4^3 \times 300 \times 3^3 + 4 \times 30 \times 3^3 + 3^3 = 15507}_{43^3 \times 300 = 554,700 = 1114568}_{43^2 \times 300 \times 2^2 + 43 \times 30 \times 2^2 + 2^3 = 1114568}_{1114568}$

If, as in the present case, this last subtraction leaves no remainder, and if there are no more periods of figures to move down from the given number, the obtained root 432 is the exact cube root of 80,621,568.

If there is a remainder when the last period of three figures has been moved down, place a decimal point after the figures already obtained in the root, annex three ciphers (000) to the remainder, multiply the square of the number thus far obtained in the root by 300, and proceed as before until a sufficient number of decimals have been obtained to give the root with sufficient accuracy.

Example:

 $1 \times 1 \times 1 = 1$ $1 \times 1 \times 1 = 1$ $1^{1^{2}} \times 300 = 300$ $1^{1^{2}} \times 300 \times 2 + 1 \times 30 \times 2^{2} + 2^{3} = 728$ $12^{2} \times 300 \times 2 + 12 \times 30 \times 2^{2} + 2^{3} = 88000$ $12^{2} \times 300 \times 2 + 12 \times 30 \times 2^{2} + 2^{3} = 87848$

It should be noted in these calculations that when squaring the figures thus far obtained in the root, and multiplying by the constant 300, the decimal point is disregarded and the figures obtained in the root considered as a whole number. The decimal point, must, however, be placed in the root as already explained, before annexing the first three ciphers (not in the given number) to the remainder, in order to give a correct value of the root.

When the cube root of a number containing a whole number and a decimal is required, always point off both the whole number and the decimal in periods of three figures each, beginning at the decimal point, thus:

83'675'731.563'75

If the number of decimal places is not evenly divisible by three, the period to the right will have only one or two figures instead of three. By placing one or two ciphers after the decimal in such cases, the last period is made complete without changing the value of the number, thus:

83'675'731.563'750

USE OF FORMULAS

It should be borne in mind that the pointing off of periods of three figures each should always be begun at the decimal point, both for the whole number and for the decimals. Thus, for instance, the pointing off in the first line below is correct while the pointing off in the second line is incorrect:

Correctly pointed off:	0.765'354'3	2'765.35 4'2
Incorrectly pointed off:	0.7'653'543	27'65.3'542

When extracting the cube root of a decimal fraction, the decimal point is placed in the root when the first period of decimals is moved down.

When it is found that the next figure in the root is a cipher, place it as usual in the root and move down the next period of three figures, in all other respects following the procedure already explained.

The cube root of a common fraction may be obtained by extracting the cube root of both the numerator and denominator, thus:

	27	1 27	3
Å		== =	=
N	1000	1 /1000	10

When the terms of the fraction are not perfect cubes (cubes of whole numbers), it is preferable to change the common fraction to a decimal fraction and then extract the cube root.

When there is no remainder after all the periods of figures in the given number have been moved down, and the last figure of the root found, the calculation may be proved by repeating the root as a factor three times, in which case the product must equal the number given, of which the cube root has been extracted. If there is a remainder, the figures obtained do not represent the exact root, but a close approximation. If this approximate root is repeated as a factor three times the product should *very nearly* equal the given number; if not, an error has been made.

CHAPTER III

THE USE OF FORMULAS

In mathematical and mechanical books and treatises, as well as in articles containing calculations published in the engineering journals, formulas are used to a great extent instead of rules expressed in words. In these formulas, signs and symbols are used in order to condense into a small space the essentials of what would otherwise be long and cumbersome rules. The symbols used are generally the letters in the alphabet, and the signs are simply the ordinary signs for arithmetical calculations, with some additional ones necessary for special purposes. Letters from the Greek alphabet are commonly used to designate angles, and the Greek letter π (pi) is always used to indicate the pro-

9

Digitized by GOOGLE

portion of the circumference of a circle to its diameter; π , therefore, is always, in formulas, equal to 3.1416. The most commonly used Greek letters, besides π , are α (alpha), β (beta), and γ (gamma).

Knowledge of algebra is not necessary in order to make possible the successful use of formulas for the solving of problems such as occur in ordinary shop practice; but a thorough understanding of the rules and processes of arithmetic is very essential. The symbols or letters used in the formulas simply stand in place of the actual figures or numerical values which are inserted in the formula in each specific case, according to the requirements of the problem to be solved. When these values are inserted, the result required may be obtained by simple arithmetical processes.

There are two main reasons why a formula is preferable to a rule expressed in words. Firstly, the formula is more concise, it occupies less space, and it is possible for the eye to catch at a glance the whole meaning of the rule laid down; secondly, it is easier to remember a short formula than a long rule, and it is, therefore, of greater value and convenience, as it is not always possible to carry a handbook or reference book about, but the memory must be relied upon to store up a number of the most frequently occurring mathematical and mechanical rules.

The use of formulas can be explained most readily by actual examples. In the following, therefore, a number of simple formulas will be given, and the values will be inserted so as to show, in detail, the principles involved.

Example 1.—When the diameter of a circle is known, the circumference may be found by multiplying the diameter by 3.1416. This rule, expressed as a formula, is:

$C = D \times 3.1416$

in which C =circumference of circle,

D =diameter of circle.

This formula shows at a glance that no matter what the diameter of the circle be, the circumference is always equal to the diameter times 3.1416. Let it be required to find, for example, the circumference of a circle 24 inches in diameter. If, then, we insert 24 in place of D in the formula, we have:

 $C = 24 \times 3.1416 = 75.3984$ inches.

Hence, our formula gives, by means of a simple multiplication, the result required.

Assume that the diameter of a circle is 5.13 inches. The circumference of this circle is found by inserting this value instead of D in the formula:

$C = 5.13 \times 3.1416 = 16.1164$ inches.

Example 2.—In spur gears, the outside diameter of the gear can be found by adding 2 to the number of teeth, and dividing the sum obtained by the diametral pitch of the gear. This rule can be expressed very simply by a formula. Assume that we write D for the outside diameter of the gear, N for the number of teeth, and P for the diam-

etral pitch. Then the formula would be:

$$D = \frac{N+2}{p} \qquad .$$

This formula reads exactly as the rule given above. It says that the outside diameter (D) of the gear equals 2 added to the number of teeth (N), this sum divided by the pitch (P).

If the number of teeth in a gear is 26 and the diametral pitch 4, then simply put these figures in the place of N and P in the formula, and find the outside diameter as in ordinary arithmetic.

$$D = \frac{26+2}{4} = \frac{28}{4} = 7.$$

D, or the outside diameter, then, is 7 inches.

In another gear the number of teeth is 62 and the pitch 8; find the outside diameter of the gear.

$$D = \frac{62+2}{8} = \frac{64}{8} = 8$$
 inches.

From the examples given it will be seen that in formulas, each letter stands for a certain dimension or quantity. When using a formula for solving a problem, replace the letters in the formula by the equivalent figures given in a certain problem, and find the result by means of regular arithmetical calculation.

Example 3.—The formula for the horsepower of a steam engine is as follows:

$$H. P. = \frac{P \times L \times A \times N}{33,000}$$

in which H. P. == indicated horsepower of engine,

P = mean effective pressure on piston in pounds per square inch,

L =length of piston stroke in feet,

A =area of piston in square inches,

N = number of strokes of piston per minute.

Assume that P = 120, L = 2, A = 320 and N = 160; what would be the horsepower?

If we insert the given values in the formula we have:

H. P.
$$=\frac{120 \times 2 \times 320 \times 160}{33,000} = 372.36$$

In formulas the sign for multiplication (\times) is often left out between letters, the values of which are to be multiplied. Thus ABmeans $A \times B$, and the formula

$$\frac{P \times L \times A \times N}{33,000} \text{ can also be written } \frac{PLAN}{33,000}$$

Thus, if A = 6 and B = 7, then:

$$AB = A \times B = 6 \times 7 = 42.$$

If A = 9, B = 6 and C = 7, then:

$$BC = A \times B \times C = 9 \times 6 \times 7 = 378.$$

It is only the multiplication sign (\times) that can be thus left out between the symbols or letters in a formula. All other signs must be indicated the same as in arithmetic.

A parenthesis () or bracket [] in a formula means that the expression inside the parenthesis or bracket should be considered as one single symbol, or in other words, that the calculation inside the parenthesis should be carried out by itself, before other calculations are carried out.

Examples:

 $5 \times (8 + 4) = 5 \times 12 = 60.$ $7 \times (18 - 6) + 6 (4.52 - 1.95) = 7 \times 12 + 6 \times 2.57 = 84 + 15.42 = 99.42.$

In the last example above it will be seen that 7 is multiplied by 12, and 6 by 2.57, and then the products of these two multiplications are added. From the order of the numbers $7 \times 12 + 6 \times 2.57$, one might have assumed that the calculation should have been carried out as follows: 7 times 12 = 84, plus 6 = 90, times 2.57 = 231.3. This latter procedure, however, is not correct, as the following rule should be applied:

When several numbers or expressions are connected by the signs $+, -, \times$ and +, the operations are carried out in the order written, except that all multiplications should be carried out before the other operations. The reason for this is that numbers connected by a multiplication sign are only factors of the product thus indicated, which product should be considered by itself as one number. Divisions should be carried out before additions and subtractions, if the division is indicated in the same line with these other processes.

Examples:

 $4 \times 7 + 9 - 2 \times 9 = 28 + 9 - 18 = 37 - 18 = 19.$ $6 + 7 \times 4 = 6 + 28 = 34.$ $72 + 3 \times 8 = 72 + 24 = 3.$ 8.5 + 16.4 + 4.1 - 2.5 = 8.5 + 4 - 2.5 = 10.But $4 \times (7 + 9) - 2 \times 9 = 4 \times 16 - 18 = 64 - 18 = 46.$ $(6 + 7) \times 4 = 13 \times 4 = 52.$ $(72 + 3) \times 8 = 24 \times 8 = 192.$ (8.5 + 16.4) + (4.1 - 2.5) = 24.9 + 1.6 = 15.56.

In Chapters I and II the meaning of square and cube, and square root and cube root have already been explained. The squares and square roots as well as the cubes and cube roots of all numbers up to 1,000 (sometimes up to 1,600) are generally given in all standard handbooks.

Example:-Find the value of A in the formula

$$A = \sqrt{B^2 + C^2}$$

if B = 16 and C = 12.

If we insert the given values in the formula, we have

 $A = \sqrt{16^{2} + 12^{2}} = \sqrt{256 + 144} = \sqrt{400} = 20.$

In the same way as we write $2^{s} = 2 + 2$, and $2^{s} = 2 \times 2 \times 2$, we can write $2^{4} = 2 \times 2 \times 2 \times 2 \times 2$; and the expression 2^{s} would mean that 2 is repeated as a factor five times, or

 $2^{\mathbf{5}} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 32.$

The expression 2^4 is read "the fourth power of 2" and 6^5 , "the fifth power of 6," etc.

In the same way as we may say that the square root means the reverse of square, and the cube root the reverse of cube, so we may say that the fourth root is the reverse of the fourth power; that is, if we want the number which repeated as a factor four times gives a given number, we must obtain the fourth root, or $\frac{1}{\sqrt{-100}}$. Thus $\frac{1}{\sqrt{-81}} = 3$, because $3 \times 3 \times 3 \times 3 = 81$. Similarly we write the fifth root $\sqrt{-100}$; and $\frac{1}{\sqrt{-32}} = 2$, because $2 \times 2 \times 2 \times 2 = 32$.

The examples given indicate the principles involved in the use of formulas, and show also how easily formulas may be employed by anyone who has a general understanding of arithmetic. While it would be possible to express in words all the rules required in ordinary

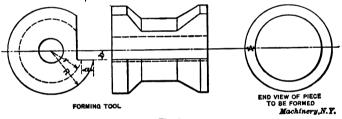


Fig. 1

shop problems, it is very much simpler to make use of formulas; and in the following, formulas will be employed wherever required, and their use in practical work thus made clear.

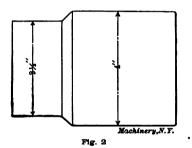
A useful application both of the use of formulas and of the square and square root of numbers, is found in the problems occurring when figuring forming tools.

Formulas for Circular Forming Tools

When laying out circular forming tools, such as shown in Fig. 1, the cutting edge, as is well known, must be located a certain amount below the horizontal center line of the tool, in order to provide for sufficient clearance for the cut. On account of this, the actual differences of diameters in the piece of work to be formed cannot be directly copied in the forming tool. The distance A in the piece to be formed must equal the distance a on the forming tool, but as this latter distance is measured in a plane a certain distance b below the horizontal plane through the center of the forming tool, it is evident that the differences of diameters in the tool and the piece to be formed are not the same. A general formula may, however, be deduced, by the

use of elementary geometry, by means of which the various diameters of the forming tool may be determined if the largest (or smallest) diameter of the tool, the amount that the cutting edge is below the center, and, of course, the diameters of the piece to be formed, are known. If R = the largest radius of the tool,

a =difference in radii of steps in the work, and


- b = amount cutting edge is below center.
- then, if r be the radius required,

$$r = \sqrt{(1 \ \overline{R^2 - b^2} - a)^2 + b^2}$$

If the smaller radius r is given and the larger radius R sought, the formula takes the form:

$$R = \sqrt{(1 \ r^2 - b^2 + a)^2 + b^2}$$

Suppose, for an example, that a tool is to be made to form the piece in Fig. 2. Assume that the largest diameter of the tool is to be 3

inches, and that the cutting edge is to be $\frac{1}{4}$ inch below the center of the tool. Then the diameter next smaller to 3 inches is found from the formulas given by inserting the given values: $R = \frac{1}{2}$ inch, $b = \frac{1}{4}$ inch, and $a = \frac{1}{4}$ inch (half the difference between 4 and $\frac{3}{2}$ inches; see Fig. 2).

Then

$$r = \sqrt{\left(1 - \left(\frac{1}{2}\right)^{9} - \left(\frac{1}{2}\right)^{2} - \frac{1}{4}\right)^{9} + \left(\frac{1}{4}\right)^{9}} = \sqrt{\left(1 - \frac{5}{16} - \frac{1}{4}\right)^{9} + \frac{1}{16}} = \frac{5.017}{4}$$

= 1.254 inch.

While the formula looks complicated, by means of a table of squares the calculations are easily simplified and can be carried out in three or four minutes. The value of r being 1.254 inch, the diameter to make the smaller step of the forming tool will be 2.508 inches, instead of $2\frac{1}{2}$ inches exact, as would have been the case if the cutting edges had been on the center line.

CHAPTER IV

TIME REQUIRED FOR DRILLING, MILLING AND PLANING

In MACHINERY'S Reference Series No. 18, Shop Arithmetic for the Machinist, a rule is given for calculating the time required for turning in the lathe, with a given feed. In this chapter, rules and formulas will be given for calculating the time required for drilling, milling and planing.

The feed of a drill in the drill press is the downward motion of the drill per revolution. The feed of a milling cutter is the forward movement of the milling machine table for each revolution of the cutter. Sometimes the feed is expressed as the distance which the drill or the milling machine table moves forward in one minute. In order to avoid confusion, it is, therefore, always best to state plainly in each case whether feed per revolution or feed per minute is meant.

Time Required for Drilling

In order to calculate the time required for drilling a given depth of hole, the number of revolutions per minute of the drill, and the feed per revolution (or the cutting speed, the diameter of the drill and the feed per revolution) must be known.

Assume that a $1\frac{1}{3}$ -inch drill makes 80 revolutions per minute and that the feed per revolution is 0.008 inch. How long a time will it require to drill a hole $5\frac{1}{2}$ inches deep? To find the number of revolutions required to drill the full depth of the hole, divide $5\frac{1}{2}$ by 0.008, obtaining the quotient 687.5 or approximately 690 revolutions. As the drill makes 80 revolutions in one minute, we find the total number of minutes required by dividing 690 by 80, the quotient 8.6 being the number of minutes required to drill a hole $5\frac{1}{2}$ inches deep under the given conditions. If, in the foregoing,

T =time required for drilling, in minutes,

L = depth of drilled hole, in inches,

N = number of revolutions per minute of the drill,

F = feed per revolution, in inches,

then

$$T = \frac{L}{N \times F}.$$

Expressed as a rule, this formula would be:

To find the time required to drill a hole to a given depth when the feed per revolution of the drill, the depth of the hole, and the number of revolutions per minute are given. divide the depth of the hole by the number of revolutions per minute multiplied by the feed per revolution.

If the cutting speed of the drill and its diameter are given instead

of the number of revolutions, the number of revolutions must first be found before applying the formula given.*

If the feed per minute is given, the feed per revolution can be found by dividing the feed per minute by the number of revolutions per minute.

The feed of drills should be about 0.004 inch per revolution for a 1/16-inch drill, 0.005 inch for a $\frac{1}{2}$ -inch drill, 0.008 inch for a $\frac{1}{2}$ -inch drill, 0.010 inch for a 1-inch drill, and 0.015 inch for a 2-inch drill. If the drill breaks or chips at the cutting edges, the feed should be reduced.

Time Required for Milling

The time required for milling may be found if the number of revolutions per minute of the cutter, and the feed per revolution (or the cutting speed, the diameter of the cutter and the feed per revolution) are known. If the feed per minute is given, the feed per revolution can be found by dividing the feed per minute by the number of revolutions per minute.

If the length of the cut taken in a milling machine is 8% inches and the feed is 1/64 per revolution, how long a time will it take for a cutter making 20 revolutions per minute to traverse the work? As the feed per revolution is 1/64 inch and the cutter makes 20 revolutions per minute, the feed per minute is 20/64 or 5/16 inch. To find the time required for the cutter to traverse the full length of the work, divide the length of the cut, 8% inches, by the feed in one minute; thus:

$$8\frac{3}{8} + \frac{5}{16} = \frac{67}{8} \times \frac{16}{5} = \frac{134}{5} = 26\frac{4}{5} = 26.8.$$

The time required would thus be 27 minutes, approximately.

If T = time required for the cutter to traverse the work, in minutes, L = length of cut, in inches,

N = revolutions per minute of the cutter.

F = feed per revolution, in inches,

then

$$T = \frac{L}{N \times F}$$

It will be seen that the form of this formula is the same as that of the formula for the time required for drilling.

If the cutting speed and the diameter of the cutter are given instead of the number of revolutions, the latter number must first be found before the formula above is applied.*

The average feed of milling cutters per minute should vary from about 4 inches for a $\frac{1}{2}$ -inch mill cutting cast iron, and $\frac{1}{2}$ inch for the same mill cutting steel, to $\frac{1}{2}$ inch for a 6-inch cutter on cast iron and $\frac{1}{2}$ inch for the same cutter on steel. Of course, these feeds must be varied with the depth of the cut.

[•] See MACHINERY'S Reference Series No. 18. Shop Arithmetic for the Machinist, 3d Edition, page 17.

Feed of Planer Tools

The feed of a planer tool is its sidewise motion for each cutting stroke of the table or platen. If for each cutting stroke the tool-carrying head moves 1/16 inch along the cross-rail, we say that the feed is 1/16 inch. Each cutting stroke necessitates a return stroke, and in the following, when the expression "number of strokes" is used, it means number of cutting strokes.

Time Required for Planing

The time required for planing a piece of work can be calculated if the feed per stroke, the number of strokes of the planer table per minute, and the width of the work, are known.

Assume that a planer makes 6 strokes per minute, that the feed per stroke is 3/32 inch, and that the width of the work is 22 inches. Find the time required for planing the work.

As the planer makes 6 strokes per minute and the feed per stroke is 3/32 inch, the feed per minute is $6 \times 3/32$ or 9/16 inch. The tool must traverse 22 inches to plane the complete work; the traverse in one minute being 9/16 inch, the total number of minutes required to traverse the work is found by dividing 22 by 9/16.

$$22 \div \frac{9}{16} = \frac{22}{1} \times \frac{16}{9} = \frac{352}{9} = \frac{39}{9} = \frac{1}{9}$$
 minutes.

The time required for planing the work is thus 40 minutes, approximately.

This calculation may be summed up in the following formula, applicable to any case where the feed per stroke, the number of strokes per minute, and the width of the work are known

$$T = \frac{W}{F \times N}.$$

In this formula

T =time required for planing, in minutes,

W = width of work, in inches,

F = feed per stroke, in inches,

N = number of strokes per minute.

The formula expressed as a rule would be as follows:

To find the time required for planing when the width of the work, the feed per stroke and the number of strokes per minute, are known, divide the width of the work by the feed times the number of cutting strokes per minute.

CHAPTER V

PULLEY AND GEAR DRIVES

In MACHINERY'S Reference Series No. 18, Shop Arithmetic for the Machinist, the calculations for simple and compound gear drives and simple pulley drives are treated. In this chapter some special cases of compound pulley drives and combined pulley and gear drives will be considered.

Compound Pulley Speeds

In Fig. 3 are shown four pulleys of which the two pulleys B and C are keyed to the same shaft Pulley A is the driving pulley and drives pulley B; pulley C, on the same shaft as B, is also a driving pulley, and pulley D, a driven pulley. The rules and formulas for compound

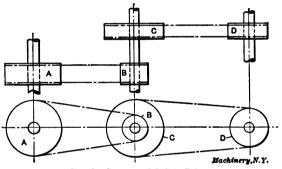


Fig. 3. Compound Pulley Drive

gearing can be directly applied to pulleys arranged in this manner by simply substituting in the formulas the diameters of the pulleys, in inches, for the numbers of teeth in the gears. Thus, to find the revolutions per minute of the driven pulley D when the diameters of all the four pulleys and the number of revolutions of pulley A are given, the formula below is used:

rev. per min.	_ rev. per min. 🗸	product of diameters of driving pulleys
of driven pulley ⁻	of driving pulley 🔨	product of diameters of driven pulleys

If the numbers of revolutions of the shafts on which pulley A and pulley D are mounted, are given, and it is required to find the diameters of four pulleys which will transmit motion from pulley A to pulley D at the given speed ratio, we proceed in the same way as when finding the number of teeth in gears for transmitting a given motion.*

Find the speed ratio by writing the number of revolutions of the

^{*} See MACHINERY'S Reference Series No. 18, Shop Arithmetic for the Machinist, 3d Edition, page 30.

driving pulley as the numerator and the number of revolutions in the driven pulley as the denominator of a fraction, and reduce this fraction to its lowest terms. Then divide both the numerator and denominator in the fraction giving the ratio in two factors, and multiply each "pair" of factors by the same number until pulleys with suitable diameters are found. (One factor in the numerator and one in the denominator are considered as "one pair.")

Assume that the number of revolutions per minute of the shaft with pulley A is 260, and that it is required to drive the shaft on which pulley D is mounted at 720 revolutions. What diameters of pulleys 260

can be used? The fraction -- reduced to its lowest terms is 720

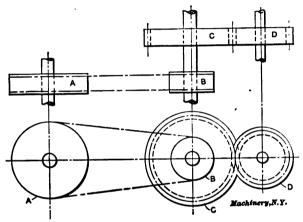


Fig. 4. Combined Pulley and Gear Drive

 $\frac{13}{36}; \left(\frac{260}{720} = \frac{26}{72} = \frac{13}{36}\right).$ The speed ratio, therefore, is $\frac{13}{36}$. Now, following the rule given above:

$$\frac{13}{36} = \frac{1 \times 13}{2 \times 18} = \frac{(1 \times 12) \times (13 \times 1)}{(2 \times 12) \times (18 \times 1)} = \frac{12 \times 13}{24 \times 18}$$

The pulleys in the numerator, with 12 and 13 inches diameter, are the driven pulleys B and D, and the pulleys in the denominator, with 18 and 24 inches diameter, are the driving pulleys. The rule above reduced to a formula would be:

ratio of speed of the first driving pulley to ==	product of diam. of driven pulleys	
the last driven pulley	product of diam. of driving pulleys	

Combined Belt and Gear Drive

In Fig. 4 is shown a combined belt and gear drive, where pulley A drives pulley B, and gear C, which is mounted on the same shaft as pulley B. drives the gear D. Calculations for numbers of revolutions and numbers of teeth and diameters of pulleys are carried out exactly

as in the examples where we have dealt exclusively with gears or exclusively with pulleys. When dealing with the pulleys we use the diameter of the pulley in inches, and when dealing with the gears, the number of teeth in the gears.

Assume that the diameter of pulley A is 54 inches and that of pulley B, 18 inches, that gear C has 112 teeth, and that gear D has 78 teeth. If pulley A makes 39 revolutions per minute, how many revolutions per minute does gear D make? Using the formula for finding the revolutions per minute previously given, we have:

rev. per min. =
$$39 \times \frac{54 \times 112}{18 \times 78} = 168.$$

If the number of revolutions of the shaft on which pulley A is mounted is 60, and the number of revolutions required for the shaft on which gear D is mounted, is 110, what diameter pulleys and what size of gears could we employ to transmit the required motion? The

speed ratio is $\frac{60}{110} = \frac{6}{11}$. Proceeding as before, we have: $\frac{6}{110} = \frac{2 \times 3}{11} = \frac{(2 \times 16) \times (3 \times 8)}{(2 \times 16) \times (3 \times 8)} = \frac{32 \times 24}{32 \times 24}$

11
$$1 \times 11$$
 $(1 \times 16) \times (11 \times 8)$ 16×88

The numbers 32 and 24 in the numerator of the last fraction give the diameter of the driven pulley B and the number of teeth of the driven gear D, respectively, and the numbers 16 and 88 in the denominator of the fraction give the diameter of the driving pulley A, and the number of teeth in the driving gear C. In this case, then, pulley A would be 16 inches in diameter, pulley B, 32 inches, gear C would have 88 teeth, and gear D, 24 teeth.

CHAPTER VI

HORSEPOWER OF BELTING

The borsepower which a belt of a given size can transmit depends on the speed with which the belt travels and the working stress advisable to permit in the belt. The speed with which the belt travels, of course, depends on the diameter and number of revolutions per minute of the pulley over which it travels, it being assumed that there is no appreciable slip between the belt and the pulley. If we are to find the horsepower a belt can safely transmit, we must, therefore, consider in our formulas the diameter of the pulley, its number of revolutions per minute, and the permissible working stress in the belt.

Let d =diameter of driving pulley in inches,

v = velocity of belt in feet per minute,

n = number of revolutions of pulley per minute,

S = working stress of belt per inch of width, in pounds, w = width of belt in inches.

$$v = \frac{\pi \, d \, n}{12} = \frac{3.1416 \, d \, n}{12} = 0.2618 \, d \, n$$

H. P. $= \frac{s \, v \, w}{33.000} = \frac{0.2618 \, S \, d \, n \, w}{33.000}$

A commonly used value for the safe working stress per inch of width of single belts is 33 pounds. When this value is adopted, a belt one inch wide, traveling at a rate of 1,000 feet per minute, will transmit one horsepower.

Example:—How many horsepower will a single belt 2½ inches wide, traveling over a pulley 12 inches in diameter, transmit, if the pulley makes 200 revolutions per minute? Assume the working stress at 33 pounds per inch of width of belt.

In this example d = 12, n = 200, S = 33 and $w = 2\frac{1}{2}$. If these values are inserted in the horsepower formula given, we have:

H. P. =
$$\frac{0.2618 \times 33 \times 12 \times 200 \times 2.5}{33,000}$$
 = 1.57.

A working stress up to 45 pounds per inch of width of belt is permissible for single belts in good condition. If we adopt this latter value for the stress, how many horsepower would the given belt transmit?

We only need to change 33 in the expression above to 45, and then we have:

H. P. =
$$\frac{0.2618 \times 45 \times 12 \times 200 \times 2.5}{33.000}$$
 = 2.14.

If the horsepower to be transmitted is known, the width of belt required may be found by a transposition of the given formula, as follows:

 $w = \frac{\text{H. P.} \times 33,000}{S v} = \frac{\text{H. P.} \times 33,000}{0.2618 \ S \ d \ n}$

in which formula the letters denote the same quantities as previously given.

Example: Find the width of single belt required to transmit 20 horsepower with a belt velocity of 1,800 feet per minute?

In this example H. P. =20, v = 1,800, and S may be assumed to be 45. If we insert these values in the given formula for width of belt, we have:

$$w = \frac{20 \times 33,000}{45 \times 1,800} = 8.15$$
 or, say, 81/4 inches.

In order to reduce the width of a single belt when it becomes too wide, a double belt may be used. The working stress of a double belt per inch of width may be assumed at from 65 to 90 pounds, the latter value being only for belts kept in good condition.

Assume that in the example just given, we use a double belt instead of a single, and assume a working stress of 80 pounds per inch of width of belt. How wide, then, would the belt be?

Substituting 80 for 45, we have:

$$w = \frac{20 \times 33,000}{80 \times 1,800} = 4.58$$
 or, say, 4% inches.

As the working stress is an assumed quantity, always somewhat uncertain, it is, of course, not necessary to retain in our formulas so exact a quantity as 0.2618. If this number is given in round figures as 0.25 or $\frac{1}{2}$, we could simplify the given formulas as follows:

H. P.
$$= \frac{S d n w}{4 \times 33,000}$$
$$w = \frac{\text{H. P.} \times 33,000 \times 4}{S d n}$$

As a final example, find the horsepower transmitted by a 5-inch wide double belt, working stress 75 pounds per inch width of belt, if the belt transmits power from a 4-foot pulley running at 200 revolutions per minute.

In this example w = 5, S = 75, n = 200, and $d = 4 \times 12 = 48$ inches. If we insert these values in our simplified formula, we have:

H. P.
$$=\frac{75 \times 48 \times 200 \times 5}{4 \times 33,000} = 27.3.$$

CHAPTER VII

CHANGE GEARS FOR CUTTING METRIC THREADS

The metric system of length measurement is in use in practically all countries except in the United States, Great Britain and the British colonies. The unit of length in the metric system is the meter, which equals nearly 39.37 inches (or practically 39% inches). The subdivisions of the meter are given below:

> 1 meter = 10 decimeters, 1 decimeter = 10 centimeters. 1 centimeter = 10 millimeters.

In medium and small machine design the unit employed is almost always the millimeter. One millimeter equals 0.03937 inch; one inch $\frac{1}{1}$ or 25.4 millimeters almost exactly.

equals —____, or 25.4 millimeters, almost exactly. 0.03937

When screws are made in accordance with the metric system it is not the usual practice to give the number of threads per millimeter

or centimeter in the same way as the number of threads per inch is given in the English system. Instead, the lead of the thread in millimeters is given. A screw thread is said to have 2 millimeters lead, 3 millimeters lead, 4.5 millimeters lead, etc.

Change Gears for Cutting Threads with Metric Pitch

It often happens that screws and taps having threads according to the metric system are required. This thread can be cut on a lathe having an English lead-screw, provided change gears with the required number of teeth are used.

The first step in finding the change gears is to find how many threads per inch there are in the screw to be cut, when the lead is given in millimeters. Assume that a screw is required with 3 millimeters lead. How many threads per inch are there in this screw? As there are 25.4 millimeters in one inch, we can find how many threads there would be in one inch, if we find how many times 3 is contained in 25.4; in other words, we divide 25.4 by 3. It is not necessary to carry out the division; simply write it as a fraction in the 25.4

form $\frac{1}{3}$, which implies that 25.4 is to be divided by 3. This fraction

now gives the number of threads per inch to be cut. When this fraction has been obtained, proceed as if change gears were to be found for cutting threads with English pitches.* Place the lathe screw constant in the numerator of a fraction and the number of threads per inch to be cut in the denominator. If the screw constant of a lathe is

6 and the number of threads to be cut $\frac{25.4}{3}$, as previously found, the

ratio of the change gearing is

$$\frac{\frac{6}{25.4}}{\frac{3}{25.4}}$$

This seems complicated, but remembering that the line between the numerator and denominator in a fraction means that the numerator is to be divided by the denominator, we get, by carrying out this division:

$$6 \div \frac{25.4}{3} = 6 \times \frac{3}{25.4} = \frac{6 \times 3}{25.4}.$$

The fraction $\frac{6 \times 3}{25.4}$ is the ratio of the change gearing required, and

all we have to do now is to multiply numerator and denominator of this fraction by the same number until we find suitable numbers of teeth for the change gears. By trial we find that the first whole number by which we can multiply 25.4 so as to get a whole number as a result, is 5. Multiplying 25.4 by 5 gives us 127. Thus we must have one gear with 127 teeth whenever we cut a metric thread by means of

^{*} See MACHINERY'S Reference Series No. 18, Shop Arithmetic for the Machinist, 3d Edition, page 81.

an English lead-screw. The other gear required in this case has 90 teeth, because $5 \times 6 \times 3 = 90$. The calculation would be carried out as shown below:

$$\frac{6 \times 3 \times 5}{25.4 \times 5} = \frac{18 \times 5}{127} = \frac{90}{127}.$$

What has just been said can be expressed in the following rule:

To find the change gears, for cutting metric pitches with an English lead-screw, place the lathe screw constant multiplied by the number of millimeters lead of the thread to be cut multiplied by 5, in the numerator of the fraction, and 127 as the denominator. The product of the numbers in the numerator give the number of teeth in the gear on the spindle stud, and 127 is the number of teeth in the gear on the lead-screw.

Written as a formula this rule would be:

$\frac{\text{lathe screw}}{\text{constant}} \times \frac{\text{lead of thread to be}}{\text{cut, in millimeters}} \times 5$	teeth in spindle stud gear
127	teeth in lead-screw gear
As an example, assume that a screw with	h 2.5 millimeters lead is

As an example, assume that a screw with 2.5 millimeters lead is to be cut on a lathe having a screw constant 8. By placing the given figures in the formula we have:

 $\frac{8 \times 2.5 \times 5}{127} = \frac{100....\text{spindle stud gear}}{127...\text{lead-screw gear}}$

Compound Gearing

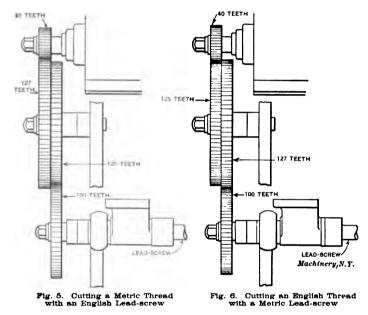
Sometimes it is necessary to compound the gears because the gear on the spindle stud would have too many teeth, that is, it would be too large to be used in simple gearing. It may also happen that the product of the screw constant \times the lead in millimeters \times 5, is not a whole number, in which case it would be necessary to compound the gears to get whole numbers of teeth.

The method for finding the change gears is exactly the same as the method for compound gears for cutting regular English pitch threads.*

Assume that a screw of 6 millimeters lead is to be cut on a lathe with a screw constant 8. By first applying the formula just given, and then dividing the numerator and denominator into factors, each "pair" of which are multiplied by the same number, we find the change gears as follows:

$8 \times 6 \times 5$	240	60×4	$(60 \times 1) \times (4 \times 25)$
127	127	127×1	$= \underbrace{(127 \times 1) \times (1 \times 25)}_{(127 \times 1) \times (1 \times 25)} =$
	60 ×	100 d 1	iving gears
	127 2	× 25dı	iven gears.

In a case when the lead of the metric screw to be cut is not a whole number but a fraction, it sometimes causes difficulty in dividing up the numerator in two factors that can be multiplied by whole num-


[•] See MACHINERY'S Reference Series No. 18, Shop Arithmetic for the Machinist, 3d Edition, page 88.

bers so as to give numbers of teeth for gears which are available. Several trials must often be made.

Assume that the lathe screw constant is 6, and that a screw with 1.25 millimeters lead is to be cut. In this case we would find the change gears as below:

6 imes 1.25 imes 5	37.5	30 imes 1.25	$(30 \times 1) \times (1.25 \times 40)$	30 imes 50
127	$=\frac{127}{127}$		$= \frac{1}{(127 \times 1) \times (1 \times 40)}$	
It would r	ot be ne	cessary to y	write " 30×1 " and " 127	×1" as has

It would not be necessary to write " 30×1 " and " 127×1 " as has been done in the example above, but these numbers have been multiplied by 1 simply to preserve a systematic appearance.

In Fig. 5 is shown the arrangement of the gearing when cutting a screw of 1.25 millimeters lead on a lathe with a screw constant 7. $\frac{7 \times 1.25 \times 5}{127} = \frac{43.75}{127} = \frac{35 \times 1.25}{127 \times 1} = \frac{(35 \times 1) \times (1.25 \times 100)}{(127 \times 1) \times (1 \times 100)} = \frac{35 \times 125}{127 \times 100}.$

Cutting an English Thread with a Metric Lead-screw

If the lathe has a lead-screw having metric pitch, and it is required to cut a screw with a given number of threads per inch, we must find the "metric screw constant" of the lathe. This is found by placing gears (in simple gearing) with the same number of teeth on the spindle stud and the lead-screw of the lathe, and an idler with any number of teeth, between them, and then cutting a thread on a piece in the lathe. The lead of the thread thus cut, in millimeters, is the metric screw constant of the lathe. Now the method of figuring the

25

Digitized by GOOGLE

No. 52—ADVANCED SHOP ARITHMETIC

change gears when a screw with a given number of threads per inch is to be cut with a lead-screw of metric pitch, is simply the reverse of the method already explained for cutting a metric thread with an English lead-screw.

To find the change gears for cutting English threads with a metric lead-screw, place 127 in the numerator, and the threads per inch to be cut multiplied by the metric screw constant of the lathe multiplied by 5 in the denominator of the fraction; 127 is the number of teeth in the gear on the spindle stud, and the product of the numbers in the denominator gives the number of teeth in the gear on the lead-screw.

This rule expressed as a formula would be:

127	teeth in gear on spindle stud	
$\frac{\text{metric screw}}{\text{constant}} \times \frac{\text{threads per inch}}{\text{to be cut}} \times \frac{5}{5}$	teeth in gear on lead-screw	

Assume that 5 threads per inch are to be cut in a lathe having a metric screw constant of 4 millimeters. The gears are found directly by using the formula given:

$$\frac{127}{4 \times 5 \times 5} = \frac{127....\text{spindle stud gear}}{100....\text{lead-screw gear}}$$

It is sometimes necessary to compound the gears in order to obtain gears which are found in the set of change gears provided with the lathe.

Assume that 10 threads per inch are to be cut in a lathe with a metric screw constant of 4 millimeters. To find the gears we would proceed as follows:

 $\frac{127}{4 \times 10 \times 5} = \frac{127}{200} = \frac{127 \times 1}{100 \times 2} = \frac{(127 \times 1) \times (1 \times 40)}{(100 \times 1) \times (2 \times 40)} = \frac{127 \times 40 \dots \text{driving gears}}{100 \times 80 \dots \text{driven gears.}}$

In Fig. 6 is shown the arrangement of the gearing when cutting a screw, having 12½ threads per inch in a lathe with a metric lead-screw, the metric screw constant being 5 millimeters.

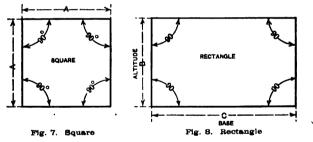
127	127	127×1	
$5 \times 12\frac{1}{2} \times 5$	312.5	$\frac{100 \times 3.125}{100 \times 3.125}$	
		$(127\times1)\times(1\times40)$	127 imes 40
		$(100 \times 1) \times (3.125 \times 40)$	100 × 125

CHAPTER VIII

AREAS OF PLANE FIGURES

Squares

The square, Fig. 7, has four sides of equal length, and each of the four angles between the sides is a right or 90-degree angle.


The area of the square equals the length of the side multiplied by itself, or the square of the length of the side. If the side of a square is 14 inches, then the area equals $14 \times 14 = 196$ square inches. If the side is 14 feet, then the area is 196 square feet.

If the area of a square is known, the length of the side equals the square root of the area. Assume that the area of a square equals 1,024 square inches. Then the side equals $\sqrt{1,024} = 32$ inches.

Rectangles

The rectangle, as shown in Fig. 8, has four sides, of which those opposite each other are of equal length, and the four angles between the sides are right or 90-degree angles.

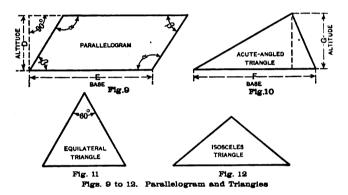
The area of a rectangle is found by multiplying the height or altitude by the length or base. In Fig. 8, B is the altitude and C the base,

and the area equals $B \times C$. If B = 6 inches, and C = 11 inches, then the area equals $6 \times 11 = 66$ square inches.

If the area of a rectangle and the length of its base are known, the height is found by dividing the area by the length of the known base. Either the longer or the shorter side may be considered as the base, the altitude being the side at right angles to the base. If, in Fig. 8, the area of the rectangle is 96 square inches and the side C is 12 inches, then the side B = 96 + 12 = 8 inches.

One square foot equals $12 \times 12 = 144$ square inches. If the area is given in square feet, it can, therefore, be transformed into square inches by multiplying by 144. If the area is given in square inches, it can be transformed into square feet by dividing by 144.

Parallelograms


Two lines are said to be parallel when they have the same direction; when extended, they do not meet or intersect, and the same distance is maintained between the two lines at every point.

No. 52-ADVANCED SHOP ARITHMETIC

Any figure made up of four sides, of which those opposite are parallel, is called a parallelogram. The square and rectangle are parallelograms in which all the angles are right angles. In Fig. 9 is shown a parallelogram where two of the angles are less and two more than 90 degrees. A line drawn from one side of a parallelogram at right angles to the opposite side is called the height or altitude of the parallelogram. In Fig. 9, D is the altitude, and E is the length or base.

The area of a parallelogram equals the altitude multiplied by the base. The area of the parallelogram, in Fig. 9, equals $D \times E$. If D is 16 inches, and E, 22 inches, then the area equals $16 \times 22 = 352$ square inches.

If the area and the base are given, the altitude is found by dividing the area by the base.

In parallelograms the angles opposite each other are alike, as indicated in Fig. 9, where the two angles a are equal, and the two angles β also are equal.

Triangles

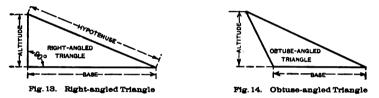
Any figure bounded by three straight lines is called a triangle. Any one of the three lines may be called the base, and the line drawn from the angle opposite the base at right angles to it is called the height or altitude of the triangle. In Fig. 10, if the side F is taken as the base of the triangle, then G is the altitude.

If all three sides of a triangle are of equal length, as in the one shown in Fig. 11, the triangle is called *equilateral*. Each of the three angles in an equilateral triangles equals 60 degrees.

If two sides are of equal length, as shown in Fig. 12, the triangle is an *isosceles* triangle.

If one angle is a right or 90-degree angle, the triangle is called a *right* or *right-angled* triangle. Such a triangle is shown in Fig. 13; the side opposite the right angle is called the *hypotenuse*.

If all the angles are less than 90 degrees, the triangle is called an *acute* or *acute-angled* triangle, as shown in Fig. 10. If one of the angles is larger than 90 degrees, as shown in Fig. 14, the triangle is called an *obtuse* or *obtuse-angled* triangle.


The sum of the three angles in every triangle is 180 degrees. The area of a triangle equals one-half the product of the base and the altitude; thus the area of the triangle shown in Fig. 10 equals $\frac{1}{2} \times F \times G$. If F equals 9 inches, and G, 6 inches, then the area equals $\frac{1}{2} \times 9 \times 6 = 27$ square inches.

If the area and the base of a triangle are known, the altitude can be found by dividing twice the area by the length of the base. If the area and the altitude are known, the base is found by dividing twice the area by the altitude. If the area of a triangle is 180 square inches, and the base is 18 inches, then the altitude equals $(2 \times 180) \div 18 = 20$ inches.

If the length of two sides of a right triangle, Fig. 13, are known, the third side can be found by a simple calculation.

If the base and the altitude are known, the hypotenuse equals the square root of the sum of the squares of the base and the altitude, or

 $Hypotenuse = \sqrt{(base)^2 + (altitude)^2}.$

The base and the altitude can be found by similar formulas if the hypotenuse is known.

Base = $\sqrt{(hypotenuse)^2 - (altitude)^2}$,

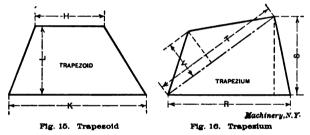
Altitude = $\sqrt{(hypotenuse)^2 - (base)^2}$.

Assume that the altitude is 3 feet and the base is 4 feet. Then the hypotenuse = $\sqrt{3^2 + 4^2} = \sqrt{(3 \times 3)} + (4 \times 4) = \sqrt{9 + 16} = \sqrt{25} = 5$ feet.

If the hypotenuse is 10 inches and the altitude 6 inches, then the base equals $\sqrt{10^2 - 6^2} = \sqrt{(10 \times 10) - (6 \times 6)} = \sqrt{100 - 36} = \sqrt{64} = 8$ inches.

Trapezoids

When a figure is bounded by four lines, of which only two are parallel, it is called a trapezoid. The height of a trapezoid is the distance L, Fig. 15, between the two parallel lines H and K. The area of a trapezoid equals one-half the sum of the lengths of the parallel sides multiplied by the height. The area of the trapezoid in Fig. 15 thus equals $\frac{1}{2} \times (H + K) \times L$. If H = 16 feet, K = 24 feet, and L = 14feet, then the area $= \frac{1}{2} (16 + 24) \times 14 = 280$ square feet.


Trapeziums

When a figure is bounded by four lines, no two of which are parallel, as shown in Fig. 16, it is called a trapezium. The area of a trapezium is found by dividing it into two triangles as indicated by the dashdotted line in Fig. 16, and finding the area of each of the two triangles, and adding these areas. The dotted lines in Fig. 16 indicate the alti-

tudes of the two triangles into which the trapezium has been divided. If the dimensions of the base and height of the one triangle are R and S, respectively, and of the other T and V, as shown in Fig. 16, then the area of the whole trapezium would be $(\frac{1}{2} \times R \times S) + (\frac{1}{2} \times T \times V)$. Assume that R = 20 feet, S = 17 feet, T = 23 feet, and V = 9 feet, then the area of the trapezium = $(\frac{1}{2} \times 20 \times 17) + (\frac{1}{2} \times 23 \times 9) = 273.5$ square feet.

The Circle

The circle is a plane surface bounded by a curved line called the *periphery* or *circumference*, which is at all points at an equal distance from a point within the circle called the center. The distance from the center of the circle to the periphery is the *radius*, and the distance across the circle through the center is the *diameter*. (See Fig. 17.) It is evident that the radius is one-half of the diameter. If a line is drawn from one point on the periphery to another point, so that it does not pass through the center, it is called a *chord*.

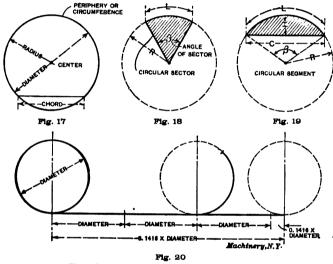
If the diameter of a circle is known, the circumference is found by multiplying the diameter by 3.1416. Assume that the circumference of a circle is stretched out into a straight line by the circle rolling upon a flat surface and unfolding itself, as shown in Fig. 20, then the length of the straight line would be three times the diameter plus a distance equal to 0.1416 times the diameter; or the whole length of the circumference would be 3.1416 times the diameter. As the diameter equals $2 \times$ radius, the circumference equals $2 \times$ radius $\times 3.1416$.

If the circumference of a circle is known, the diameter is found by dividing the circumference by 3.1416; the radius is found by dividing the circumference by 2×3.1416 .

If D = diameter, R = radius, C = circumference, then the previous rules can be written as formulas, thus:

$$D = 2 \times R, C = 2 \times R \times 3.1416, C = D \times 3.1416, R = \frac{C}{2 \times 3.1416}, \qquad D = \frac{C}{3.1416}.$$

Instead of writing out the number 3.1416, the Greek letter π (pi) is often used; thus, for example, $3\pi = 3 \times 3.1416$.


Example: The diameter of a circle is 6 inches; find its circumference.

Using the formula given, we have: Circumference $= 6 \times 3.1416 = 18.8496$ inches. The circumference of a circle is 13.509 inches; find its radius.

Radius =
$$\frac{13.509}{2 \times 3.1416}$$
 = 2.150 inches.

The area of a circle equals the square of the radius multiplied by 3.1416; or, the square of the diameter multiplied by 0.7854.

If the area of a circle is known, the radius is found by extracting the square root of the quotient of the area divided by 3.1416.

Figs. 17 to 20. Circles, Sectors and Segments

If D = diameter, R = radius, A = area, then $A = R^2 \times 3.1416$,

$$A = \frac{D^{3} \times 3.1416}{4} = D^{3} \times 0.7854,$$
$$R = \sqrt{\frac{A}{3.1416}}.$$

Examples: The diameter of a circle is 6 inches, find the area. Using the formula given, we have:

Area = $6^2 \times 0.7854 = 6 \times 6 \times 0.7854 = 28.2744$ square inches. The area of a circle is 95.033 square inches, find the radius. Using the formula given, we have: Radius = $\sqrt{95.033 + 3.1416} = 5.5$ inches.

Circular Sectors

A figure bounded by a part of the circumference of a circle and two radii, as shown in Fig. 18, is called a circular sector. The angle β (beta) between the radii is called the angle of the sector, and the length L of the circumference of the circle is called the arc of the sector.

If R = radius of circle of which the sector is a part,

 $\beta =$ angle of sector, in degrees,

L =length of arc of sector,

A =area of sector,

then the formulas below are used:

$$L = \frac{R \times \beta \times 3.1416}{180} = \frac{2 \times A}{R},$$

$$\beta = \frac{180 \times L}{R \times 3.1416},$$

$$A = \frac{L \times R}{2},$$

$$R = \frac{2 \times A}{L} = \frac{180 \times L}{\beta \times 3.1416}.$$

If the radius of a circle is $1\frac{1}{2}$ inch, and the angle of a circular sector is 60 degrees, how long is the arc of the sector?

Using the given formula, we have:

$$L = \frac{\frac{11}{2} \times 60 \times 3.1416}{180} = 1.5708 \text{ inch.}$$

What is the area of the same sector? From the formula given we have:

$$A = \frac{\frac{1.5708 \times 142}{2}}{2} = 1.1781 \text{ square inch.}$$

Circular Segments

A figure bounded by a part of the circumference of a circle and a chord, as shown in Fig. 19, is called a circular *segment*. The distance H from the chord to the highest point of the circular arc is called the height of the segment.

If R =radius, C =length of chord, L =length of arc of segment, H =height of segment, A =area of segment, then the following formulas are used:

$$C = 2 \times \sqrt{H \times (2 \times R - H)},$$

$$R = \frac{C^{2} + 4 \times H^{2}}{8 \times H},$$

$$A = \frac{L \times R - C \times (R - H)}{2}.$$

If the angle, β , Fig. 19, is given, instead of the length of arc L, the length of the arc is found by the previously given formula:

$$L = \frac{R \times \beta \times 3.1416}{180}$$

Digitized by Google

Assume that the radius of a segment is 5 feet and the height 8 inches. How long is the chord of this segment?

First transform 5 feet into inches; $5 \times 12 = 60$ inches. Then apply the formula given:

 $C = 2 \times \sqrt{8} \times (2 \times 60 - 8) = 2 \times \sqrt{896} = 2 \times 29.93 = 59.86$ inches.

The length of the chord of a segment is 16 inches and the height 6 inches. How long is the radius of the circle of which the segment is a part?

Applying the formula given, we have:

$$R = \frac{16^2 + 4 \times 6^4}{8 \times 6} = \frac{256 + 144}{48} = 8 \frac{1}{3} \text{ inches.}$$

Regular Polygons

Any plane surface or figure bounded by straight lines is called a *polygon*. If all the sides are of equal length and the angles between the sides are equal, the figure is called a *regular* polygon.

A regular polygon having five sides is shown in Fig. 21. The length of each of the five sides equals S, and each of the angles between the sides equals β .

A regular polygon with five sides is called a *pentagon*; one with six sides (Fig. 22), a *hexagon*; one with seven sides (Fig. 28), a *heptagon*; and one with eight sides (Fig. 23), an *octagon*. When a regular polygon has only three sides (Fig. 24), it becomes an equilateral triangle, and when it has four sides (Fig. 25) a square.

A circle may be drawn so that it passes through all the angle-points of a regular polygon, as shown in Figs. 24 to 29 inclusive; such a circle (with the radius R) is said to be *circumscribed* about the polygon. The smaller circle in the same illustrations (with the radius r) which touches or is tangent to the sides of the polygon, is said to be *inscribed* in the polygon. The centers of the circumscribed and inscribed circles are located at the same point. If the angle-points of the polygon are connected by lines with this center, as shown by the dotted lines in Figs. 21, 22 and 23, the polygon is divided up into a number of triangles of equal size and shape. The number of triangles equals the number of sides in the polygon.

The angle α (alpha) of each of these triangles at the center (see Fig. 21) can be determined for any polygon when the number of sides is known. This angle, in degrees, equals 360 divided by the number of sides in the regular polygon, or expressed as a formula, if N equals the number of sides:

$$a = \frac{360}{N}.$$

The angle β between two adjacent sides of the polygon (see Fig. 21) equals a subtracted from 180, or:

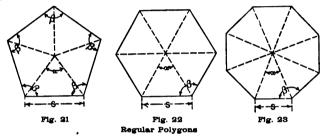
$$\beta = 180 - a.$$

The area of a polygon can be found by dividing it into triangles, as shown in Figs. 21, 22 and 23. After having measured the base and

height of one triangle and calculated its area, the area of the whole polygon is found by multiplying the area of one triangle by the number of triangles or sides.

For the more commonly used regular polygons, the formulas in the following give the area directly when the length of the side is known.

Equilateral Triangles


The sum of the three angles in any triangle equals 180 degrees, as already mentioned. Each of the angles in an equilateral triangle, therefore, equals 1/3 of 180 degrees, or 60 degrees.

The radius r of the circle inscribed in an equilateral triangle equals the side multiplied by 0.289.

The radius R of the circumscribed circle equals the side multiplied by 0.577.

If the radius of the circumscribed circle is known, the side is found by multiplying the radius by 1.732.

If the radius of the inscribed circle is known, the side is found by multiplying the radius by 3.464.

The area of an equilateral triangle equals the square of the side multiplied by 0.433; or, the square of the radius of the circumscribed circle multiplied by 1.299; or, the square of the radius of the inscribed circle multiplied by 5.196.

If r =radius of inscribed circle,

R =radius of circumscribed circle,

S =length of side,

A = area of equilateral triangle,

then the previous rules may be expressed in formulas as follows:

 $r = 0.289 \times S$,

 $R = 0.577 \times S,$

 $\mathbf{s} = 1.732 \times R = 3.464 \times r,$

 $A = 0.433 \times S^{2} = 1.299 \times R^{2} = 5.196 \times r^{2}.$

The Square

Each of the angles between the sides of a square is a 90-degree or right angle.

The radius of the inscribed circle equals one-half of the side.

The radius of the circumscribed circle equals the side multiplied by 0.707.

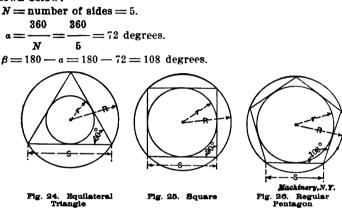
The side of a square equals twice the radius of the inscribed circle, or 1.414 times the radius of the circumscribed circle.

34

The area equals the square of the side. The area also equals the square of the radius of the circumscribed circle multiplied by 2; or, the square of the radius of the inscribed circle multiplied by 4.

Using the same meaning for the letters as before, the previous rules may be expressed in formulas as follows:

$$r = 0.5 \times S,$$


$$R = 0.707 \times S,$$

$$S = 1.414 \times R = 2 \times r.$$

$$A = S^{3} = 2 \times R^{3} = 4 \times r^{3}.$$

The Pentagon

In the pentagon (Figs. 21 and 26) the angle β between the sides equals 108 degrees. This is found by the formulas previously given as shown below:

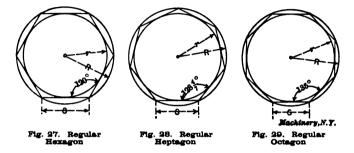
The following formulas are used for finding the radii of the circumscribed and inscribed circles, the side and the area of regular pentagons:

 $r = 0.688 \times s.$ $R = 0.851 \times s,$ $s = 1.176 \times R = 1.453 \times r,$ $A = 1.720 \times s^{3} = 2.378 \times R^{3} = 3.633 \times r^{3}.$

The Hexagon

In the hexagon (Figs. 22 and 27) the length of the side S equals the radius R of the circumscribed circle so that each of the six triangles formed, when lines are drawn from the center to the angle-points, are equilateral triangles. The angle β between two adjacent sides equals the sum of two angles in two of the equilateral triangles and, consequently, equals 60 + 60 = 120 degrees.

Using the same letters as previously given in the formulas, we have for the hexagon:


 $r = 0.866 \times S,$ R = S, $S = R = 1.155 \times r,$ $A = 2.598 \times S^{2} = 2.598 \times R^{2} = 3.464 \times r^{4}.$

The Heptagon

The heptagon, Fig. 28, has seven sides, and the angle between two adjacent sides is found by the formulas already given, as shown below: N = aumber of sides = 7.

 $a = \frac{360}{N} = \frac{360}{7} = 51 \ 3/7 \ \text{degrees.}$ $\beta = 180 - 51 \ 3/7 = 128 \ 4/7 \ \text{degrees.}$

Using the same letters as in the formulas previously given, we have for the heptagon:

 $\begin{array}{l} r = 1.038 \times S, \\ R = 1.152 \times S, \\ S = 0.868 \times R = 0.963 \times r. \\ A = 3.634 \times S^3 = 2.736 \times R^3 = 3.371 \times r^3. \end{array}$

The Octagon

The angle β between two adjacent sides of the octagon, as shown in Figs. 23 and 29, is 135 degrees.

Using the same meaning for the letters as previously given, the formulas for the octagon are:

 $r = 1.207 \times S,$ $R = 1.307 \times S,$ $S = 0.765 \times R = 0.828 \times r,$ $A = 4.828 S^{2} = 2.828 \times R^{2} = 3.314 \times r^{2}.$

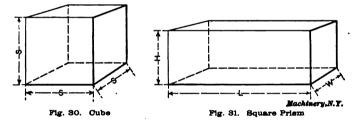
.

CHAPTER IX

VOLUMES OF SOLIDS

Volume of a Cube

The cube, Fig. 30, is a solid body having six surfaces or faces, all of which are squares; as all the faces are squares, all the sides are of equal length.


If the side of a face of a cube equals S, the volume equals $S \times S \times S$ or, as it is commonly written, S^3 .

Assume that the length of the side of a cube equals 3 inches; then the volume equals $3 \times 3 \times 3 = 27$ cubic inches.

When the volume of a cube is known, the length of the side is found by extracting the cube root of the volume.

Assume that the volume of a cube equals 343 cubic inches. If we extract the cube root of 343, we find that the side of the cube is 7 inches.

One cubic foot equals $12 \times 12 \times 12 = 1728$ cubic inches; therefore, a volume given in cubic feet can be transformed into cubic inches by

multiplying by 1728; if the volume is given in cubic inches it can be transformed into cubic feet by dividing by 1728.

Volume of Prisms

A solid body, the sides of which are all rectangles, and the ends of which are either rectangles or squares is commonly called a square prism. Opposite surfaces or faces are parallel, and all the angles are right angles. A square prism is shown in Fig. 31, where L is its length, W its width, and H its height. The volume of a square prism equals the length times the width times the height, or, expressed as a formula, if V = volume.

$$V = L \times W \times H.$$

Assume that L = 20 inches, W = 4 inches, and H = 5 inches, then volume $= 20 \times 4 \times 5 = 400$ cubic inches.

A solid body having the end faces parallel, and the lines along which the other faces intersect or meet parallel, is called a *prism*. The two parallel end faces are called *bases*. The length, height, or altitude L, Fig. 32, of a prism is the distance between the bases, measured at right angles to the base surfaces.

The volume of a prism equals the area of the base multiplied by the length or height of the prism. The area of the base must, therefore, first be found before the volume can be obtained. If the base is a triangle, parallelogram, trapezoid, trapezium or a regular polygon, its area is found by the rules given in Chapter VIII. If it is a polygon which is not regular, it can always be divided into triangles, and the area of each of the triangles can be calculated, and these areas added together to obtain the area of the whole polygon.

Assume that it is required to find the volume of a prism, the base of which is a regular hexagon having a side S; the length of the prism is L. The volume of this prism is

$$2.598 \times S^3 \times L$$

[See page 35 for formula for area of hexagon.]

If, in this example, S equals $1\frac{1}{2}$ inch, and L equals 9 inches, then the volume equals

 $2.598 \times 1\frac{1}{2} \times 9 = 2.598 \times 1.5 \times 1.5 \times 9 = 52.6095$ cubic inches.

Volume of a Pyramid

A solid body having a polygon for the base and a number of triangles all having a common vertex for the sides is called a *pyramid*. In Fig. 33 a pyramid is shown where the base has four sides and the side surfaces are made up of triangles having two equal sides. If a line is drawn from the vertex of the pyramid at right angles to the base, the length of this line is the altitude or height H of the pyramid.

The volume of a pyramid equals the base area multiplied by onethird of the height. It is, therefore, necessary to find the base area before the volume can be found.

Assume that it is required to find the volume of a pyramid, the base of which is a regular pentagon, having a side S; the height of the pyramid is H. The volume of the pyramid equals

 $1.720 \times S^n \times 1/3 \times H$ (area of base \times one-third the height).

[See page 35 for formula for area of pentagon.]

If S = 2 inches and H = 9 inches, then the volume equals

 $1.720 \times 2^2 \times 1/3 \times 9 = 1.720 \times 2 \times 2 \times 3 = 20.640$ cubic inches.

A frustum of a pyramid is shown in Fig. 34. It is a pyramid from which the top has been cut off, the top surface being parallel to the base. The height of a frustum of a pyramid is the length of a line drawn from the top surface at right angles to the base.

The volume of a frustum of a pyramid can be found when the height, the top area, and the base area are known.

If V =volume of frustum of a pyramid,

H =height of frustum,

 $A_1 =$ area of top,

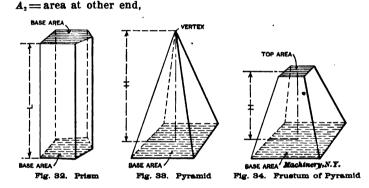
 $A_2 =$ area of base,

then

$$V = \frac{H}{3} \times (A_1 + A_2 + \sqrt{A_1 \times A_2}).$$

Digitized by Google

-38


Assume, for example, that the base of a frustum of a pyramid is a square, and that the side of the square is 5 inches. The top area is, of course, also a square; assume the side of this to be 2 inches. The height of the frustum is 6 inches. By first calculating the base and top areas and then inserting the values in the formula given, the volume is obtained.

Volume
$$=$$
 $\frac{6}{3} \times (5^2 + 2^2 + \sqrt{5^2 \times 2^2}) = 2 \times (25 + 4 + \sqrt{25 \times 4})$
= 2 × (25 + 4 + 10) = 78.

The Prismoidal Formula

The prismoidal formula is a general formula by which the volume of any prism, pyramid or frustrum of a pyramid, and the volume of any solid body bounded by regular curved surfaces may be found.

If $A_1 =$ area at one end of the body

 A_{m} = area of a middle section between the two end surfaces, H = height of the body,

V =volume of body,

then

$$V = \frac{H}{6} \times (A_1 + 4 A_m + A_2).$$

As this formula applies to all regular solid bodies, it is useful to remember. For ordinary calculations, however, the formulas given on the two previous pages, for each kind of solid, should be used because of greater simplicity.

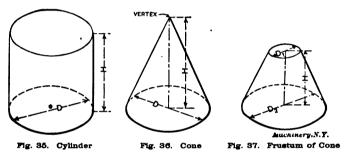
Volume of a Cylinder

A solid body, as shown in Fig. 35, having circular and parallel end faces of equal size, is called a *cylinder*. The two parallel faces are called *bases*. The height or altitude H of a cylinder is the distance between the bases measured at right angles to the base surfaces.

The volume of a cylinder equals the area of the base multiplied by the height. The area of the base, must, therefore, first be found before the volume can be obtained. If the diameter of the base is D.

the area of the base equals $0.7854D^3$. The volume of the cylinder then equals:

$$0.7854 \times D^3 \times H$$


If D = 3 inches and H = 5 inches, then the volume equals:

 $0.7854 \times 3^3 \times 5 = 0.7854 \times 3 \times 3 \times 5 = 35.343$ cubic inches.

Volume of a Cone

A solid body having a circular base and the sides inclined so that they meet at a common vertex, the same as in a pyramid, is called a cone. (See Fig. 36.) If a line is drawn from the vertex of the cone at right angles to the base, the length of this line is the altitude or height H of the cone.

The volume of a cone equals the base area multiplied by one-third of the height. It is, therefore, necessary to find the area of the base circle before the volume can be found. If the diameter of the base

area equals D, then the area equals $0.7854D^2$, and this multiplied by one-third of the height H gives us the volume:

 $0.7854 \times D^{3} \times 1/3 \times H = 1/3 \times 0.7854 \times D^{2} \times H = 0.2618 \times D^{3} \times H.$

If the diameter of the base of a come equals 4 inches and the height 6 inches, then the volume equals:

 $0.2618 \times 4^3 \times 6 = 0.2618 \times 4 \times 4 \times 6 = 25.1328$ cubic inches.

A frustum of a cone is shown in Fig. 37. It is a cone from which the top has been cut off, the top surface being a circle parallel to the base. The height H of a frustum of a cone is the length of a line drawn from the top surface at right angles to the base.

The volume of a frustum of a cone can be found when the diam. eters of the top and base circles, and the height are known.

If V = volume of frustum of a cone,

H =height of frustum,

 $D_1 = \text{diameter of top circle},$

 $D_{1} =$ diameter of base circle,

then

 $V = 0.2618 \times H \times (D_1^2 + D_2^2 + [D_1 \times D_2]).$

Assume, for example, that the diameter of the base of a frustum of a cone is 5 inches, and that the diameter of the top circle is 2 inches. The height of the frustum is 6 inches. By inserting these values in the formula given we have:

 $V = 0.2618 \times 6 \times (2^{\circ} + 5^{\circ} + [2 \times 5]) = 0.2618 \times 6 \times (4 + 25 + 10)$ = 0.2618 × 6 × 39 = 61.2612 cubic inches.

Volume of a Sphere, Spherical Sector, Segment and Zone

The name sphere is applied to a solid body shaped like a ball or globe, that is, bounded by a surface which at all points is at the same distance from a point inside of the sphere called its center. The diameter of a sphere is the length of a line drawn from a point on the surface through the center to the opposite side.

The volume of a sphere equals 3.1416 multiplied by four-thirds of the cube of the radius, or 3.1416 multiplied by one-sixth of the cube of the diameter.

If R = radius of the sphere, D = diameter, and V = volume, this rule given can be written in the form of formulas thus:

$$V = 3.1416 \times 4/3 \times R^a = 4.1888 \times R^a$$
,
 $V = 3.1416 \times 1/6 \times D^a = 0.5236 \times D^a$.

If the volume of a sphere is known, the radius can be found by extracting the cube root of the quotient of the volume divided by 4.1888; the diameter can be found by extracting the cube root of the quotient of the volume divided by 0.5236.

Written as formulas, these rules are:

$$R = \sqrt[3]{\frac{\overline{V}}{4.1888}} \qquad \qquad D = \sqrt[3]{\frac{\overline{V}}{0.5236}}$$

A spherical sector is a part of a sphere bounded by a section of the spherical surface and a cone, having its vertex at the center of the sphere, as shown in Fig. 39. The volume of a spherical sector can be found if the radius R and the height H, Fig. 39, are known.

The formula for the volume V is

 $V = 2.0944 \times R^2 \times H.$

Assume that the length of the radius of a spherical sector is 15 inches and the height is 4 inches. Then the volume equals

 $2.0944 \times 15^{\circ} \times 4 = 2.0944 \times 15 \times 15 \times 4 = 1884.96$ cubic inches.

A spherical segment is a part of a sphere bounded by a portion of the spherical surface and a plane circular base, as shown in Fig. 40.

The volume of a spherical segment can be found when the radius of the sphere and the height H of the segment, or the diameter C of the base of the segment and its height H, are known.

If V = volume of segment,

H =height of segment,

R = radius of the sphere of which the segment is a part,

C = diameter of the base of the segment,

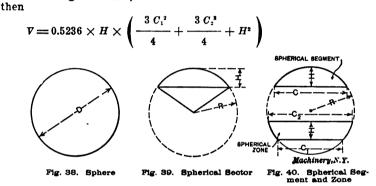
then,

$$V = 3.1416 \times H^3 \times \left(R - \frac{H}{3}\right)$$
$$V = 3.1416 \times H \times \left(\frac{C^3}{8} + \frac{H^3}{6}\right)$$

Assume that the height of a spherical segment is 6 inches and the radius 8 inches, then the volume is

 $3.1416 \times 6^3 \times (8 - 6 \div 3) = 3.1416 \times 6 \times 6 \times (8 - 2) = 3.1416 \times 6 \times 6 \times 6 \times 6 \times 6 = 678.5856$ cubic inches.

A spherical zone is bounded by a part of a spherical surface, and by two parallel circular bases, as shown in Fig. 40, where O_1 and C_2 are the diameters of the circular bases of the zone, and H its height.


The volume of a spherical zone can be found when the height of the segment and the two base diameters are known.

If V = volume of zone,

 $C_1 =$ diameter of the smaller base circle,

 $C_2 =$ diameter of the larger base circle,

H =height of zone,

Assume that the diameter $C_1 = 3$ inches, the diameter $C_2 = 4$ inches, and the height of the segment equals 1 inch, then the volume is

$$0.5236 \times 1 \times \left(\frac{3 \times 3^2}{4} + \frac{3 \times 4^2}{4} + 1^2\right) =$$
$$0.5236 \times 1 \times \left(\frac{27}{4} + \frac{48}{4} + 1\right) = 0.5286 \times 1 \times 19.75 = 10.8411 \text{ cubic inches.}$$

[If a plane parallel with the end faces and passing through the center of the sphere intersects the zone, consider the zone as two zones, one zone being on each side of the center. Calculate the volume of each, and add these to find the total volume.]

CHAPTER X

SPECIFIC GRAVITY AND WEIGHTS OF BAR STOCK AND CASTINGS

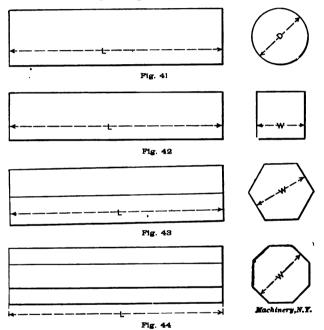
The expression "specific gravity" indicates how many times a certain volume of a material is heavier than an equal volume of water. If it is found, for example, that one cubic inch of steel weighs 7.8times as much as one cubic inch of pure water, the specific gravity of steel is 7.8.

As the density of water differs slightly at different temperatures, it is usual to make comparisons on the basis that the water has a temperature of 62 degrees F. The weight of one cubic inch of pure water at 62 degrees F. is 0.0361 pound. If the specific gravity of any material is known, the weight of a cubic inch of the material can, therefore, be found by multiplying its specific gravity by 0.0361.

Metal	Specific Gravity	Weight in Pounds per Cubic Inch
Aluminum	2.56	0,092
Antimony	6.71	0.242
Bismuth	9.80	0.854
Brass	8.00	0.289
Copper	8.82	0.818
Gold	19.82	0.697
Iron, cast	7.20	0.260
" pure	7.77	0.280
" wrought	7.70	0.278
Lead	11.87	0.410
Manganese	8.00	0.289
Mercury	18.58	0.490
Nickel	8.80	0.318
Platinum	21.50	0.776
Silver.	10.50	0.879
Steel, machine and tool	7.85	0.283
Tin.	7.29	0.263
Tungsten	17.60	0.635
Vanadium	5.50	0.199
Zinc	7.15	0.258

TABLE OF SPECIFIC GRAVITY AND WEIGHT PER CUBIC INCH OF VARIOUS METALS AND ALLOYS

The specific gravity of cast iron, for example, is 7.2. The weight of one cubic inch of cast iron is found by multiplying 7.2 by 0.0361. The product, 0.260, is the weight of one cubic inch of cast iron.


As there are $12 \times 12 \times 12 = 1,728$ cubic inches in one cubic foot, the weight of a cubic foot is found by multiplying the weight of a cubic inch by 1,728.

If the weight of a cubic inch of a material is known, the specific gravity is found by dividing the weight per cubic inch by 0.0361.

44

The weight of a cubic inch of gold is 0.697 pound. The specific gravity of gold is then found by dividing 0.697 by 0.0361. The quotient, 19.32, is the specific gravity of gold.

If the weight per cubic inch of any material is known, the weight of any volume of the material is found by multiplying the weight per cubic inch by the volume expressed in cubic inches. If brass weighs 0.289 pound per cubic inch, 16 cubic inches of brass, of course, weigh $0.289 \times 16 = 4.624$ pounds. In an example of this kind, if the specific gravity is known, instead of the weight per cubic inch, this latter weight is first found by the rule previously given for finding the weight per cubic inch from the specific gravity.

Figs. 41 to 44. Round, Square, Hexagonal and Octagonal Bar Stock

If the specific gravity of tool steel is 7.85, what is the weight of 12 cubic inches of tool steel? The weight of one cubic inch is found by multiplying 7.85 by 0.0361. The product, 0.283, is then multiplied by 12 to find the weight of 12 cubic inches; $0.283 \times 12 = 3.396$ pounds.

Weight of Bar Stock

The weight of a piece of round bar stock, as shown in Fig. 41, can be found by first calculating the volume of the piece. When the volume is found in cubic inches, the weight is found by multiplying the volume by the weight of the material per cubic inch, as already explained.

If the diameter D, Fig. 41, of a piece of round tool steel bar is 2 inches, and the length L is 7 inches, the volume of this piece equals

 $0.7854 \times$ square of diameter \times length, or $0.7854 \times 2^3 \times 7 = 0.7854 \times 2 \times 2 \times 7 = 21.991$ cubic inches. The volume in cubic inches having been found, it is multiplied by the weight of tool steel per cubic inch, which is 0.283 pound, as given in the accompanying table of specific gravity and weight per cubic inch of various metals and alloys. The weight of the bar is then $21.991 \times 0.283 = 6.2235$ pounds.

If the specific gravity is given instead of the weight per cubic inch, find the weight per cubic inch as explained on page 43.

The weight of a square bar, as shown in Fig. 42, can be calculated when the width across flats, W, the length of the bar, L, and the weight of one cubic inch of the material from which the bar is made, are known.

Assume that the width across flats is $2\frac{1}{2}$ inches, that the length is 11 inches, and that the bar is made from brass; the volume of this bar equals the area of its end section multiplied by its length, or, in this case, $2\frac{1}{2} \times 2\frac{1}{2} \times 11 = 68\frac{3}{4}$ cubic inches. The weight of one cubic inch of brass is 0.289 pound, and the weight of the given bar is, therefore, $68\frac{3}{4} \times 0.289 = 19.869$ pounds.

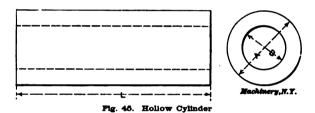
In order to find the weight of a hexagonal bar, as shown in Fig. 43, when the width across flats, W, the length L, and the weight per cubic inch of the material from which the bar is made, are known, the area of its end section must first be found so that the volume can be determined by multiplying this area by the length; when the width across flats, W, is given, this area equals $0.866 \times$ the square of the width across flats.

Assume that the weight is to be found of a hexagonal piece of machine steel bar stock 3 inches across flats, and 6 inches long. The volume of this piece equals then $0.866 \times 3^3 \times 6 = 0.866 \times 3 \times 3 \times 6$ = 46.764 cubic inches, and the weight equals $46.764 \times 0.283 = 13.234$ pounds. The factor 0.283 is the weight of one cubic inch of machine steel, as given in the table on page 43.

In order to find the weight of a piece of octagonal stock, as shown in Fig. 44, it is first necessary to find the area of the end section; when the width across flats, W, is given, this area equals $0.828 \times$ the square of the width across flats.

Assume that the weight of an octagonal piece of tool steel 4 inches across flats and 15 inches long is to be found. The volume of this piece then equals $0.828 \times 4^3 \times 15 = 0.828 \times 4 \times 4 \times 15 = 198.72$ cubic inches, and the weight equals $198.72 \times 0.283 = 56.238$ pounds. The factor 0.283 is the weight of one cubic inch of tool steel'as given in the table on page 43.

The Weight of Castings


The weight of a casting can be calculated when the volume of the casting and the specific gravity or the weight per cubic inch of the material from which the casting is made, are known. If the volume is known in cubic inches, the volume is simply multiplied by the weight per cubic inch to obtain the weight of the casting.

The specific gravity of cast iron is 7.2 and the weight per cubic inch is 0.260; the specific gravity of brass is 8 and the weight per cubic inch is 0.289; the specific gravity of cast zinc is 6.86, and the weight per cubic inch 0.248; the specific gravity of gun metal bronze is 8.7 and the weight per cubic inch is 0.314.

With the constants above given, the problem of finding the weight of castings reduces itself to finding the volume of the casting. The multiplication by the weight per cubic inch of the material is then a simple matter.

Assume that it is required to find the weight of a hollow cast iron cylinder, as shown in Fig. 45, where the outside diameter is A, the inside or core diameter B, and the length L. To find the volume, first calculate the volume of a cylinder with the diameter A and the length L and then subtract from this the volume of the cylinder forming the core.

Assume that in a hollow cylinder as shown in Fig. 45, A = 3 inches, B = 2 inches, and L = 8 inches. The volume of a cylinder = 0.7854 × the square of the diameter × the height. The volume of a cylinder with 3 inches diameter and a height of 8 inches = 0.7854 × 3² × 8 =

 $0.7854 \times 3 \times 3 \times 8 = 56.5488$ cubic inches. From this is subtracted the volume of the cylinder forming the core, which has a diameter of 2 inches. The volume of this cylinder is $0.7854 \times 2^{3} \times 8 = 25.1328$ cubic inches. This last volume subtracted from the volume 56.5488gives us 31.416 cubic inches as the volume of the hollow cylinder (56.5488 - 25.1328 = 31.416). As the weight per cubic inch of cast iron is 0.260 pound, the total weight of the hollow cylinder will be $31.416 \times 0.260 = 8.168$ pounds.

If the cylinder had been cast from gun metal bronze instead of cast iron, the volume should be multiplied by 0.314, in order to find the weight.

If the outside diameter of a hollow cylinder is A, the inside diameter B, and the length L, the following formula may be used for finding the volume of the cylinder:

 $Volume = 0.7854 \times (A^2 - B^2) \times L.$

In Fig. 46 is shown a knee made from cast iron, all the necessary dimensions for calculating the weight being given. To calculate the volume of a casting of this shape, it is divided into prisms or other simple geometric shapes, and the volume of each of the parts is found, after which these volumes are added together to find the total volume of the casting. The piece shown in Fig. 46 can be divided up into three parts, the volume of each of which can be calculated by simple means. One part has for base the rectangle HMLK, another the rectangle PFMN, and the base of the third is bounded by two straight lines EF and FG and the circular arc EG. The length of all the parts in this case equals the length of the casting, or 5 inches, as shown.

The area of the rectangle *HMLK* equals $6 \times 2 = 12$ square inches. This area multiplied by 5 gives us the volume of this part in cubic inches; $12 \times 5 = 60$ cubic inches.

The length of the line NM is 4 inches (6-2 = 4), and, therefore, the area of the rectangle *PFMN* is $4 \times 2 = 8$ square inches. This area multiplied by 5 gives us the volume of this section of the casting in cubic inches; $8 \times 5 = 40$ cubic inches.

It now remains to find the volume of the section having for base the area bounded by the two straight lines EF and FG and the circular arc EG. The area of the base is found by first finding the area of the square DEFG and subtracting from this area the area of the circular

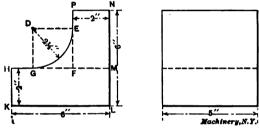


Fig. 46. Bracket or Knee

sector DEG. The area of the square is $2\frac{1}{2} \times 2\frac{1}{2} = 6\frac{1}{4}$ square inches. The area of the circular sector which is one-fourth of a complete circle $2\frac{1}{2} \times 3.1416$

is -----= 4.909 square inches. This subtracted from the

area of the square equals 1.341 square inch (6.25 - 4.909 = 1.341). This is then the area of the base of the third part into which the casting is divided, and this area multiplied by 5 gives the volume of the third part of the casting $(1.341 \times 5 = 6.705)$. Now adding the volumes of the three parts together we have 60 + 40 + 6.705 = 106.705 cubic inches. This total volume multiplied by the weight per cubic inch of cast iron gives us the total weight: $106.705 \times 0.260 = 27.743$ pounds.

When the pattern for a casting contains no core-prints, but is in all respects an exact duplicate of the casting to be made, the weight of the casting may be approximately found by multiplying the weight of the pattern by a constant which varies for different kinds of woods used for the pattern. When the pattern is made from white pine, multiply the weight of the pattern by 13 to obtain the weight of a cast iron casting; if the pattern is made from cherry, multiply by 10.7; if made of mahogany, multiply by 10.28. When an aluminum pattern is used, the weight of the aluminum pattern may be multiplied by 2.88 to obtain the weight of a cast iron casting.

Digitized by Google

Assume that the weight of a cast iron bracket, as shown in Fig. 47, is required. All the required dimensions are here given by the letters A, B, C, D, E, F, and G. The casting is divided up into sections, and the volume of each section is calculated separately; then the volumes are added together and the total volume multiplied by the weight per cubic inch of cast iron. Very small fillets, like those shown at N and R, are not considered, and the area *NRST* is regarded as a perfect rectangle.

In the example given, the casting is divided up in five parts; one is a hollow cylinder with an outside diameter A; two parts have for bases the rectangles *NRST* and *KMTU*; and two parts have for bases the areas *HKL* and *OML*, respectively, each being bounded by two straight lines and a circular arc.

For an example, assume that in Fig. 47, A = 7 inches, B = 4 inches, C = 3 inches, D = 4 inches, E = 12 inches, F = 10 inches, G = 8 inches.

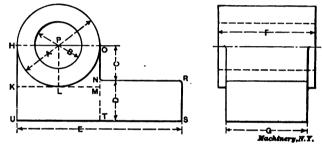


Fig. 47. Bearing Bracket

The volumes of the different parts will then be found as follows: Volume of hollow cylinder having an outside diameter of 7 inches, an inside diameter of 4 inches, and length of 10 inches:

 $\begin{array}{r} 0.7354 \times (7^2 - 4^2) \times 10 = 0.7854 \times (49 - 16) \times 10 \\ = 0.7854 \times 33 \times 10 = 259.18 \text{ cubic inches.} \end{array}$

Volume of section having for base the rectangle NRST:

 $4 \times 5 \times 8 = 160$ cubic inches.

Volume of section having for base the rectangle KMTU:

 $3\frac{1}{2} \times 7 \times 8 = 196$ cubic inches.

Volume of section having for base the area HKL:

$$\left(3\frac{1}{2} \times 3\frac{1}{2} - \frac{3\frac{1}{2} \times 3.1416}{4}\right) \times 8 = (12.25 - 9.62) \times 8$$

 $= 2.63 \times 8 = 21.04$ cubic inches.

The volume of the section having for base OML equals the volume of the section having for base HKL and is consequently 21.04 cubic inches.

The total of the five sections then equals

259.18 + 160 + 196 + 21.04 + 21.04 = 657.26 cubic inches. The total weight of the casting equals $657.26 \times 0.260 = 170.89$ pounds.

48

CHAPTER XI

USE OF TABLES OF SINES, COSINES, TANGENTS AND COTANGENTS

The figuring of angles the average mechanic usually looks upon as something above his capacity; but simple cases of the figuring of angles from given formulas are often much easier than many ordinary arithmetical problems in the shop which he successfully solves. All that is necessary is a table of sines, cosines, tangents, and cotangents; after having found the figures corresponding to a given angle from the table, the whole thing resolves itself into a case of simple multiplication or division.

Often, in technical papers, the reader will find himself confronted by such formulas as, for instance,

$$A = \frac{27}{\cos 36 \deg}.$$

Of course, it is impossible to figure out how much A is from this formula, unless the expression "cos 36 deg." (read: cosine of 36 degrees) can be transformed and expressed in plain figures. But if we know how much "cos 36 deg." is expressed in plain figures, then we can immediately divide 27 by this value, and thus find the value of A. Suppose that A stands for the length of one side in a triangle and that the expression "cos 36 deg." equals 0.80901. Then,

$$A = \frac{27}{0.80901} = 33.37.$$

The tables of sines, cosines, tangents, and cotangents simply serve the purpose of giving in figures the values of these expressions for different angles. The four expressions: sine, cosine, tangent, and cotangent, which are used to designate certain numerical values, to be found from the tables, are called the *functions of the angle*. These functions or numerical values equal a definite amount for each different angle. On pages 52, 53, 54 and 55 will be found tables giving the values referred to for all degrees and for every ten minutes (1/6 of a degree). From these tables, when the angle is given, the angular function can be found, and when the function is given, the angle can be determined. The four expressions, sine, cosine, tangent, and cotangent are abbreviated "sin," "cos," "tan," and "cot," respectively.

The tables of sines, cosines, etc., are read in the same way as a railroad time-table. At the top of Tables I and II the heading reads "Table of Sines," and at the bottom is the legend "Table of Cosines." At the top of Tables III and IV the heading reads "Table of Tangents," and at the bottom is the legend "Table of Cotangents." At the top of all the tables the heading of the extreme left-hand column reads

Digitized by Google

"Deg." and the following columns are headed 0', 10', 20', etc. At the bottom of the tables the same legends are placed under the columns, but reading from right to left.

When the sine or tangent of a given angle is to be found, first find the number of degrees in the extreme left-hand column in the respective tables, and then locate the number of minutes at the top of the table. Then follow the column, over which the number of minutes is given, downwards until arriving at the figure in line with the given number of degrees. This figure is the numerical value of the sine or tangent, as the case may be, for the given angle. If the angle is given in even degrees with no minutes, the corresponding function will be found opposite the number of degrees in the column marked 0' at the top.

The cosines and cotangents of angles are found in the same tables as the sines and tangents, but the tables in this case are read *from the bottom up*. The number of degrees is found in the extreme right-hand column and the number of minutes at the bottom of the columns.

If the number of minutes given is not an even multiple of 10, as 10', 20', 30', etc., but 27', for example, it is, for nearly all shop calculations near enough to take the figures for the nearest number of minutes given, being in this case, for 30'.

Examples of the Use of the Tables

Example 1.—Find from the tables given the sine of 56 degrees, or, as it is written in formulas, $\sin 56^{\circ}$.—The "sines" are found by reading Tables I and II from the top; the number of degrees, 56, is found in Table II in the left-hand column, and opposite 56 in the column 0', read off 0.82903.

Example 2.—Find sin 56° 20'.—In the column marked 20' at the top, follow downwards until opposite 56 in the left-hand column. The value 0.83227 is the sine of 56° 20'.

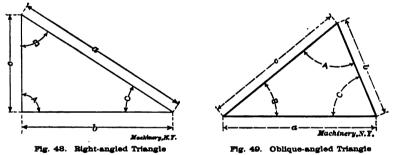
Example 3.—Find cos 36° 20'.—To find the cosines, read the tables from the bottom, and locate 36 in the right-hand column in Table II. Then follow the column marked 20' at the bottom upwards until opposite 36, and read off 0.80558.

Example 4.—Find $\tan 56^{\circ} 40'$.—The tangents are found in Tables III and IV by locating the number of degrees in the left-hand column and reading the value in the column under the specified number of minutes. In Table IV then we find $\tan 56^{\circ} 40'$ to be 1.5204.

Example 5.—Find the cotangent of 56° 40'.—Read the tables from the bottom, locating 56 in the right-hand column, and find the required value in line with this figure in the column marked 40' at the bottom. Thus, cot 56° 40' = 0.65771.

Example 6.—Find sin 20° 48'.—For shop calculations it is almost always near enough to find the value of the angular functions for the nearest 10 minutes. Therefore in this case find sin 20° 50', which is 0.35565.

Example 7.—The sine for a certain angle, which may be called a, equals 0.53233. Find the angle.—In the body of the tables of sines find the number 0.53238. It will be seen that this number is opposite


32 degrees and in the column headed 10' at the top. The angle α , therefore, equals 32° 10'.

Example 8.—Cot $\beta = 0.77195$. Find β .—The cotangents are read from the bottom in Tables III and IV. The value 0.77195 is located opposite 52 in the right-hand column and in the column marked 20' at the bottom. Angle β , then, is 52° 20'.

Example 9.—Sin $\beta = 0.31190$. Find β .—It will be found that the value 0.31190 is not given in the table of sines; the nearest value in the table is 0.31178. For shop calculations it is near enough to consider the angle β equal to the angle corresponding to this latter value; the angle then is 18° 10'.

Right-angled Triangles*

In right-angled triangles the remaining sides and angles can be found when either two sides, or one side and one of the acute angles, are known. As previously mentioned, the side opposite the right angle, or side a in Fig. 48, is called the *hypotenuse*. Side b is the side

adjacent to angle C and side c is the side opposite to the same angle. In the same way, c is the side adjacent to angle B, and b is the side opposite angle B.

The problems in right-angled triangles may be divided into five classes, for which the following formulas are given:

1. The hypotenuse and one of the sides forming the right angle are given. Call the hypotenuse a, and the other given side b. Then (see Fig. 48):

$$c = \sqrt{a^2 - b^2} \qquad \sin B = -\frac{b}{a} \qquad C = 90^\circ - B$$

2. The two sides forming the right angle are given. Call these two sides b and c. Then (see Fig. 48):

$$a = \sqrt{b^2 + c^2}$$
 $\tan B = \frac{b}{c}$ $C = 90^\circ - B$

3. The hypotenuse and one of the acute angles are given. Call the hypotenuse a and the given angle B. Then (see Fig. 48):

 $C = 90^{\circ} - B$ $b = a \times \sin B$ $c = a \times \cos B$

Digitized by Google

[•] For a more complete treatment of the solution of triangles, see MACHINERY'S Reference Series No. 54, Solution of Triangles.

I. TABLE OF SINES

Read degrees in left-hand column and minutes at top Example: sin 7° 10' = .12475

Deg	or	10'	20'	80′	40'	50'	60'	
0	.00000	.00291	.00581	.00872	.01168	.01454	.01745	89
1	.01745	.02086	.02826	.02617	.02908	.08199	.08489 .05238	88
2	.03489	.03780	.04071	.04361	.04652	.04948	.05255	87
8	.05238	.05524	.05814	.06104	.06895	.06685		86
1 2	.06975	.07265	.07555	.07845	-08185	.08425 .10163	.08715	85
ŏ	.08715	.09005	.09295	.09584	.09874		.10452 .12186	84
Ő	.10452	.10742	.11081	.11820	.11609	.11898		83
7	.12186	.12475	.12764	.18052	.18341	.18629 .15856	.18917 .15643	82
8	.18917	.14205	.14498	.14780	.15068		.10045	81
9	.15648	.15980	.16217	.16504	.16791	.17078		80
10	.17864	.17651	.17987	.18228	.18509	.18795	.19080	79
11	.19080	. 19866	.19651	.19986	.20221	,20506	.20791	78
12	.20791	.21075	.21859	.21644	. 21927	.22211	.22495	77
18	.22495	.22778	.23061	.23344	.28627	.28909	.24192	76
14	.24192	:24474	.24756	.25088	.25819	.25600	.25881	75
15	.25881	.26162	.26448	.26728	.27004	.27284	.27563 .29287	74
16	.27568	.27843	.28122	.28401	.28680	.28958		73
17	.29237	.29515	.29793	.80070	.30847	.80624 .82281	.80901 .32556	78
18	.80901	.31178	.81454	.81780			.82000	71
19	.82556	.82881	.83106	. 33380	.88654	.88928	.84202	70
20	.84202	.84475	.84748	.85020	.85298	.85565	.87460	69
21	.85886	.36108	.36379	.86650	.86920	.87190		68
22	.87460	.87780	.87999	.88268	.88586	. 38805	.89073	67.
28	.89078	.89840	89607 .41204	.89874	.40141	.40407	.40678 .42261	66
24	-40678	.40989		.41469		.41998		65
25	.42261	.42525	.42788	.48051	.43818	48575	.43837	64
26	.43837	.44098	.44359 .45916	.44619	.44879	.45189	.45899 .46947	68
27	.45399	.45658		.46174	.46482	.46690	.48481	62
-28	.46947	.47208	.47460	.47715	.47971	.48226		61
29	.48481	.48785	.48989	.49242	.49495	.49747	.50000	60
80	.50000	.50251	.50508	.50758	.51004	.51254	.51508	59
81	.51503	.51752		.52249	.52497	.52745	.52991	58
82	.52991	.58288	.58484	.58780	.53975	.54219	.54463 .55919	57
83	.54463	.54707	.54950 .56400	.55198	.56880	.57119		56
84 9r	.55919	.56160	. 57883	.56640 .58070	.58806	.58542	.57857 .58778	55
85 36	.57857	.59018	.07803	.59482	.59715	.08043	.06770	54 58
87	.60181	.60418	.00245	.60876	.61106	.09948		
		.61795	.62028	.62251	.62478	.01380	.61566	53 51
88 89	.61566 .62982	.68157	.63383	.63607	.62478	.64055	.62982 .64278	
40	.02982	.63107	.63353	.64944	.65165	.65886	.65605	50 49
40	.65605							
41 42	.66918	.65825	.66043	.66262	.66479	.66696	.66918 .68199	48 47
43	.68199	.68412	.68624	.68885			.69465	46
45	.69465	.69674	.69888	.70090	.69046	.69256		40
1 22	.00200	.000/4	.00000		. 10200	. 10004	.70710	40
	60*	50'	40'	80'	20'	10'	ø	Deg.

TABLE OF COSINES

Read degrees in right-hand column and minutes at bottom Example: cos 56° 20' =. 55436

II. TABLE OF SINES

Read degrees in left-hand column and minutes at top Example: sin 56° 20' == .83227

Deg.	ø	10'	20'	80'	40'	50'	60'	
45	.70710	.70916	.71120	.71825	.71528	.71781	:71934	44
46	.71984	.72135	.72886	.72537	.72737	.72986	.73185	43
47	.78185	.78383	. 73530	.78727	.78928	.74119	.74814	42
48	.74314	.74508	.74702	.74895	.75088	.75279	.75471	41
49	.75471	.75661	.75851	.76040	.76229	.76417	.76604	40
50	.76604	.76791	.76977	.77162	.77347	.77531	.77714	89
51	.77714	.77897	.78079	.78260	.78441	.78621	.78801	88
52	.78801	.78979	.79157	.79385	.79512	.79688	.79868	87
58	.79868	.80088	.80212	.80385	.80558	.80730	.80901	86
54	.80901	.81072	1.81242	.81411	.81580	.81748	.81915	85
55	.81915	.82081	.82247	.82412	.82577	.82740	.82903	84
56	.82903	.83066	.83227	.83388	.83548	.88708	.88867	88
57	.83867	.84025	.84182	.84339	.84495	.84650	.84804	82
58	.84804	.84958	.85111	.85264	.85415	.85566	.85716	81
59	.85716	.85866	.86014	.86162	.86310	.86456	.86602	80
60	.86602	.86747	.86892	.87035	.87178	.87320	.87462	29
61	.87462	.87602	.87742	.87881	.88020	.88157	.88294	28
62	.88294	.88480	.88566	.88701	.88835	.88968	.89100	27
68	.89100	.89232	.89363	.89493	.89622	. 89751	.89879	26
64	.89879	.90006	.90132	.90258	90383	.90507	.90630	25
65	.90680	.90753	.90875	.90996	.91116	.91235	.91854	24
66	.91854	.91472	.91589	.91706	.91821	.91986	.92050	28
67	.92050	.92163	.92276	. 92388	.92498	.92609	.92718	22
68	.92718	.92827	.92934	.93041	.93148	.98253	.98358	21
69	.93858	.93461	.93565	.93667	.93768	.98869	.93969	20
70	.93969	.94068	.94166	.94264	.94860	.94456	.94551	19
71	.94551	.94646	.94739	.94832	.94924	.95015	.95105	18
72	.95105	.95195	.95283	.95371	.95458	.95545	.95680	17
78	.95620	.95715	.95799	.95882	.95964	.96045	.96126	16
74	.96126	.96205	.96284	.96363	.96440	.96516	.96592	15
75	.96592	.96667	.96741	.96814	.96887	.96958	.97029	14
76	.97029	.97099	.97168	.97237	.97304	.97371	.97487	18
77	.97487	.97502	.97566	.97629	.97692	.97753	.97814	12
78	.97814	.97874	.97984	.97992	. 98050	.98106	.98162	11
79	.98162	.98217	.98272	.98325	.98378	.98429	.98480	10
80	.98480	.98530	- 98580	.98628	.98676	. 98722	.98768	9
81	.98768	.98813	.98858	.98901	.98944	. 98985	.99026	8
82	.99026	.99066	.99106	.99144	.99182	.99218	.99254	7
83	.99254	.99289	.99323	.99357	. 99389	.99421	.99452	6
84	.99452	.99482	.99511	.99589	.99567	.99598	.99619	5
85	.99619	.99644	.99668	.99691	.99714	.99785	.99756	4
86	.99756	.99776	.99795	. 99813	.99830	.99847	.99863	8
87	.99862	.99877	.99891	.99904	.99917	.99928	.99939	2
88	.99939	.99948	.99957	. 99965	. 99972	.99979	.99984	1
89	.99984	.99989	.99993	.99906	. 99998	.99999	1.0000	0
	60′	501	40'	80'	20'	10'	0'	Deg.

TABLE OF COSINES

Read degrees in right-hand column and minutes at bottom Example: $\cos 7^\circ 10' = .99218$

III. TABLE OF TANGENTS

Read degrees in left-hand column and minutes at top Example: tan 7° 10' = .12573

Deg.	o	10′	2 0'	30 ^{, .}	40'	50'	60'	
0	.00000	:00290	.00581`	.00872	.01163	.01454	.01745	89
1 i	.01745	.02036	.02327	.02618	.02909	.03200	.03492	88
2	.03492	.03783	.04074	.04366	.04657	.04949	.05240	87
8	.05240	.05532	.05824	.06116	.06408	.06700	.06992	86
4	.06992	.07285	.07577	.07870	.08162	.08455	.08748	85
ŝ	.08748	.09042	.09335	.09628	.09922	.10216	.10510	84
Ğ	.10510	.10804	.11099	.11893	.11688	.11983	.12278	83
7	.12278	.12573	.12869	.13165	.13461	.18757	.14054	82
8	.14054	.14350	.14647	.14945	.15242	.15540	.15838	81
ğ	.15838	.16136	16435	.16734	.17083	.17382	.17632	80
10	.17632	.17982	.18233	.18538	.18834	.19186	.19488	79
11	.19438	.19740	.20042	.20345	.20648	:20951	.21255	78
12	.21255	.21559	21864	.22169	.22474	.22780	.23086	77
18	.23086	.23893	.23700	.24007	.24315	.24624	.24932	76
14	.24932	.25242	.25551	.25861	.26172	.26483	26794	75
15	.26794	27106	.27419	.27732	.28046	.28360	.28674	74
16	.28674	.28989	.29305	.29621	.29938	.30255	.80573	73
17	.80578	.30891	.81210	.81529	.81850	.82170	82492	72
18	.82492	.32818	.83136	.83459	.33783	.34107	.84432	71
19	.34432	.34758	.35084	.85411	35789	.36067	.86897	70
20	.36397	.36726	.87057	.87388	.37720	.38053	.88386	69
21	.38886	.38720	.89055	.89391	.39727	40064	40402	68
22	.40402	.40741	.41080	.41421	.41762	.42104	42447	67
23	.42447	.42791	.43135	.43481	.43827	.44174	.44522	64
24	.44522	.44871	.45221	.45572	.45924	.46277	46630	65
25	.46630	46985	.47341	.47697	.48055	.48413	.48773	64
26	.48773	.49133	.49495	49858	.50221	.50586	.50952	68
27	.50952	.51319	.51687	.52056	.52427	.52798	.53170	62
28	.58170	.53544	.53919	.54295	.54672	.55051	.55480	61
29	.55430	.55811	.56193	.56577	.56961	.57347	.57785	60
80	.57785	.58128	.58513	.58904	.59297	.59690	.60086	59
31	.60086	.60482	.60880	.61280	.61680	.62083	.62480	58
32	.62486	.62892	.63298	.63707	.64116	.64528	.64940	57
33	.64940	.63355	.65771	.66188	.66607	.67028	.67450	56
84	.67450	.67874	.68300	.68728	.69157	.69588	.70020	55
85	.70020	.70455	.70891	.71329	.71769	.72210	.72654	54
36	.72654	.73099	.73546	.73996	.74447	.74900	.75855	53
37	.75855	.75812	.76271	76732	.77195	.77661	.78128	52
88	.78128	.78598	.79069	.79543	.80019	.80497	80978	51
80	.80978	.81461	.81946	.82433	.82923	.83415	.83910	50
40	.83910	.84406	.84906	.85408	.85912	.86419	.86928	49
41	.86928	.87440	.87955	.88472	.88992	.89515	.90040	48
42	.90040	.90568	.91099	.91633	.92169	.92709	.93251	47
43	.93251	.93796	.94345	.94896	.95450	96008	.96568	46
44	.96568	:97132	.97699	.98269	.98843	.99419	1.0000	45
	601	50'	40'	30'	20'	10'	0'	Deg.

TABLE OF COTANGENTSRead degrees in right-hand column and minutes at bottomExample: cot 56° 20' = .66607

Ł

IV. TABLE OF TANGENTS

Read degrees in left-hand column and minutes at top Example: tan 56° 20' == 1.5013

Deg.	0'	10'	20'	80'	40'	50'	60'	
45	1.0000	1.0058	1.0117	1.0176	1.0235	1.0295	1.0355	44
46	1.0855	1.0415	1.0476	1.0587	1.0599	1.0661	1.0723	48
47	1.0728	1.0786	1.0849	1.0913	1.0977	1.1041	1.1106	42
48	1.1106	1.1171	1.1236	1.1802	1.1369	1.1486	1.1503	41
49	1.1508	1.1571	1.1689	1.1708	1.1777	1.1847	1.1917	40
50	1.1917	1.1988	1.2059	1.2181	1.2203	1.2275	1 2349	39
51 52	1.2849	1.2422	1.2496	1.2571	1.2647	1.2728	1.2799	38
53	$1.2799 \\ 1.8270$	$1.2876 \\ 1.3351$	1.2954	1.8032 1.8514	1.8111	1.8190	1.3270	37
54 54	1.8763	1.8848	1.8933	1.3014	1.8596 1.4106	1.3680 1.4193	$1.8763 \\ 1.4281$	86
55	1.6705	1.4870	1.4459	1.4019	1.4100 1.4641	1.4193	1.4281 1.4825	85 84
56	1.4825	1.4010	1.5018	-1.5108	1.4041 1.5204	1.5301	1.4820	83
57	1.5398	1.5497	1.5596	1.5696	1.5204	1.5900	1.6008	82
58	1.6003	1.6107	1.6212	1.6818	1.6425	1.6533	1.6642	81
59	1.6642	1.6753	1.6864	1.6976	1,7090	1.7204	1.7320	80
60	1.7820	1.7487	1.7555	1.7674	1.7795	1.7917	1.8040	29
61	1.8040	1.8164	1.8290	1.8417	1.8546	1.8676	1.8807	28
62	1.8807	1.8940	1.9074	1.9209	1.9347	1.9485	1.9626	27
63	1.9626	1.9768	1.9911	2.0056	2.0203	2.0352	2:0503	26
64	2.0503	2.0655	2.0809	2.0965	2.1123	2.1283	2.1445	25
65	2.1445	2.1609	2.1774	2.1943	2.2113	2.2285	2.2460	24
66	2.2460	2.2637	2.2816	2.2998	2.8182	2.8869	2.3558	28
87	2.8558	2.8750	2.8944	2.4142	2.4342	2.4545	2.4750	22
68	2.4750	2.4959	2.5171	2.5386	2.5604	2.5826	2.6050	21
69	2.6050	2.6279	2.6510	2.6746	2.6985	2,7228	2.7474	20
70	2.7474	2.7725	2.7980	2.8239	2.8502	2.8770	2.9042	19
71	2.9042	2.9818	2.9600	2.9886	8.0178	8.0474	3.0776	18
72	8.0776	8.1084	8.1897	8.1715	8.2040	8.2371	8.2708	17
78	8.2708	8.8052	8.3402	8.3759	8.4128	8.4495	8.4874	16
74	8.4874	8.5260	8.5655	8.6058	8.6470	3.6890	8.7320	15
75	8.7820	8.7759	8.8208	8.8667	8.9186	8.9616	4.0107	14
76	4.0107	4.0610	4.1125	4.1658	4.2193	4.2747	4.8314	18
77	4.8814	4.8896	4.4494	4.5107	4.5786	4.6882	4,7046	12
78	.4.7046	4.7728	4.8430	4.9151	4.9894	5.0659	5.1445	11
79	5.1445	5.2256	5.8092	5.8955	5.4845	5.5763	5.6712	10
80	5.6718	5.7693	5.8708	5.9757	6.0844	6,1970	6.8187	9
81 82	6.8187	6.4348 7.2687	6.5605	6.6911	6.8269 7.7708	6.9682 7.9530	7.1158	7
83	7.1158 8.1443	8.8449	8.5555	7.5957	9.0098	9.2553	9.5148	6
84	9.5143	9.7881	10.078	10.885	9.0058	9.2005	11.480	5
85	11.430	11.826	12.250	12:706	13.196	18.726	14.800	4
86	14.800	14.924	15.604	16.349	17.169	18,075	19.081	3
87	19.081	20.205	21.470	22.904	24.541	26.431	28.636	2
88	28.636	81.241	84.867	88.188	42.964	49.103	57.290	Ĩ
89	57.290	68.750	85.989	.114.58	171.88	843.77	80	ō
	· 60'	50'	40'	80'	207	10'	0'	Deg.

TABLE OF COTANGENTS

Read degrees in right-hand column and minutes at bottom Example: cot 7° 10' = 7.9530

Digitized by Google

4. One acute angle and its adjacent side are given. Call the given angle B and its adjacent side c. Then (see Fig. 48):

$$c = 90^{\circ} - B$$
 $a = \frac{c}{\cos B}$ $b = c \times \tan B$

5. One acute angle and its opposite side are given. Call the given angle B and the side opposite it b. Then (see Fig. 48):

$$c = 90^{\circ} - B$$
 $a = \frac{b}{\sin B}$ $c = b \times \cot B$

Formulas for Solving Oblique Triangles

Below are given a summary of all the generally required formulas, and the methods of procedure in solving oblique triangles. In all the formulas reference is made to Fig. 49, in which the sides and angles are given the same names as in the formulas below.

1. When two angles and one side are given, call the given side a, the angle opposite it A, and the other angle B. Then if A is known:

$$c = 180^{\circ} - (A + B) \qquad b = \frac{a \times \sin B}{\sin A} \qquad c = \frac{a \times \sin C}{\sin A}$$

$$Area = \frac{a \times b \times \sin C}{2}$$

. If B and C are given, but not A, then $A = 180^{\circ} - (B + C)$, the other formulas being as above.

2. When two sides and the included angle are given, call the given sides a and b and the given angle between them C. Then:

$$\tan A = \frac{a \times \sin C}{b - a \times \cos C} \qquad B = 180^{\circ} - (A + C) \qquad c = \frac{a \times \sin C}{\sin A}$$
$$\operatorname{Area} = \frac{a \times b \times \sin C}{2}$$

3. When two sides and the angle opposite one of the sides are given, call the given angle A, the side opposite it a and the other given side b. Then:

$$\sin B = \frac{b \times \sin A}{a} \qquad C = 180^{\circ} - (A + B) \qquad c = \frac{a \times \sin C}{\sin A}$$
$$\operatorname{Area} = \frac{a \times b \times \sin C}{2}$$

4. When the three sides of a triangle are given, call them a, b and c and the angles opposite them A, B and C respectively. Then:

$$\cos A = \frac{b^3 + c^2 - a^2}{2 \times b \times c} \quad \sin B = \frac{b \times \sin A}{a} \quad C = 180^\circ - (A + B)$$
$$\operatorname{Area} = \frac{a \times b \times \cos C}{2}$$

Digitized by Google

No. 21. MEASUBING TOOLS.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc.

; No. 22. CALCULATION OF ELEMENTS OF MACHINE DESIGN.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. THEORY OF CRANE DESIGN.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys, etc.

No. 24. EXAMPLES OF CALCULATING DESIGNS.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. DEEP HOLE DRILLING.—Methods of Drilling; Construction of Drills. No. 26. MODERN PUNCH AND DIE CONSTRUCTION.—Construction and Use of

Sub-press Dies; Modern Blanking Die Construction; Drawing and Forming Dies. No. 27. LOCOMOTIVE DESIGN, Part I.—Boilers, Cylinders, Pipes and Pistons.

No. 28. LOCOMOTIVE DESIGN, Part II.—Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. LOCOMOTIVE DESIGN, Part III.—Smokebox; Exhaust Pipe; Frames; Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels.

No. 30. LOCOMOTIVE DESIGN, Part IV.-Springs, Trucks, Cab and Tender.

No. 31. SCREW THREAD TOOLS AND GAGES.

No. 32. SCREW THREAD CUTTING .- Change Gears; Thread Tools; Kinks.

No. 33. SYSTEMS AND PRACTICE OF THE DRAFTING-ROOM.

No. 34. CARE AND REPAIR OF DYNAMOS AND MOTORS.

No. 35. TABLES AND FORMULAS FOR SHOP AND DRAFTING-ROOM.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. IBON AND STEEL.-Principles of Manufacture and Treatment.

No. 37. BEVEL GEARING.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. GRINDING AND LAPPING.—Grinding and Grinding Machines; Disk Grinders; Bursting of Emery Wheels; Kinks; Lapping Flat Work and Gages.

No. 39. FANS, VENTILATION AND HEATING.—FANS; Heaters; Shop Heating.

No. 40. FLY-WHEELS,-Their Purpose, Calculation and Design.

No. 41. JIGS AND FIXTURES, Part I.—Principles of Jig and Fixture Design; Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. JIGS AND FIXTURES, Part II.-Open and Closed Drill Jigs.

No. 43. JIGS AND FIXTURES, Part III.—Principles of Boring Jig Design; Boring, Reaming and Facing Tools; Milling and Planing Fixtures.

No. 44. MACHINE BLACKSMITHING .- Systems, Tools and Machines used.

No. 45. DBOP FORGING.-Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. HABDENING AND TEMPERING.—Hardening Plants; Treating High-

Speed Steel; Hardening Gages; Case-hardening; Hardening Kinks.

No. 47. ELECTRIC OVER-HEAD CHANES.-Design and Calculation.

No. 48. FILES AND FILING .- Types of Files; Using and Making Files.

NO. 49. GIBDERS FOR ELECTRIC OVERHEAD CRANES.

No. 50. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part I.

No. 51. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part 11.

No. 52. Advanced Shop Arithmetic for the Machinist.

No. 53. USE OF LOGABITHMS, AND LOGARITHMIC TABLES.

No. 54. Solution of TBIANGLES, Part I.—Methods, Rules and Examples for Practice.

No. 55. Solution of TRIANGLES, Part II.—Tables of Trigonometric Functions.

The Industrial	Press, Publishers	
49-55 Lafayette Street	Subway Station, Worth Street	New York City, U.S.A.

EACH PAMPHLET IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DE-SIGN AND SHOP PRACTICE REVISED AND REPUBLISHED FROM MACHINERY

No. 53

USE OF LOGARITHMS AND LOGARITHMIC TABLES

CONTENTS

The Use of Logarithms	s, by	ERIK	OBE	RG	-	-	-	3
Tables of Logarithms	-	-	-	-	-	-	-	18

Copyright 1910, The Industrial Press, Publishers of MACHINERY, 49-55 Lafayette Street, New York City

MACHINERY'S REFERENCE SERIES

This treatise is one unit in a comprehensive Series of Reference books, originated by MACHINERY, and including an indefinite number of compact units, each covering one subject thoroughly. The whole series comprises a complete working library of mechanical literature in which the Mechanical Engineer, the Master Mechanic, the Designer, the Machinist and Tool-maker will find the special information he wishes to secure, selected, carefully revised and condensed for him. The books are sold singly or in complete sets, as may be desired. The price of each book is 25 cents, and it is possible to secure them on even more favorable terms under special offers issued by MACHINEBY's circulation department and sent to any one on request.

The success of the Reference Series was instantaneous and copies are now widely distributed in machine shops and metal working plants everywhere.

CONTENTS OF REFERENCE BOOKS

No. 1. WORM GEARING.—Calculating Dimensions for Worm Gearing; Hobs for Worm-Gears; Location of Pitch Circle; Self-Locking Worm Gearing; etc.

No. 2. DRAFTING-ROOM PRACTICE.—Drafting-Room System; Tracing, Lettering and Mounting; Card Index Systems.

No. 3. DBILL JIGS.—Elementary Principles of Drill Jigs; Drilling Jig Plates; Examples of Drill Jigs; Jig Bushings; Using Jigs to Best Advantage.

No. 4. MILLING FIXTURES.—Elementary Principles of Milling Fixtures; Collection of Examples of Milling Fixture Design, from practice.

No. 5. FIRST PRINCIPLES OF THEORETICAL MECHANICS.

No. 6. PUNCH AND DIE WORK.—Principles of Punch and Die Work; Suggestions for the Making and Use of Dies; Examples of Die and Punch Design.

No. 7. LATHE AND PLANER TOOLS.—Cutting Tools for Planer and Lathe; Boring Tools; Shape of Standard Shop Tools; Forming Tools.

No. 8. WORKING DRAWINGS AND DRAFTING-ROOM KINKS.

No. 9. DESIGNING AND CUTTING CAMS.—Drafting of Cams; Cam Curves; Cam Design and Cam Cutting; Suggestions in Cam Making.

No. 10. EXAMPLES OF MACHINE SHOP PRACTICE.—Cutting Bevel Gears with Rotary Cutters; Making a Worm-Gear; Spindle Construction.

No. 11. BEARINGS.—Design of Bearings; Causes of Hot Bearings; Alloys for Bearings; Friction and Lubrication; Friction of Roller Bearings.

No. 12. MATHEMATICS OF MACHINE DESIGN.—Compiled with special reference to shafting and efficiency of hoisting machinery.

No. 13. BLANKING DIES.—Making Blanking Dies; Blanking and Piercing Dies; Construction of Split Dies; Novel Ideas in Die Making.

No. 14. DETAILS OF MACHINE TOOL DESIGN.—Cone Pulleys and Belts; Strength of Countershafts; Tumbler Gear Design; Faults of Iron Castings.

No. 15. SPUR GEARING.—First Principles of Gearing; Formulas for Spur Gearing; Design and Calculation of Gear Wheels; Strength of Gear Teeth.

No. 16. MACHINE TOOL DRIVES.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. STRENGTH OF CYLINDERS.-Formulas, Charts, and Diagrams.

No. 18. SHOP ABITHMETIC FOR THE MACHINIST.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. USE OF FORMULAS IN MECHANICS.—With numerous applications.

No. 20. SPIRAL GEARING.—Calculating Spiral Gears; Rules, Formulas, and Diagrams for Designing Spiral Gears; Efficiency of Spiral Gearing, etc.

No. 21. MEASURING TOOLS.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc.

See inside back cover for additional titles Digitized by

MACHINERY'S REFERENCE SERIES

.

EACH NUMBER IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DESIGN AND SHOP PRACTICE REVISED AND REPUB-LISHED FROM MACHINERY

NUMBER 54

SOLUTION OF TRIANGLES

Part I

By ERIK OBERG

CONTENTS

The Use of Formulas	3
Angles and Angular Measurements	7
Positive and Negative Quantities I	0
Functions of Angles 1	3
Tables of Trigonometric Functions I	8
Practical Applications of Trigonometric Formulas 2	I
Right-Angled Triangles 2	4
Problems from Practice 2	9
Solution of Oblique-Angled Triangles 3	6
Summary of Formulas for Solution of Triangles 4	8
The Use of Logarithms in Solving Triangles 5	0

Copyright, 1910, The Industrial Press, Publishers of MACHINERY, 49-55 Lafayette Street, New York City

.

.

•

CHAPTER I

THE USE OF FORMULAS*

In mathematical and mechanical books and treatises, as well as in articles containing calculations published in the engineering journals, formulas are used to a great extent instead of rules. In these formulas, signs and symbols are used in order to condense into a small space the essentials of what would otherwise be long and cumbersome rules. The symbols used are generally the letters in the alphabet, and the signs are simply the ordinary signs for arithmetical calculations, with some additional ones necessary for special purposes. Letters from the Greek alphabet are commonly used to designate angles, and the Greek letter π (pi) is always used to indicate the proportion of the circumference of a circle to its diameter; π , therefore, is always, in formulas, equal to 3.1416. The most commonly used Greek letters, be sides π , are a (alpha), β (beta), and γ (gamma).

Knowledge of algebra is not necessary in order to make possible the successful use of formulas for the solving of problems such as occur in the solution of triangles; but a thorough understanding of the rules and processes of arithmetic is very essential. The symbols or letters used in the formulas simply stand in place of the actual figures or numerical values which are inserted in the formula in each specific case, according to the requirements of the problem to be solved. When these values are inserted, the result required may be obtained by simple arithmetical processes.

There are two main reasons why a formula is preferable to a rule expressed in words. Firstly, the formula is more concise, it occupies less space, and it is possible for the eye to catch at a glance the whole meaning of the rule laid down; secondly, it is easier to remember a short formula than a long rule, and it is, therefore, of greater value and convenience, as it is not always possible to carry a handbook or reference book about, but the memory must be relied upon to store up a number of the most frequently occurring mathematical and mechanical rules.

The use of formulas can be explained most readily by actual examples. In the following, therefore, a number of simple formulas will be given, and the values will be inserted so as to show, in detail, the principles involved.

Example 1.—When the diameter of a circle is known, the circumference may be found by multiplying the diameter by 3.1416. This rule, expressed as a formula, is:

$$C = D \times 3.1416$$

in which C =circumference of circle,

D =diameter of circle.

[•] This chapter has been practically reproduced from MACHINERY'S Reference Series No. 52, "Advanced Shop Arithmetic for the Muchinist," in order to make the present treatise complete in itself.

This formula shows at a glance, that no matter what the diameter of the circle be, the circumference is always equal to the diameter times 3.1416. Let it be required to find, for example, the circumference of a circle 22 inches in diameter. If then we insert 22 in the place of D in the formula, we have:

 $C = 22 \times 3.1416 = 69.1152$ inches.

Hence, our formula gives, by means of a simple multiplication, the result required.

Assume that the diameter of a circle is 3.72 inches. The circumference of this circle is found by inserting this value instead of D in the formula:

$C = 3.72 \times 3.1416 = 11.6867$ inches.

Example 2.—In spur gears, the outside diameter of the gear can be found by adding 2 to the number of teeth, and dividing the sum obtained by the diametral pitch of the gear. This rule can be expressed very simply by a formula. Assume that we write D for the outside diameter of the gear, N for the number of teeth, and P for the pitch. Then the formula would be

$$D = \frac{N+2}{P}$$

This formula reads exactly as the rule given above. It says that the outside diameter (D) of the gear equals 2 added to the number of teeth (N), and this sum divided by the pitch (P).

If the number of teeth in a gear is 16 and the pitch 6, then simply put these figures in the place of N and P in the formula, and find the outside diameter as in ordinary arithmetic.

$$D = \frac{16+2}{6} = \frac{18}{6} = 3.$$

D, or the outside diameter, then, is 3 inches.

In another gear the number of teeth is 96 and the pitch 7; find the outside diameter of the gear.

$$D = \frac{96+2}{7} = \frac{98}{7} = 14$$
 inches.

From the examples given it will be seen that in formulas, each letter stands for a certain dimension or quantity. When using a formula for solving a problem, replace the letters in the formula by the figures given in a certain problem, and find the result as in a regular arithmetical calculation.

Example 3.—The formula for the horse-power of a steam engine is as follows:

$$H.P. = \frac{P \times L \times A \times N}{33,000}$$

in which H. P. = indicated horse-power of engine,

$$P =$$
mean effective pressure on piston in pounds per square incb,

L =length of piston stroke in feet,

A = area of piston in square inches,

N = number of strokes of piston per minute.

Assume that P = 90, L = 2, A = 320, and N = 110; what would be the horse-power?

If we insert the given values in the formula we have:

H. P. =
$$\frac{90 \times 2 \times 320 \times 110}{33,000}$$
 = 192.

In formulas, the sign for multiplication (\times) is often left out between letters the values of which are to be multiplied. Thus AB means $A \times B$, and the formula

 $\frac{P \times L \times A \times N}{33,000} \text{ can also be written } \frac{PLAN}{33,000}$ Thus, if A = 3, and B = 5, then: $AB = A \times B = 3 \times 5 = 15$. If A = 12, B = 2, and C = 3, then:

 $ABC = A \times B \times C = 12 \times 2 \times 3 = 72.$

It is only the multiplication sign (\times) that can be thus left out between the symbols or letters in a formula. All other signs must be indicated the same as in arithmetic.

A parenthesis () or bracket [] in a formula means that the expression inside the parenthesis or bracket should be considered as one single symbol, or in other words, that the calculation inside the parenthesis or bracket should be carried out by itself, before other calculations are carried out.

Examples:

 $6 \times (8 + 3) = 6 \times 11 = 66.$

 $5 \times (16 - 14) + 3 (2.25 - 1.75) = 5 \times 2 + 3 \times 0.5 = 10 + 1.5$ = 11.5.

In the last example above it will be seen that 5 is multiplied by 2 and 3 by 0.5, and then the products of these two multiplications are added. From the order of the numbers $5 \times 2 + 3 \times 0.5$, one might have assumed that the calculation should have been carried out as follows: 5 times 2 = 10, plus 3 = 13, times 0.5 = 6.5. This latter procedure, however, is not correct.

When several numbers or expressions are connected by the signs $+, -, \times$ and +, the operations are carried out in the order written, except that all multiplications should be carried out before the other operations. The reason for this is that numbers connected by a multiplication sign are only factors of the product thus indicated, which product should be considered by itself as one number. Divisions should be carried out before additions and subtractions, if the division is indicated in the same line with these other processes.

Examples:

 $5 \times 6 + 4 - 6 \times 4 = 30 + 4 - 24 = 34 - 24 = 10.$

Digitized by Google

 $5 + 3 \times 2 = 5 + 6 = 11.$ $100 + 2 \times 5 = 100 \div 10 = 10.$ $3.5 + 16.5 \div 3 - 1.75 = 3.5 + 5.5 - 1.75 = 7.25.$ But $5 \times (6 + 4) - 6 \times 4 = 5 \times 10 - 24 = 50 - 24 = 26.$ $(5 + 3) \times 2 = 8 \times 2 = 16.$ $(100 + 2) \times 5 = 50 \times 5 = 250.$ $(3.5 + 16.5) \div (3 - 1.75) = 20 + 1.25 = 16.$

Formulas Containing Square and Cube Roots

The square of a number is the product of that number multiplied by itself. The square of 2 is $2 \times 2 = 4$, and the square of 10 is 10×10 = 100; similarly the square of 177 is $177 \times 177 = 31,329$. Instead of writing 4×4 for the quare of 4, it is often written 4² which is read four square, and means that 4 is multiplied by 4. In the same way 128² means 128 \times 128. The small figure (³) in these expressions is called *exponent*.

The square root of a number is that number which, when multiplied by itself, will give a product equal to the given number. Thus, the square root of 4 is 2, because 2 multiplied by itself gives 4. The square root of 25 is 5; of 36, 6, etc. We may say that the square root is the reverse of the square, so that if the square of 24 is 576, then the square root of 576 is 24. The mathematical sign for the square root is $\frac{1}{\sqrt{7}}$, but the *index figure* (³) is generally left out, making the square root sign simply $\sqrt{7}$, thus:

 $\sqrt{4} = 2$ (the square root of four equals two),

 $\sqrt{100} = 10$ (the square root of one hundred equals ten).

The operation of finding the square root of a given number is called *extracting* the square root.* Squares and square roots as well as bubes and cube roots of all numbers up to 1,000 (sometimes up to 1,600) are generally given in all standard handbooks.

The cube of a number is the product obtained if the number itself is repeated as a factor three times. The cube of 2 is $2 \times 2 \times 2 = 8$, and the cube of 12 is $12 \times 12 \times 12 = 1,728$. Instead of writing $2 \times 2 \times 2$ for the cube of 2, it is often written 2³, which is read "two cube." In the same way 128² means $128 \times 128 \times 128$. The small figure (*) in these expressions is called *exponent*, the same as in the case of the figure (*) indicating the square of a number. An expression of the form 18³ may also be read the "third power of 18."

In the same way as square root means the reverse of square, so cube root means the reverse of cube; that is, the cube root of a given number is the number which, if repeated as factor three times, would give the number given. Thus the cube root of 27 is 3, because $3 \times 3 \times 3 =$ 27. If the cube of 15 is 3,375, then the cube root of 3,375 is, of course, 15. The mathematical sign for the cube root is $\frac{1}{2}$, thus:

 $t^{3}64 = 4$ (the cube root of sixty-four equals four),

 $t^{2^{2}}\overline{4096} = 16$ (the cube root of four thousand ninety-six equals sixteen).

^{*}See MACHINERY'S Reference Series No. 52, "Advanced Shop Arithmetic for the Machinist", Chapter I.

Assume, for an example, that a formula is given as follows

$$A = \frac{\sqrt{B} \times C}{D}$$

Let B = 36, C = 3.5, and D = 10.5. Find the value of A. If we insert these values in the formula, we have:

$$A = \frac{\sqrt{36} \times 3.5}{10.5} = \frac{6 \times 3.5}{10.5} = \frac{21}{10.5} = 2.$$

As another example, find the value of A in the formula

$$A = \frac{B^2 + C^2}{D^2}$$
, if $B = 5$, $C = 7$, and $D = 2$.

If we insert these values in the formula, and carry out the calculation, remembering that $5^2 = 5 \times 5$, $7^2 = 7 \times 7$, etc., we have:

$$A = \frac{5^{2} + 7^{2}}{2^{2}} = \frac{25 + 49}{4} = \frac{74}{4} = 18.5.$$

Find the value of A in the formula

 $A = \sqrt{B^2 + C^2}$, if B = 8 and C = 6.

If we insert the given values in the formula, we have:

 $A = \sqrt{8^2 + 6^2} = \sqrt{8 \times 8} + 6 \times 6 = \sqrt{64 + 36} = \sqrt{100} = 10.$

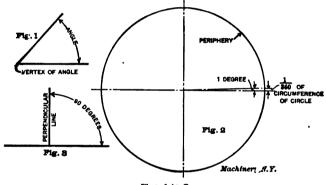
The examples given indicate the principles involved in the use of formulas, and show, as well, how easily formulas may be employed by anyone who has a general understanding of arithmetic.

CHAPTER II

ANGLES AND ANGULAR MEASUREMENTS

When two lines meet as shown in Fig. 1, they form an angle with each other. The point where the two lines meet or intersect is called the *vertex* of the angle. The two lines forming the angle are called the sides of the angle.

Angles are measured in degrees and subdivisions of a degree. If the circumference (periphery) of a circle is divided into 360 parts, each part is called one degree, and the angle between two lines from the center to the ends of this small part of the circle is a one-degree angle, as shown in Fig. 2. As the whole circle contains 360 degrees, one-half of a circle contains 180 degrees, and one-quarter of a circle, 90 degrees, as shown in Fig. 9.


A 90-degree angle is called a *right* angle. An angle larger than 90 degrees is called an *obtuse* angle, and an angle less than 90 degrees is called an *acute* angle. (See Fig. 10.) Any angle which is not a right angle is called an *oblique* angle.

When two lines form a right or 90-degree angle with each other, as shown in Fig. 3, one line is said to be *perpendicular* to the other.

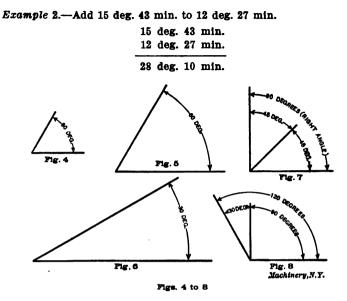
Angles are said to be equal when they contain the same number of degrees. The angle in Fig. 4 and the angle in Fig. 5 are equal, because they are both 60 degrees; that the sides of the angle in Fig. 5 are longer than the sides of the angle in Fig. 4 has no influence on the angle because of the fact that an angle is only the difference in direction of two lines. The angle in Fig. 6 which contains only 30 degrees is only one-half of the angle in Fig. 4.

One-half of a right angle is 45 degrees, as shown in Fig. 7. In Fig. 8 is shown an angle which is 120 degrees, and which can be divided into a right or 90-degree angle, and a 30-degree angle.

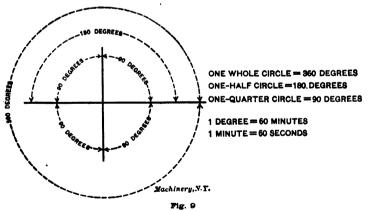
In order to obtain finer subdivisions for the measurement of angles than the degree, one degree is divided into 60 minutes, and one minute into 60 seconds.

Figs. 1 to 8

Any part of a degree can be expressed in minutes and seconds, for instance, 1/2 of a degree = 30 minutes, 1/3 of a degree = 20 minutes; and since 1/4 of a degree = 15 minutes, 3/4 of a degree = 45 minutes. In the same way 1/2 minute = 30 seconds, 1/4 minute = 15 seconds, and 3/4 minute = 45 seconds.


The word degree is often abbreviated "deg." or the sign (°) is used to indicate degrees; thus, $60^{\circ} = 60$ degrees. In the same way 60' = 60 min. = 60 minutes, and 60'' = 60 sec. = 60 seconds; and $60^{\circ} 50' = 60$ degrees 50 minutes.

When adding and subtracting degrees and minutes, care must be exercised not to make mistakes on account of there being but 60 minutes in a degree, instead of the usual 100 units met with when adding, for example, dollars and cents.


Example 1.-Add the two angles 60 deg. 32 min. and 35 deg. 16 min.

60 deg. 32 min. 35 deg. 16 min. 95 deg. 48 min.

In this example the total sum of 43 and 27 minutes is 70 minutes; as 70 minutes, however, contains one whole degree (60 minutes), this is carried over and added to the degrees, leaving 10 minutes in the minute column, and 15 + 12 + 1 = 28 degrees in the degree column.

Example 3.—Add 59 deg. 12 min., 16 deg. 53 min., and 103 deg. 55 min.

59	deg.	12	min.
16	deg.	53	min.
103	deg.	55	min.
180	deg.	0	min.

Э

Digitized by Google

In adding the minutes (12 + 53 + 55 = 120 min.) we find that their sum equals 2 whole degrees. These are then carried over to the degree column and the total sum equals 59 + 16 + 103 + 2 = 180 deg.

Example 4.—Subtract 12 deg. 17 min. from 21 deg. 39 min.

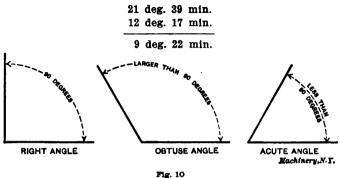


Fig. 10

Example 5.—Subtract 31 deg. 43 min. from 106 deg. 12 min.

106 deg. 12 min. 31 deg. 43 min.

74 deg. 29 min.

In this case we must borrow from the degrees. One deg. = 60 min. and 60 + 12 = 72; then 72 - 43 = 29 min. Having borrowed one degree from 106, we have 105 - 31 = 74 deg.

CHAPTER III

POSITIVE AND NEGATIVE QUANTITIES

In order to be able to use correctly the formulas for the solution of triangles under certain conditions, a working knowledge of the principles of positive and negative numbers or quantities is required. In this chapter, therefore, an explanation of the meaning of these expressions will be given, together with the rules for calculations with negative numbers, and examples to make the rules thoroughly understood.

On the thermometer scale, as is well known, the graduations extend upward from zero, the degrees being numbered 1, 2, 3, etc. Graduations also extend downward and are numbered in the same way: 1, 2, 3, etc. The degrees on the scale extending upward from the zero point may be called *positive* and preceded by a plus sign, so that, for instance, + 5 degrees means 5 degrees above zero. The degrees below zero may be called *negative* and may be preceded by a minus sign, so that - 5 degrees means 5 degrees below zero.

The ordinary numbers may also be considered positive and negative in the same way as the graduations on a thermometer scale. When we count 1, 2, 3, etc., we refer to the numbers that are larger than 0 (corresponding to the degrees *above* the zero point), and these numbers are called positive numbers. We can conceive, however, of numbers extending in the other direction of 0; numbers that are, in fact, less than 0 (corresponding to the degrees below the zero point on the thermometer scale). As these numbers must be expressed by the same figures as the positive numbers, they are designated by a minus sign placed before them. For example, -3 means a number that is as much less than, or beyond 0 in the negative direction as 3 (or, as it might be written, +3) is larger than 0 in the positive direction.

A negative value should always be enclosed within a parenthesis whenever it is written in line with other numbers; for example:

$$17 + (-13) - 3 \times (-0.76)$$

In this example — 13 and — 0.76 are negative numbers, and by enclosing the whole number, minus sign and all, in a parenthesis, it is shown that the minus sign is part of the number itself, indicating its negative value.

It must be understood that when we say 7-4, then 4 is not a negative number, although it is preceded by a minus sign. In this case the minus sign is simply the sign of subtraction, indicating that 4 is to be subtracted from 7. But 4 is still a positive number or a number that is larger than 0.

It now being clearly understood that positive numbers are all ordinary numbers greater than 0, while negative numbers are conceived of as less than 0, and preceded by a minus sign which is a part of the number itself, we can give the following rules for calculations with negative numbers.

A negative number can be added to a positive number by subtracting its numerical value from the positive number.

Examples:

 $\begin{array}{l} 4+(-3)=4-3=1.\\ 16+(-7)+(-6)=16-7-6=3.\\ 327+(-0.5)-212=327-0.5-212=114.5. \end{array}$

In the last example 212 is not a negative number, because there is no parenthesis indicating that the minus sign is a part of the number itself. The minus sign, then, indicates only that 212 is to be subtracted in the ordinary manner.

As an example illuminating the rule for adding negative numbers to positive ones, the case of a man having \$12 in his pocket, but owing \$9, may be taken. His debt is a negative quantity, we may say, and equals (-9). Now if he adds his cash and his debts, to find out how much he really has, we have:

12 + (-9) = 12 - 9 = 3.

Of course, in a simple case like this, it is obvious that 9 would be subtracted directly from 12, but the example serves the purpose of illus-

trating the method used when a negative number is added to a positive number.

A negative number can be subtracted from a positive number by adding its numerical value to the positive number.

Examples:

 $\begin{array}{l} 4 - (-3) = 4 + 3 = 7. \\ 16 - (-7) = 16 + 7 = 23. \\ 327 - (-0.5) - 212 = 327 + 0.5 - 212 = 115.5. \end{array}$

In the last example, note that 212 is subtracted, because the minus sign in front of it does not indicate that 212 is a negative number.

As an illustration of the method used when subtracting a negative number from a positive one, assume that we are required to find how many degrees difference there is between 37 degrees above zero and 24 degrees below; this latter may be written (-24). The difference between the two numbers of degrees mentioned is then:

37 - (-24) = 37 + 24 = 61.

A little thought makes it obvious that this result is right, and the example shows that the rule given is based on correct reasoning.

When a positive number is multiplied or divided by a negative number, multiply or divide the numerical values as usual; but the product or quotient, respectively, becomes negative. The same rule holds true if a negative number is divided by a positive number.

Examples:

$$4 \times (-3) = -12. \qquad (-3) \times 4 = -12.$$

$$\frac{15}{-3} = -5. \qquad \frac{-15}{3} = -5.$$

When two negative numbers are multiplied by each other, the product is positive. When a negative number is divided by another negative number the quotient is positive.

Examples:

$$(-4) \times (-3) = 12.$$
 $\frac{-4}{-3} = 1.333.$

If, in a subtraction, the number to be subtracted is larger than the number from which it is to be subtracted, the calculation can be carried out by subtracting the smaller number from the larger, and indicating that the remainder is negative.

Examples:

Ł

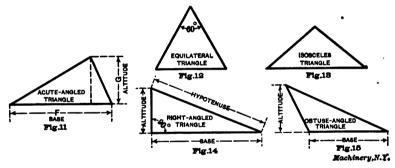
3-5=-(5-3)=-2.

In this example 5 cannot, of course, be subtracted from 3, but the numbers are reversed, 3 being subtracted from 5, and the remainder indicated as being negative by placing a minus sign before it.

227 - 375 = -(375 - 227) = -148.

The examples given, if carefully studied, will enable the student to carry out calculations with negative numbers when such will be required in solving triangles.

CHAPTER IV


FUNCTIONS OF ANGLES

Any figure bounded by three straight lines is called a triangle. Any one of the three lines may be called the base, and the line drawn from the angle opposite the base at right angles to it is called the height or altitude of the triangle. In Fig. 11, if the side F is taken as the base of the triangle, then G is the altitude.

If all the three sides of a triangle are of equal length, as in the one shown in Fig. 12, the triangle is called *equilateral*. Each of the three angles in an equilateral triangle equals 60 degrees.

If two sides are of equal length, as shown in Fig. 13, the triangle is an *isosceles* triangle.

If one angle is a right or 90-degree angle, the triangle is called a *right or right-angled* triangle. Such a triangle is shown in Fig. 14; the side opposite the right angle is called the *hypotenuse*.

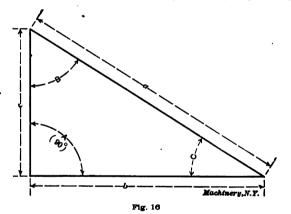
If all the angles are less than 90 degrees, the triangle is called an *acute* or *acute-angled* triangle, as shown in Fig. 11. If one of the angles is larger than 90 degrees, as shown in Fig. 15, the triangle is called an *obtuse* or *obtuse-angled* triangle. The sum of the three angles in every triangle is 180 degrees.

Object of Trigonometry and Trigonometric Functions

The object of that part of mathematics called trigonometry is to furnish the methods by which the unknown sides and angles in a triangle may be determined when certain of the sides and angles are given.

The sides and angles of any triangle, which are not known, can be found when:

- 1. All the three sides,
- 2. Two sides and one angle, or
- 3. One side and two angles,


Digitized by Google

are given. In other words, if the triangle is considered as consisting of six parts, three angles and three sides, the unknown parts can be determined when any three of the parts are given, provided at least one of the given parts is a side.

In order to introduce the values of the angles in calculations of trfangles, use is made of certain expressions called *trigonometrical functions* or *functions of angles*. The names of these expressions are: *sine, cosine, tangent, cotangent, secant, and cosecant*. These expressions are usually abbreviated as follows:

$\sin = sine$,	$\cot = \cot angent,$
cos — cosine,	sec = secant,
tan — tangent,	cosec = cosecant.

In Fig. 16 is shown a right-angled triangle. The lengths of the three sides are represented by a, b and c, respectively, and the angles opposite each of these sides are called A, B and C, respectively. Angle

A is the right angle in the triangle. The side a opposite the right angle is the hypotenuse. The side b is called the side adjacent to the angle C, but is of course also the side opposite to angle B. In the same way, the side c is called the side adjacent to angle B, and the side opposite to angle C. The reason for these names is made clear by studying the figure.

The meanings of the various functions of angles previously named can be explained by the aid of a right-angled triangle.

The sine of an angle equals the opposite side divided by the hypotenuse.

The sine of angle B thus equals the side b, which is opposite to the angle, divided by the hypotenuse a. Expressed as a formula we have:

$$\sin B = \frac{b}{a}$$
.
If $a = 16$, and $b = 9$, then $\sin B = \frac{9}{16} = 0.5625$

Digitized by Google

The cosine of an angle equals the adjacent side divided by the hypotenuse.

The cosine of angle B thus equals the side c, which is adjacent to this angle, divided by the hypotenuse a, or, expressed as a formula,

$$\cos B = -\frac{1}{a}$$
.
If $a = 24$, and $c = 15$, then $\cos B = \frac{15}{24} = 0.625$.

The tangent of an angle equals the opposite side divided by the adjacent side.

The tangent of angle B thus equals the side b divided by side c, or,

$$\tan B = \frac{b}{c}$$
.
If $b = 28$, and $c = 25$, then $\tan B = \frac{28}{25} = 1.12$.

The cotangent of an angle equals the adjacent side divided by the opposite side.

The cotangent of angle B thus equals the side c divided by the side b, or, $\cot B = \frac{c}{b}$.

If b = 28, and c = 25, then $\cot B = \frac{25}{28} = 0.89286$.

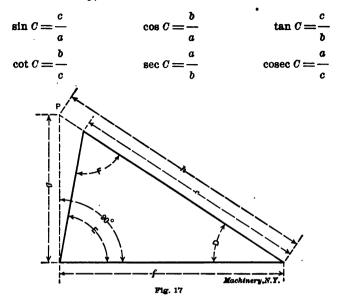
The secant of an angle equals the hypotenuse divided by the adjacent side.

The secant of angle B thus equals the hypotenuse a divided by the side c adjacent to the angle, or sec $B = \frac{a}{c}$.

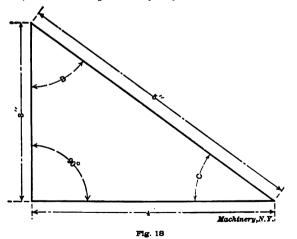
If a = 24, and c = 15, then sec $B = \frac{24}{15} = 1.6$.

The cosecant of an angle equals the hypotenuse divided by the opposite side.

The cosecant of angle B thus equals the hypotenuse a divided by the side b opposite the angle, or cosec $B = \frac{a}{2}$.


If
$$a = 16$$
, and $b = 9$, then cosec $B = \frac{16}{9} = 1.77778$.

The rules given above are very easily memorized, and the student should go no further before he can see at a glance the various functions in a given right-angled triangle.


If the functions of the angle C were to be found instead of the functions of angle B, as given above, they would be as follows:

15

Digitized by Google

It must be remembered that the functions of the angles can be found in this manner only when the triangle is right-angled. If the triangle has the shape shown by the full lines in Fig. 17, the sine of angle D, for instance, cannot be expressed by any relation between two sides of

this triangle. The sine of angle D, however, can be found by constructing a right-angled triangle by extending the side e to the point P, from where a line can be drawn at right angles to the vertex or point of angle E, as shown by the dotted line. The sine of angle D would then be the length of the dotted line g divided by the length of the line h,

Digitized by Google

these two lines being, respectively, the side opposite angle D, and the hypotenuse, in a right-angled triangle. In the same way, the tangent of angle D would be the side g divided by the side f.

Examples for Finding the Values of the Functions of Angles

In Fig. 18 is shown a right-angled triangle where the side opposite angle B is four inches, the side opposite angle C is 3 inches, and the hypotenuse is 5 inches. Find the values of the functions of the angles B and C.

Following the rules previously given for finding the sine, cosine, tangent, etc., we have:

$$\sin B = \frac{4}{5} = 0.8 \qquad \cos B = \frac{3}{5} = 0.6$$

$$\tan B = \frac{4}{3} = 1.333 \qquad \cot B = \frac{3}{4} = 0.75$$

$$\sec B = \frac{5}{3} = 1.667 \qquad \csc B = \frac{5}{4} = 1.25$$

The functions for angle C are as follows:

$$\sin C = \frac{3}{5} = 0.6 \qquad \cos C = \frac{4}{5} = 0.8$$

$$\tan C = \frac{3}{4} = 0.75 \qquad \cot C = \frac{4}{3} = 1.333$$

$$\sec C = \frac{5}{4} = 1.25 \qquad \csc C = \frac{5}{3} = 1.667$$

The secant and cosecant, being merely the values of 1 divided by the cosine and sine, are not often used in calculations, or included in tables of angular functions.

By studying the results obtained in the calculations above it will be noted that in a right-angled triangle there is a definite relation between the functions of the two acute angles. The sine of angle Bequals the cosine of angle C; the tangent of angle B equals the cotangent of angle C, etc. This is true of all right-angled triangles.

As the sum of the three angles in a triangle always equals 180 degrees, and as a right angle equals 90 degrees, it follows that the sum of the two acute angles in a right-angled triangle equals 180 - 90 = 90 degrees. The angle B (Fig. 18) which together with angle C forms a 90-degree angle, is called the *complement* of angle C. In the same way angle C is the complement of angle B. When any two angles together make 90 degrees, the one is the complement of the other, and in all such cases, the sine of the one equals the cotangent of the other, etc.

CHAPTER V

TABLES OF TRIGONOMETRIC FUNCTIONS

When using formulas of the type

$$A = \frac{16 \times \sin 36 \deg}{2}$$

it is, of course, not possible to find the value of A unless we have some means of transforming the expression "sin 36 deg." (read: sine of 36 degrees) into plain figures. In other words, we must know the *numerical value* of "sin 36 deg.," before we can calculate A. Assume that "sin 36 deg." equals 0.58779. Then, if we insert this value in the formula, we have:

$$A = \frac{16 \times 0.58779}{2} = 4.70232.$$

The numerical values for the natural or trigonometric functions which must thus be found before a formula containing an expression with a trigonometric function can be calculated, are given in the tables in Part II of this treatise, MACHINERY'S Reference Series No. 55. In the following, when reference to "the tables" is made, these tables are always referred to. From these tables, when the angle is given in degrees and minutes, the corresponding numerical value of any of the trigonometric functions can be found; and if the numerical value of the function is known, the corresponding angle can be determined.

It will be seen in the tables that the number of degrees from 0 degree (0°) to 44 degrees (44°) are given above the tables, and the number of minutes in the left-hand column headed with the minute sign ('), reading downward from 0 to 60. The number of degrees from 45 degrees (45°) to 89 degrees (89°), inclusive, are given at the bottom of the tables, and the minutes for the latter degrees are given in the extreme right-hand column, reading from below and up, from 0 to 60. The four main columns in the tables are headed "Sin," "Cos," "Tan," and "Cot," at the top of the tables, and at the bottom of the same tables are the main legends "Cos," "Sin," "Cot," and "Tan." This indicates that when the sine of an angle is required the number of degrees of which angle is given at the top of the table, the sine will be found in the column headed "Sin" at the top; but when the sine of an angle, the number of degrees of which is given at the bottom, is to be found, the sine is found in the second main column, having the word "Sin" at the bottom. The same, of course, applies to the other functions, cosine, tangent, and cotangent.

By referring to the tables it will be seen further that there are two columns of figures in each of the main columns, one headed "Nat."

١

(natural function) and one "Log." (logarithm). For the present, we are concerned with the figures given in the column under "Nat." only, and will treat the subject as if the logarithms of the functions and the columns headed "d." and "c. d." did not exist. Later, we will return to the use of these.

Assume now that the sine, cosine, tangent or cotangent of an angle between 0 and 45 degrees is to be found. First find the given number of degrees at the top of the table; then find the given number of minutes in the extreme left-hand column. Then, read off the figures in the column of the natural sine, cosine, tangent or cotangent, as the case may be, which is opposite the given number of minutes. This value, just read off, is now the numerical value of the function which " was to be found.

In reading off these values, care must be taken to place the decimal point properly, as this point is not always given in the tables. The sine and cosine of angles are never over 1, so that when the table gives the figures 99949 as the cosine of 1 degree 50 minutes, the decimal point should be placed in front of these figures, the value being 0.99949. The same refers to the other functions when no decimal point is given. A decimal point should then always be placed in front of the figures given in the tables.

When the sine, cosine, tangent or cotangent of an angle between 45 and 90 degrees is to be found, first find the given number of degrees at the bottom of the table; then find the number of minutes in the extreme right-hand column. Then read off the required function opposite the number of minutes, in the column marked with the required function at the bottom.

Examples of the Use of Trigonometric Tables

Example 1.—Find from the tables the sine of 56 degrees, or, as it is commonly written, $\sin 56^{\circ}$.

Find first " 56° " at the bottom of its page, and then (as in this case there are no minutes) locate 0' (0 minutes) in the extreme right-hand column, reading from the bottom up. Then, in the column "Nat. Sin." marked at the bottom, read off 0.82904 opposite 0 minutes, which is the required value of the sine of 56 degrees. (Note that the two first figures (82) in the number 82904 are not given opposite every number but only at every fifth number of minutes, but these two figures are to be prefixed, as is easily understod from the table.)

Example 2.—Find sin 50° 20'.

Find first "50°" at the bottom of its page, and then locate 20' in the right-hand column, reading from the bottom up. Then, in the column "Nat. Sin." marked at the bottom, read off 0.76977 opposite 20 minutes. This is the required value of $\sin 50^{\circ} 20'$.

Example 3.—Find tan 36° 26'.

Locate 36° at the top of its table, and 26' in the left-hand column. Then read off 0.73816 in the column "Nat. Tan." This is the required value of tan 36° 26'.

Example 4.—Find cos 36° 19'.

19 we

In the same manner as in the examples above, cos 36° 19' is found to equal 0.80576.

The student should find the following functions from the tables and then compare the result found with the values given, to check the accuracy of the work:

 $sin 12^{\circ} 10' = 0.21076$ $cos 60^{\circ} 0' = 0.50000$ $sin 15^{\circ} 50' = 0.27284$ $sin 65^{\circ} 10' = 0.90753$ $tan 1^{\circ} 20' = 0.02328$ $sin 12^{\circ} 3' = 0.20877$

Trigonometric Functions for Angles greater than 90 Degrees

The tables in Part II, Reference Series No. 55, give the angular functions only for angles up to 90 degrees (or 89 degrees 60 minutes, which, of course, equals 90 degrees). In obtuse triangles one angle, however, is greater than 90 degrees, and the tables can be used for finding the functions for angles larger than 90 degrees also.

The sine of an angle greater than 90 degrees but less than 180 degrees equals the sine of an angle which is the difference between 180 degrees and the given angle.

Example: Sin 118° = sin (180° - 118°) = sin 62°. In the same way sin 150° 40' = sin (180° - 150° 40') = sin 29° 20'.

The cosine, tangent and cotangent for an angle greater than 90 but less than 180 degrees equals, respectively, the cosine, tangent and cotangent of the difference between 180 degrees and the given angle, but in this case the angular function found has a *negative* value (is preceded by a minus sign).

Example 1.—Find tan 150°.

Tan $150^{\circ} = -\tan (180^{\circ} - 150^{\circ}) = -\tan 30^{\circ}$. From the tables we have tan $30^{\circ} = 0.57735$; thus tan $150^{\circ} = -0.57735$.

Example 2.—Find sin 155° 50'.

As explained above $\sin 155^{\circ} 50' = \sin (180^{\circ} - 155^{\circ} 50') = \sin 24^{\circ} 10' = 0.40939.$

Example 3.—Find tan 123° 20'.

As explained above $\tan 123^{\circ} 20' = -\tan (180^{\circ} - 123^{\circ} 20') = -\tan 56^{\circ} 40' = -1.5204.$

[In calculations of triangles it is very important that the minus sign is not omitted in the cosines, tangents and cotangents of angles between 90 and 180 degrees.]

Finding the Angle when the Function is Given

When the value of the function of an angle is given, and the angle required in degrees and minutes, the function is located in the tables and the corresponding angle found by a process the reverse of that employed for finding the functions when the angle is given. If the value of the function cannot be found exactly in the tables, use the nearest value found.

Example 1.—The sine of a certain angle, which may be called a, equals 0.53238. Find the angle.

The function 0.53238 is located in the columns marked "Sin." either at the top or at the bottom. When located, the degrees and minutes of

the angle are read off directly. If the function is located in the column marked "Sin" at the top, the number of degrees is read off at the top and the number of minutes in the left-hand column; if the function is located in the column marked "Sin." at the bottom, the degrees are read off at the bottom and the minutes in the right-hand column. Following these rules, we find the required angle to be 32° 10'.

Example 2.—The cotangent of an angle is 0.77196. Find the angle.

By observing the rules given in the previous example we find that the required angle is 52° 20'.

Example 3.—The tangent of angle a = -3.3402. Find a.

The positive value 3.3402 is first located and the corresponding angle found. This angle is 73° 20'. As the tangent is negative (preceded by a minus sign) the angle *a*, however, is not 73° 20' but (180° — 73° 20') = 106° 40'.

Example 4.—If sin a = 0.29381, what is the value of angle a?

It will be seen that the function 0.29381 cannot be found exactly in the tables. The nearest value to be found in the sine columns is 0.29376. For practical purposes in machine construction and shop calculations it is near enough to find the angle corresponding to this nearest value. Hence, $a = 17^{\circ}$ 5'.

CHAPTER VI

PRACTICAL APPLICATIONS OF TRIGONOMETRIC FORMULAS

In the following are given a few problems solved by the use of formulas of which trigonometric functions are a part. These examples will show the use of these functions; as obtained from the tables, in cases where it is only required to insert their value in the given formulas.

Example 1.—The depth of the thread in the United States standard screw thread system is expressed by the formula:

 $d = 3/4 \times p \times \cos 30^{\circ}$

in which d = depth of thread,

 $p = \text{pitch of thread} = \frac{1}{\frac{1}{\text{No. of threads per inch}}}$

1

No. of chicads per filth

Assume that it is required to find the depth of thread for 14 threads

per inch. Then
$$p = -\frac{1}{14}$$
, and
 $a = -\frac{3}{4} \times \frac{1}{14} \times \cos 30^\circ = -\frac{3}{56} \times 0.86603 = 0.0464$ inch.
Digitized by Google

Example 2.—In spiral gearing, the pitch diameter of a gear is found by the formula:

$$D = \frac{N}{P \times \cos \alpha}$$

in which

D = pitch diameter of spiral gear, N = number of teeth in gear.

P =normal diametral pitch.

a = tooth angle of gear.

Assume that in a specific case we know that N = 20, P = 8, and angle a = 24 degrees; find the pitch diameter. Then:

$$D = \frac{20}{8 \times \cos 24^{\circ}} = \frac{20}{8 \times 0.91355} = 2.7366 \text{ inches.}$$

Example 3.—The formula for finding the lead for which to gear up the milling machine when cutting spiral gears is:

$$L = 3.1416 \times D \times \cot a$$

in which L = the lead for which to gear up the machine.

D =pitch diameter.

a =tooth angle.

Assume that in a specific case we know that D = 5, and angle a = 24degrees. Then

 $L = 3.1416 \times 5 \times \text{cot } 24^\circ = 15.708 \times 2.246 = 35.28$ inches.

Example 4.—In a radial ball bearing, if the diameter of the balls, d, and the number of balls, N, are known, the diameter D of the outside or enveloping ball race may be found by the following formula:

$$D = \frac{d}{\sin\left(\frac{180}{N}\right)^{\circ}} + d$$
Assume that $d = \frac{1}{4}$ inch, and $N = 15$. Then:

$$D = \frac{0.25}{\sin\left(\frac{180}{15}\right)^{\circ}} + 0.25 = \frac{0.25}{\sin 12^{\circ}} + 0.25 = \frac{0.25}{0.20791} + 0.25$$

$$= 1.2025 + 0.25 = 1.4525$$
 inch.

Example 5.—In a sprocket wheel for ordinary link chain, the pitch diameter D can be determined when the number of teeth required, N. the length of the inside oval of the chain link, r, and the diameter of the stock from which the chain link is made, d, are known. The formula used is:

$$D = \sqrt{\left(\frac{r}{\sin(90+N)^{\circ}}\right)^{\circ}} + \left(\frac{\overline{d}}{\cos(90+N)^{\circ}}\right)^{\circ}$$

Digitized by Google

If
$$r = \frac{3}{4}$$
 inch, $d = \frac{1}{4}$ inch, and $N = 20$ teeth, then:

$$D = \sqrt{\left(\frac{0.75}{\sin 4^{\circ} 30'}\right)^{2} + \left(\frac{0.25}{\cos 4^{\circ} 80'}\right)^{2}} = \sqrt{9.559^{2} + 0.251^{2}}$$

$$= \sqrt{91.437} = 9.562$$
 inches.

Example 6.—In a Bush roller chain wheel the pitch diameter D of the sprocket wheel can be found if the number of teeth in the sprocket, N, and the pitch P of the chain are decided upon. The formula is:

$$D = \frac{P}{\sin\left(\frac{180}{N}\right)^{\circ}}$$

Assume that the pitch diameter of a sprocket with 72 teeth, for a chain of $\frac{3}{4}$ inch pitch, is required. Then $P = \frac{3}{4}$, and N = 72; hence $\frac{180}{N} = 2\frac{1}{2}$, and $D = \frac{0.75}{\sin 2^{\circ} 30'} = \frac{0.75}{0.04362} = 17.194$ inches.

Example 7.—The following formula may be used for finding the angle to which to set the dividing head of the milling machine when cutting teeth in the ends of end mills:

$$\cos a = \tan \frac{360}{N} \times \cot \beta$$

in which a = angle to which to set dividing head,

 $\beta =$ included angle of cutter with which teeth are milled,

N = number of teeth in end mill.

Assume that it is required to cut the teeth in the end of an end mill having 12 teeth with a 70-degree angular milling cutter.

$$\cos a = \tan \frac{360}{12} \times \cot 70^\circ = \tan 30^\circ \times \cot 70^\circ$$

= 0.57735 × 0.36397 = 0.21014.

Having found that $\cos a = 0.21014$, we find that $a = 77^{\circ} 52'$.

Example 8.—The angle to which to set the planer head when planing an Acme threading tool having no side clearance, but 15 degrees front clearance, can be determined by the formula:

$$\tan x = \frac{\tan 14^\circ 30'}{\cos 15^\circ}$$

in which x = angle to which to set planer head.

Carrying out the calculation, we have:

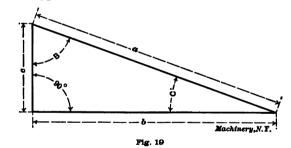
$$\tan x = \frac{\tan 14^{\circ} 30'}{\cos 15^{\circ}} = \frac{0.25862}{0.96593} = 0.26774$$

Having found that $\tan x = 0.26774$, we find from the tables that $x = 14^{\circ}$ 59', or practically 15 degrees.

23

CHAPTER VII

RIGHT-ANGLED TRIANGLES


If the lengths of two sides of a right-angled triangle are known, the third side can be found by a simple calculation. In every right-angled triangle the hypotenuse equals the square root of the sum of the squares of the two sides forming the right angle. If the hypotenuse equals a, and the sides forming the right angle b and c, respectively, as shown in Fig. 19, then:

$$a = \sqrt{b^2 + c^2}$$

Each of the sides b and c can also be found if the hypotenuse and one of the sides are known. The following formulas would then be used:

$$b = \sqrt{a^2 - c^2}$$
$$c = \sqrt{a^2 - b^2}$$

Assume that side b is 18 inches, and side c, 7.5 inches. What is the length of the hypotenuse a?

If we insert the values of b and c in the formula given above for a, we have:

 $a = \sqrt{18^2 + 7.5^2} = \sqrt{18 \times 18 + 7.5 \times 7.5} = \sqrt{324 + 56.25} = \sqrt{380.25} = 19.5$

Assume that the length of the hypotenuse is 10 inches and that the side c is 6 inches. What is the length of the side b?

Using the formula given above for b, and inserting the values of a and c we have:

 $b = \sqrt{10^2 - 6^2} = \sqrt{10 \times 10 - 6 \times 6} = \sqrt{100 - 36} = \sqrt{64} = 8.$

Thus whenever two sides of a right-angled triangle are given, the third side can always be found by a simple arithmetical calculation. To find the angles, however, it is necessary to use the tables of sines, cosines, tangents and cotangents, as given in Part II, MACHINERY'S Reference Series No. 55; and if only one side and one of the acute angles are given, the natural trigonometric functions must be used for finding the lengths of the other sides, as explained in the following.

:

Digitized by GOOGIC

Solution of Right-angled Triangles by Means of the Functions of Angles

In Chapter IV it is stated that the sides and angles of any triangle, which are not known, can be found when:

1. All the three sides,

- 2. Two sides and one angle, or
- 3. One side and two angles

are given. In every right-angled triangle one angle, the right or 90degree angle is, of course, always known. In a right triangle, therefore, the unknown sides and angles can be found when either two sides, or one side and one of the acute angles are known.

The methods of solution of right-angled triangles may be divided into four classes, according to which sides and angles are given or known:

1. Two sides known.

2. The hypotenuse and one acute angle known.

3. One acute angle and its adjacent side known.

4. One acute angle and its opposite side known.

Case 1.—When two sides are known, the third side is found by one of the formulas:

$$a \equiv \sqrt{b^2 + c^2} \tag{1}$$

$$b = \sqrt{a^2 - c^2} \tag{2}$$

$$c = \sqrt{a^2 - b^2} \tag{3}$$

which formulas are given in the first part of this chapter, and in which a is the hypotenuse, and b and c the sides forming the right angle.

The acute angles B and C, Fig. 19, are found by determining either the sine, cosine, tangent or cotangent for the angles, as explained in Chapter IV, and obtaining the angles, expressed in degrees and minutes, from the trigonometric tables. When one angle has been found, the other can also be found directly without reference to the tables, because the sum of the acute angles in a right-angled triangle equals 90 degrees, and if one of them is known, the other must equal 90 degrees minus the known angle. Expressed as formulas this would be:

$$B = 90^{\circ} - C$$
$$C = 90^{\circ} - B$$

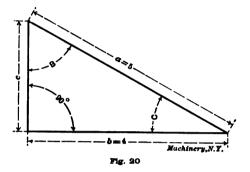
As an example, assume that the hypotenuse of a right-angled triangle is 5 inches and one of the sides 4 inches, as shown in Fig. 20. Find angles B and C and the length of side c.

The side c is first found by Formula (3) given above, a and b being inserted in this formula as below:

$$c = \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3.$$

As explained in Chapter IV, the side opposite an angle divided by the hypotenuse, gives the sine of the angle.

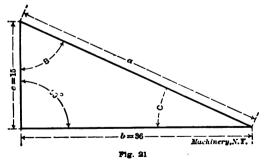
Hence


$$\sin C = \frac{3}{5} = 0.6.$$

By referring to the trigonometric tables, it will be found that the nearest value to 0.6 in the columns of sines is 0.59995, and the angle corresponding to this value is 36° 52'. Angle C, then equals, 36° 52'.

In the same way

$$\sin B = \frac{4}{5} = 0.8.$$


From the tables we find the nearest value in the columns of sines to be 0.80003, which is the sine of 53° 8'.

This last calculation would not have been necessary, because, as has already been mentioned, angle B could have been found directly when angle C was known, by the formula

 $B = 90^{\circ} - C = 90^{\circ} - 36^{\circ} 52' = 53^{\circ} 8'.$

It will be noted that either method for finding angle B gives the same result.

As a further example, assume that the sides forming the right angle are given as shown in Fig. 21; one is 15 inches and the other is 36 inches. Find the hypotenuse and the angles B and C.

The hypotenuse is found by Formula (1), on page 25, the values of b and c being inserted.

$$a = \sqrt{36^3 + 15^3} = \sqrt{1296 + 225} = \sqrt{1521} = 39.$$

As explained in Chapter IV, the side opposite an angle divided by the side adjacent, equals the tangent of the angle.

Hence

$$\tan B = \frac{36}{-15} = 2.4.$$

By referring to the tables, it will be found that the nearest value to 2.4 in the columns of tangents is 2.4004, which is the tangent of 67° 23'. Hence $B = 67^{\circ}$ 23', and

 $C = 90^{\circ} - B = 90^{\circ} - 67^{\circ} 23' = 22^{\circ} 37'.$

Case 2.—If the hypotenuse and one acute angle are known, the side adjacent to the known angle is found by multiplying the hypotenuse by the cosine of the known angle; the side opposite the known angle is found by multiplying the hypotenuse by the sine of the known angle; and the other acute angle is found by subtracting the known angle from 90 degrees.

We can express this rule by simple formulas. Referring to Fig. 19, if a is the hypotenuse, and B the known angle, then:

$$c = a \times \cos B$$

$$b = a \times \sin B$$

$$C = 90^{\circ} - B$$

If C is the known angle, then:

 $b = a \times \cos C$ $c = a \times \sin C$ $B = 90^{\circ} - C$

As an example, assume that the hypotenuse a = 22 inches, and angle $B = 41^{\circ}$ 36'. Find sides b and c, and angle C. (See Fig. 19.)

By referring to the tables, it will be found that the nearest value to case when angle B is known, we have:

 $c = a \times \cos B = 22 \times \cos 41^{\circ} 36' = 22 \times 0.74780 = 16.4516$ inches. $b = a \times \sin B = 22 \times \sin 41^{\circ} 36' = 22 \times 0.66393 = 14.6065$ inches. $C = 90^{\circ} - 41^{\circ} 36' = 48^{\circ} 24'$.

Case 3.—When one acute angle and its adjacent side are known, the hypotenuse is found by dividing the known side by the cosine of the known angle; the side opposite the known angle is found by multiplying the known adjacent side by the tangent of the known angle; and the other acute angle is found by subtracting the known angle from 90° .

Referring to Fig. 19, we can express this rule by simple formulas. If B is the known angle, and c the known side, adjacent to angle B, then:

$$a = \frac{c}{\cos B}$$
 $b = c \times \tan B$ $C = 90^{\circ} - B$

If C is the known angle, and b the known side, adjacent to angle C, then:

$$a = \frac{b}{\cos C}$$
 $c = b \times \tan C$ $B = 90^\circ - C$

As an example, assume that angle $B = 25^{\circ} 12'$, and its adjacent side c = 12 inches. Find the hypotenuse a, opposite side b, and angle C.

By inserting the known values in the formulas just given for the case where angle B is known, we have:

$$a = \frac{c}{\cos B} = \frac{12}{\cos 25^{\circ} 12'} = \frac{12}{0.90483} = 13.262 \text{ inches.}$$

$$b = c \times \tan B = 12 \times 0.47056 = 5.6467 \text{ inches.}$$

$$c = 90^{\circ} - 25^{\circ} 12' = 64^{\circ} 48'.$$

Case 4.—When one acute angle and the side opposite it are known, the hypotenuse is found by dividing the known side by the sine of the known angle; the side adjacent to the known angle is found by multiplying the known opposite side by the cotangent of the known angle; and the other acute angle is found by subtracting the known angle from 90°.

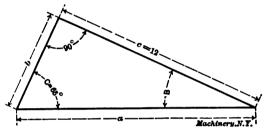


Fig. 22

By referring to Fig. 19, we can express this rule by simple formulas. If B is the known angle, and b the side opposite, which is also known, then:

$$a = \frac{b}{\sin B}$$
 $c = b \times \cot B$ $C = 90^{\circ} - B$

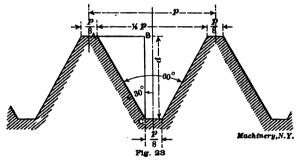
If C is the known angle, and c the known side, opposite to angle C, then:

$$a = \frac{c}{\sin C} \qquad b = c \times \cot C \qquad B = 90^{\circ} - C$$

As an example, assume that angle C equals 65 degrees, and that the length of side c is 12 feet, as shown in Fig. 22. Find the lengths of sides a and b and angle B.

By inserting the known values in the formulas just given for the case when angle C is known, we have:

 $a = \frac{c}{\sin C} = \frac{12}{\sin 65^{\circ}} = \frac{12}{0.90631} = 13.2405 \text{ inches.}$ $b = c \times \cot C = 12 \times 0.46631 = 5.5957 \text{ inches.}$ $B = 90^{\circ} - 65^{\circ} = 25^{\circ}.$



CHAPTER VIII

PROBLEMS FROM PRACTICE

The calculations required in the design of bevel gearing offer abundant examples of the use of the trigonometric functions and the solution of right-angled triangles. The student who is anxious to obtain additional practice, and to whom the practical applications of the formulas given are of especial interest, is, therefore, referred to MA-CHINERY'S Reference Series No. 37, Bevel Gearing, for practical applications. In the following, however, a number of practical examples, selected for the purpose of illustration, will also be given.

Example 1.—Fig. 23 shows a section of a United States standard thread. Find a formula for the depth of the thread in terms of the pitch, and calculate the depth of screw threads with 12 and 16 threads per inch.

In the illustration, p is the pitch of the thread. The pitch, of course, 1 ...* It is required to find the depth BC equals .

No. of threads per inch. of the thread, expressed in terms of the pitch. This depth can be

found if we can solve the triangle ABC.

In the U.S. standard thread system there is a flat at the top and bottom of the thread as shown in Fig. 23. The width of this flat is one-eighth of the pitch, as indicated. Hence, side AB of the rightangled triangle ABC equals one-half of 1% pitch minus one-half of 1%

pitch, or $\left(\frac{7}{16} - \frac{1}{16}\right)$ pitch = % pitch. The angle opposite this side

is also known; it is one-half of the total thread angle, or 30 degrees. According to the rules and formulas in the previous chapter, therefore,

 $BC = AB \times \cot 30^{\circ}$.

[•] See MACHINERY'S Reference Series No. 18, "Shop Arithmetic for the Machin-ist," third edition, Chapter IV.

If we insert in this formula BC = d, $AB = \frac{3}{2} p$, and $\cot 30^{\circ} = 1.7321$, we have:

$$d = \frac{9}{8} p \times 1.7321 = 0.6495 p$$

in which d =depth of thread,

p = pitch of thread.

We will now find the depth of the thread for 12 and 16 threads per inch. As $p = \frac{1}{No. of threads per inch}$, we have, by inserting the

known values in the general formula just found:

 $d = 0.6495 \times \frac{1}{12} = 0.0541$ inch, for 12 threads,

 $d = 0.6495 \times \frac{1}{16} = 0.0406$ inch, for 16 threads.

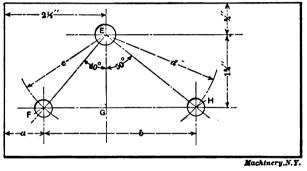


Fig. 24

Example 2.—In laying out a master jig plate, it is required that holes F and H, Fig. 24, shall be on a straight line which is 13½ inch distant from hole E. The holes must also be on lines making, respectively, 40- and 50-degree angles with line EG, drawn at right angles to the sides of the jig plate through E, as shown in the engraving. Find the dimensions necessary for the toolmaker.

The dimensions which ought to be given the toolmaker in addition to those already given are indicated by a, b, c, and d. The two latter are the radii of the arcs which if struck with E as a center will pass through the centers of F and H. We have here two right-angled triangles EFG and EGH. We know one acute angle in each, and also the length of side EG (1% inch) which is mutual to both triangles and which is the side adjacent to the known angle. From the formulas in the preceding chapter we, therefore, have:

$$FG = 1.75 \times \tan 40^{\circ} = 1.75 \times 0.83910 = 1.4684 \text{ inch.}$$

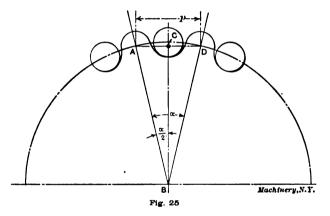
$$FE = \frac{1.75}{\cos 40^{\circ}} = \frac{1.75}{0.76604} = 2.2845 \text{ inches.}$$

$$GH = 1.75 \times \tan 50^{\circ} = 1.75 \times 1.1918 = 2.0856 \text{ inches.}$$
Digitized by Google

$$EH = \frac{1.75}{\cos 50^\circ} = \frac{1.75}{0.64279} = 2.7225$$
 inches.

But, by referring to Fig. 24 it will be seen that FE = c, EH = d, $2\frac{1}{2} - FG = a$, and FG + GH = b. Hence

a = 2.5 - 1.4684 = 1.0316 inch,


b = 1.4684 + 2.0856 = 3.5540 inches,

c = 2.2845 inches,

d = 2.7225 inches.

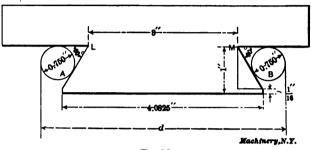
Example 3.—If the pitch p of a Bush roller chain is $\frac{3}{4}$ inch, and the sprocket wheel is to have 32 teeth, what will be the pitch diameter of the gear? (See Fig. 25.)

By referring to the engraving, it will be seen that $AD = p = \frac{3}{4}$ inch, and $AC = \frac{1}{2}AD = \frac{3}{8}$ inch, in this case. Line AB is the pitch radius or one-half the pitch diameter. Angle a is the angle for one

tooth, and as the whole circle is 360 degrees, α in this case equals 360

--- = 11¼ degrees, or 11 degrees 15 minutes. One-half of *a*, then, 32

equals 5 degrees 37 minutes, approximately. We, therefore, have here a right-angled triangle in which we know the length of side AC and the angle opposite it. We want to find the hypotenuse AB. From the formulas in the preceding chapter, we have:

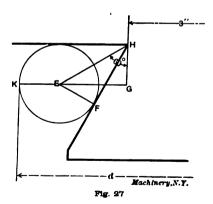

$$AB = \frac{AC}{\sin \frac{a}{2}} = \frac{0.375}{\sin 5^{\circ} 37'} = \frac{0.375}{0.09787} = 3.832 \text{ inches.}$$

The pitch diameter, then, equals $2 \times 3.832 = 7.664$ inches.

Example 4.—A common method for measuring the width of machine slide dove-tails is indicated diagrammatically in Fig. 26. At A and B are shown carefully ground cylindrical gages of standard dimensions. In the example shown it is required to find what the distance d, measured by micrometers over the gages when these are pushed into the V's of

the dove-tail as shown, should be, in order to make sure that the piece is planed to the dimensions given. The diameters of the gages are 0.750 inch.

In order to find the dimension d measured over the gages, we must find dimension KG, Fig. 27, and add twice this length to the distance 3" from L to M in Fig. 26. It will be seen that KG = KE + EG; $KE = \frac{1}{2} \times \text{diam. of gage} = \frac{9}{3}$; EG is solved from the right-angled triangle



EGH, in which angle EHG equals 60 degrees, and side HG equals onehalf of the diameter of the gage, or % inch.

Hence,

 $EG = HG \times \tan 60^{\circ} = \frac{4}{5} \times 1.7321 = 0.6495$ inch. KE + EG = 0.375 + 0.6495 = 1.0245 inch.

 $d = 2 \times 1.0245 + 3 = 5.049$ inches.

Example 5.—Small reamers are sometimes provided with flats instead of actual flutes. The diameter of the reamer is, of course, measured over the sharp corners; if the reamer tapers, the taper of the flats will not be the same as the taper of the sharp corners, and the milling machine dividing head must be set to a different angle from that which the cutting edge makes with the center line. A simple formula may be deduced by the aid of trigonometry for finding

the angle to which to set the dividing head when milling the flats.

Referring to Fig. 28, in which the reamer is imagined as continued to a sharp point at the end, let

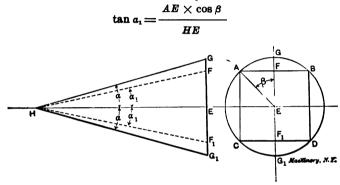
a = angle made by cutting edge with center line,

 $a_1 =$ angle made by flat with center line,

N = number of sides of reamer,

T =taper per foot.

Angle β , as shown in the engraving, can be determined by the formula


$$\beta = \frac{360}{2 N}$$

as is evident from the illustration.

Angle a_1 is the angle sought. It will be seen that if FE and HE were known, then

$$\tan a_1 = \frac{FE}{HE}$$

But $FE = AE \times \cos \beta$. If we insert this value we have:

As $\cos \beta = \cos \frac{360}{2N}$, we have further

$$\tan a_1 = \frac{AE}{HE} \times \cos \frac{360}{2 N}$$

The distance AE, however, is one-half of the taper in the distance HE.

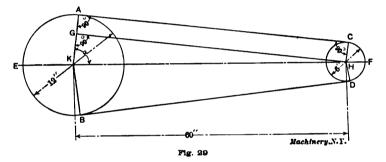
The taper per inch then is $\frac{2AE}{HE}$, and the taper per foot

$$T = 12 \times \frac{2AE}{HE} = \frac{24AE}{HE}$$
, or $\frac{T}{24} = \frac{AE}{HE}$

If we insert $\frac{T}{24}$ in the formula above, we have

$$\tan a_1 = \frac{T}{24} \times \cos \frac{360}{2N}$$

Assume that the taper per foot is $\frac{1}{2}$ inch, and that a four-sided reamer is required. Find the angle to which to set the index-head.


$$\tan a_1 = \frac{\frac{14}{24}}{24} \times \cos 45^\circ = 0.00736,$$

which gives $a_1 = 25$ minutes.

Example 6.—In Fig. 29 are shown two pulleys of 6 and 12 inches diameter, with a fixed center distance of 5 feet. Find the length of belt required to pass over the two pulleys. The belt is assumed to be perfectly tight.

The length of the belt is made up of the two straight portions ACand BD, tangent to the circles as shown in Fig. 29, and of the arc AEB of the larger pulley and the arc CFD of the smaller pulley. ACand BD are equal. We will first find the length AC. By drawing a line HG from H, the center of the smaller pulley, parallel to AC, we can construct a triangle HGK in which HG = AC, and GK = AK -HC. That HG = AC is clear from the fact that HC and KA are parallel, both being perpendicular or at right angles to the tangent line AC. The figure HGAC is, therefore, a rectangle, and, hence, opposite sides are equal. HG, therefore, equals AC, and HC = GA.

That GK = AK - HC is evident from the fact that GK = AK - GA, but as GA = HC, it follows that GK = AK - HC.

Now, AK is the radius of the larger pulley, which is one-half its diameter, or 6 inches, and HC is the radius of the smaller pulley or 3 inches. Hence, GK = 6 - 3 = 3 inches. HK = 5 feet or 60 inches, as given in the problem. We then have here a right-angled triangle in which the hypotenuse HK = 60 inches, and one of the sides forming the right angle is 3 inches. Hence, side GH is found by the formula given for this case in the previous chapter, and by inserting the known values we have:

$$GH = \sqrt{60^2 - 3^2} = \sqrt{3600 - 9} = \sqrt{3591} = 59.925.$$

As GH = AC, we, therefore, have AC = 59.925, and as AC = BD, we have AC + BD = 119.85 inches. It now remains to find the lengths of the circular arcs *AEB* and *CFD*. In order to find these lengths we must first find the number of degrees in these arcs, and to find this, the first step is to find angle α . According to the rules given in Chapter IV,

$$\cos a = \frac{GK}{KH} = \frac{3}{60} = 0.05.$$

From this we find from the trigonometric tables that $a = 87^{\circ}$ S'. It will be seen from Fig. 29 that angle $AKE = 180^{\circ} - a = 180^{\circ} - B_{\text{indiverse}}$ 87° 8' = 92° 52'. Angle $EKB = \cdot$ angle AKE, so that the arc AEB, therefore, is equal to twice angle AKE or

arc
$$AEB = 2 \times 92^{\circ} 52' = 185^{\circ} 44'$$
.

The whole circumference of the larger pulley equals $3.1416 \times 12 =$ 37.699 inches. As the whole circumference is 360 degrees, its length in inches is to the length of arc *AEB* as 360° is to 185° 44', or

$$\frac{37.699}{\text{arc } AEB} = \frac{360^{\circ}}{185^{\circ} 44'}$$

Transposing this expression, we have

arc
$$AEB = \frac{37.699 \times 185^{\circ} 44'}{360^{\circ}}$$

Before we can carry out this calculation we must transform 44 minutes to decimals of a degree. As 44 minutes equals 44/60 of a degree, this, changed to a decimal fraction equals $\frac{44}{60} = 0.73$, and 185° 44' equals 185 72 degrees. Then:

equals 185.73 degrees. Then:

arc
$$AEB = \frac{37.699 \times 185.73}{360} = 19.45$$
 inches.

Now, to find arc *CFD*, angle *CHF* is first determined. This angle equals angle *GKH* or a, because *AK* and *CH* are parallel lines. Hence arc *CFD* = $2 \times \text{angle } \alpha = 2 \times 87^{\circ} 8' = 174^{\circ} 16'$. Now, proceeding as before we have:

 $3.1416 \times 6 = 18.8496 =$ circumference of small pulley.

18.8496 360°

arc CFD 174° 16'

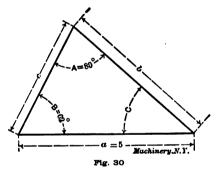
Transposing this and changing 16 minutes to decimals of a degree, gives us:

arc
$$CFD = \frac{18.8496 \times 174.27}{360} = 9.12$$
 inches.

The total length of the belt, then, equals

119.85 + 19.45 + 9.12 = 148.42 inches.

CHAPTER IX


SOLUTION OF OBLIQUE-ANGLED TRIANGLES

The methods used in the solution of oblique triangles—that is, triangles, no one of whose angles is a right angle—differ according to which parts are known and which are to be found. The problems which present themselves may be divided into four classes:

- 1. Two angles and one side known.
- 2. Two sides and the angle included between them known.
- 3. Two sides and the angle opposite one of them known.
- 4. The three sides known.

1. Two Angles and One Side Known

Assume that the angles A and B in Fig. 30 are given as shown, and that side a is 5 inches. Find angle C, sides b and c, and the area of the triangle.

As the sum of the three angles in a triangle always equals 180 degrees, angle C can be found directly when angles A and B are given, by subtracting the sum of these angles from 180 degrees. Angle A = 80 degrees and B = 62 degrees; therefore,

 $C = 180^{\circ} - (80^{\circ} + 62^{\circ}) = 180^{\circ} - 142^{\circ} = 38^{\circ}.$

For finding the sides b and c the following rule is used: The side to be found equals the known side multiplied by the sine of the angle opposite the side to be found, and the product divided by the sine of the angle opposite the known side.

To find side b, for example, multiply the known side a by the sine of angle B, and divide the product by the sine of angle A. Written as a formula this would be:

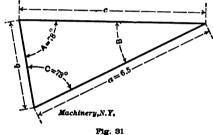
$$b = \frac{a \times \sin B}{\sin A}$$

(4)

1

In the same way

1


$$c = \frac{a \times \sin C}{\sin A} \tag{5}$$

If we insert the known values for side a and the angles in these formulas, we have:

$$b = \frac{5 \times \sin 62^{\circ}}{\sin 80^{\circ}} = \frac{5 \times 0.88295}{0.98481} = 4.483 \text{ inches.}$$

$$c = \frac{5 \times \sin 38^{\circ}}{\sin 80^{\circ}} = \frac{5 \times 0.61566}{0.98481} = 3.126 \text{ inches.}$$

Now all the sides and angles are known, and it only remains to find the area of the triangle. This is found by the following rule: The area of a triangle equals one-half the product of two of its sides multiplied by the sine of the angle between them. (This rule gives the same result as that given in MACHINERY'S Reference Series Book, No. 52, Advanced Shop Arithmetic for the Machinist, Chapter VIII.)

In the example in Fig. 30, the area, then, equals one-half the product of sides a and b multiplied by the sine of angle C, or, expressed as a formula:

$$\operatorname{Area} = \frac{a \times b \times \sin C}{2} \tag{6}$$

Inserting the known values for a, b, and C in this formula we have:

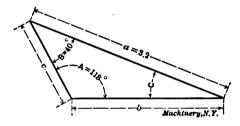
Area
$$=$$
 $\frac{5 \times 4.483 \times \sin 38^{\circ}}{2} = \frac{5 \times 4.483 \times 0.61566}{2} =$
 $\frac{13.8000}{2} = 6.9$ square inches.

All the required quantities in this triangle have now been found.

Examples for Practice

Example 1.—In Fig. 31 is shown a triangle of which one side is 6.5 feet, and the two angles A and C (78 and 73 degrees, respectively) are given. Call the sides a, b and c, as shown. Find angle B, sides b and c, and the area.

87


First find angle B. Using the same method as explained for finding angle C in the previous example, we have:

$$B = 180^{\circ} - (78^{\circ} + 73^{\circ}) = 180^{\circ} - 151^{\circ} = 29^{\circ}.$$

For finding sides b and c use the rule or formulas previously given, inserting the values given in this example:

$$b = \frac{a \times \sin B}{\sin A} = \frac{6.5 \times \sin 29^{\circ}}{\sin 78^{\circ}} = \frac{6.5 \times 0.48481}{0.97815}$$
$$= \frac{3.151265}{0.97815} = 3.222 \text{ feet.}$$
$$c = \frac{a \times \sin C}{\sin A} = \frac{6.5 \times \sin 73^{\circ}}{\sin 78^{\circ}} = \frac{6.5 \times 0.95630}{0.97815}$$
$$= \frac{6.21595}{0.97815} = 6.355 \text{ feet.}$$

According to the given rule and formula, the area is finally found as below:

Area
$$= \frac{a \times b \times \sin C}{2} = \frac{6.5 \times 3.222 \times \sin 73^{\circ}}{2}$$
$$= \frac{6.5 \times 3.222 \times 0.95630}{2} = \frac{20.027}{2} = 10.013 \text{ square feet}$$

Example 2.—In Fig. 32, side a equals 3.2 inches, angle A, 118 degrees, and angle B 40 degrees. Find angle C, sides b and c, and the area.

First find angle C.

 $C = 180^{\circ} - (118^{\circ} + 40^{\circ}) = 180^{\circ} - 158^{\circ} = 22^{\circ}.$ Now find side b.

$$b = \frac{3.2 \times \sin 40^{\circ}}{\sin 118^{\circ}} = \frac{3.2 \times 0.64279}{0.88295} = 2.330$$
 inches.

Note, when finding sin 118° from the tables, that sin $118^\circ = \sin (180^\circ - 118^\circ) = \sin 62^\circ$ as explained in Chapter V.

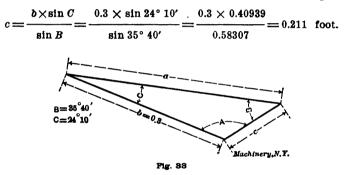
Next, find side c.

$$c = \frac{3.2 \times \sin 22^{\circ}}{\sin 118^{\circ}} = \frac{3.2 \times 0.37461}{0.88295} = 1.358 \text{ inch.}$$

Digitized by Google

Finally,

$$Area = \frac{3.2 \times 2.33 \times \sin 22^{\circ}}{2} = 1.396 \text{ square inch}$$


Example 3.—In Fig. 33, side b = 0.3 foot, angle $B = 35^{\circ} 40'$, and angle $C = 24^{\circ} 10'$. Find angle A, sides a and c, and the area.

 $A = 180^{\circ} - (35^{\circ} 40' + 24^{\circ} 10') = 180^{\circ} - 59^{\circ} 50' = 120^{\circ} 10'.$

To find side *a*, use the rule already given, from which we get the formula below:

$$a = \frac{b \times \sin A}{\sin B} = \frac{0.3 \times \sin 120^{\circ} 10'}{\sin 35^{\circ} 40'} = \frac{0.3 \times 0.86457}{0.58307} = 0.445 \text{ foot.}$$

To find side c, use again the same rule, from which we then get:

Note that in this example the formulas for a and c have the same form as Formulas (4) and (5) on pages 36 and 37, but as the side b is the known side, instead of a, the side b is brought into the formula instead of a, and angle B instead of angle A. The formulas for a and c in this example are directly deduced from the rule on page 36, for finding the unknown sides.

To find the area, use Formula (6):

Area
$$=$$
 $\frac{a \times b \times \sin C}{2} = \frac{0.445 \times 0.3 \times \sin 24^{\circ} 10'}{2} = \frac{0.445 \times 0.3 \times 0.40939}{2} = 0.027$ square foot.

Summary of Formulas

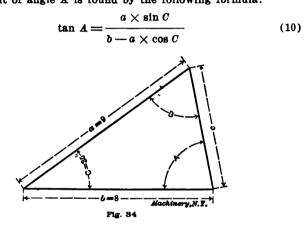
If the angles of a triangle are called A, B and C, and the sides opposite each of the angles, a, b and c, respectively, as shown in Fig. 30, then, if two angles and one side are known, the remaining angle, the two unknown sides and the area may be found by the formulas below:

$$A = 180^{\circ} - (B + C)$$

$$B = 180^{\circ} - (A + C)$$

$$C = 180^{\circ} - (A + B)$$

No. 54-SOLUTION OF TRIANGLES


<u>،</u> _۲	$0 \times \sin A$	$a \times \sin B$	$c = \frac{b \times \sin C}{\sin B}$		
u == -	$\sin B$	$b = \frac{1}{\sin A}$			
	$\mathbf{x} \times \mathbf{sin} \mathbf{A}$	$c \times \sin B$	$c = \frac{a \times \sin C}{c}$		
a == -	sin C	$b \equiv \frac{1}{\sin C}$	$c = \frac{1}{\sin A}$		
4	$a \times b \times \sin C$	$b \times c \times \sin A$	$a \times c \times \sin B$		
Area	2	- <u>=</u> <u>-</u>	2		

Ł

L

2. Two Sides and the Included Angle Known

Assume that the sides a and b in Fig. 34 are 9 and 8 inches, respectively, as shown, and that the angle C formed by these two sides is 35 degrees. Find angles A and B, side c, and the area of the triangle. The tangent of angle A is found by the following formula:

If the given values of a, b and C are inserted in this formula, we have:

 $\tan A = \frac{9 \times \sin 35^{\circ}}{8 - 9 \times \cos 35^{\circ}} = \frac{9 \times 0.57358}{8 - 9 \times 0.81915} = \frac{5.16222}{0.62765} = 8.22468.$

Having now obtained the tangent of angle A = 8.22468, we find from the tables that the angle equals 83° 4'.

Now when both angles A and C are known, angle B is found by Formula (8) already given:

$$B = 180^{\circ} - (A + C) = 180^{\circ} - (83^{\circ} 4' + 35^{\circ}) = 180^{\circ} - 118^{\circ} 4' = 61^{\circ} 56'$$

Side c is found by Formula (5):

$$c = \frac{a \times \sin C}{\sin A} = \frac{9 \times \sin 35^{\circ}}{\sin 83^{\circ} 4'} = \frac{9 \times 0.57358}{0.99269} = 5.2 \text{ inches.}$$

Digitized by Google

The area is found by Formula (6):

Area =
$$\frac{a \times b \times \sin C}{2}$$
 = $\frac{9 \times 8 \times 0.57358}{2}$ = 20.649 square inches.

All the required quantities of this triangle have now been found. Example 1.—In Fig. 35, a = 4 inches, b = 3 inches, and C = 20 degrees. Find A, B, c, and the area.

According to Formula (10), we have:

$$\tan A = \frac{a \times \sin C}{b - a \times \cos C} = \frac{4 \times \sin 20^{\circ}}{3 - 4 \times \cos 20^{\circ}} = \frac{4 \times 0.34202}{3 - 4 \times 0.93969}$$
$$= \frac{1.36808}{3 - 3.75876}$$

It will be seen that in the denominator of the fraction above, the number to be subtracted from 3 is greater than 3; the numbers are

therefore reversed as explained in Chapter III, 3 being subtracted from 3.75876, the remainder then being negative. Hence:

$$\tan A = \frac{1.36808}{3 - 3.75876} = \frac{1.36808}{-0.75876} = -1.80305$$

The final result is negative because a positive number (1.36808) is divided by a negative number (-0.75876).

In Chapter V it is stated that the tangents of angles greater than 90 degrees and smaller than 180 degrees are negative. In an example in the same chapter is shown how to find an angle whose tangent is negative. Proceeding in the same manner, find in this case the value nearest to 1.80305 in the columns of tangents in the tables. It will be seen that the nearest value is 1.8028, which is the tangent of 60° 59'. As the tangent here is negative, angle A, however, is not 60° 59', but equals 180° — 60° 59' = 119° 1'.

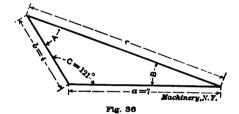
Now angle B is found by the formula

$$B = 180^{\circ} - (A + C) = 180^{\circ} - (119^{\circ} 1' + 20^{\circ}) = 180^{\circ} - 139^{\circ} 1' = 40^{\circ} 59'.$$

Side c and the area are now found by the same formulas and in the same manner as previously shown.

Example 2.—In Fig. 36, a = 7 feet, b = 4 feet, and C = 121 degrees. Find A, B, c and the area.

Proceeding as in the previous example we have


$$\tan A = \frac{a \times \sin C}{b - a \times \cos C} = \frac{7 \times \sin 121^{\circ}}{4 - 7 \times \cos 121^{\circ}}$$

As explained in Chapter V:

 $\sin 121^\circ = \sin (180^\circ - 121^\circ) = \sin 59^\circ$, and $\cos 121^\circ = -\cos (180^\circ - 121^\circ) = -\cos 59^\circ$.

Therefore

$7 \times \sin 121^{\circ}$	$7 \times \sin 59^{\circ}$
$\tan A = \frac{4}{4-7 \times \cos 121^\circ}$	$= \frac{1}{4 - 7 \times (-\cos 59^\circ)} =$
7 imes 0.85717	6.00019
$4-7 \times (-0.51504)$	= 4 - (-3.60528)
6.00019	6.00019
==	

The calculation with the negative number (-0.51504) will become clear by comparing the processes above with the rules given in Chapter III. When multiplied by 7, the product $7 \times (-0.51504)$ becomes negative, and equals -3.60528. As subtracting a negative quantity from a positive quantity is equal to adding the numerical value of the negative number we have:

$$4 - (-3.60528) = 4 + 3.60528 = 7.60528.$$

Having found tan A = 0.78895, we find angle A from the tables: $A = 38^{\circ} 16'$.

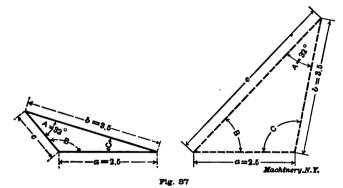
Angle B, side c and the area are now found in the same way as previously explained.

Summary of Formulas

If the angles of a triangle are called A, B and C and the sides opposite each of the angles a, b and c, respectively, as shown in Fig. 34, then, if any two sides and the included angle are known, the other angles, the remaining side and the area may be found. One of the angles is first found by any of the formulas below:

$$\tan A = \frac{a \times \sin C}{b - a \times \cos C} \qquad \tan A = \frac{a \times \sin B}{c - a \times \cos B}$$
Digitized by Google

tan B ==	$b imes \sin C$	$\tan B = -$	$b imes \sin A$		
(all D	$a - b \times \cos C$		$c-b \times \cos A$		
$\tan C =$	$c imes \sin B$	$\tan C = -$	$c imes \sin A$		
	$a - c \times \cos B$	$\tan c = -$	$b-c \times \cos A$		


The third angle, the remaining side, and the area are then found by using Formulas (4), (5), (6), (7), (8) and (9).

If the unknown angles are not required, but merely the unknown side of the triangle, the following formulas may be employed:

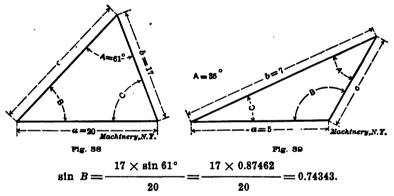
a ==	٧	b²	+	C ^a	 2	bc	X	COS	A
b ==	٧	a²	+	C2	 2	ac	X	cos	B
c =	v	a2	+	b'	 2	ab	X	COF	Ċ

3. Two Sides and One of the Opposite Angles Known

When two sides and the angle opposite one of the given sides are known, two triangles can be drawn which have the sides the re-

quired length and the angle opposite one of the sides the required size. In Fig. 37 is shown a triangle in which side a is 2.5 inches, side b, 3.5 inches, and angle A, 32 degrees. Another triangle is shown by dotted lines in the same figure in which sides a and b have the same length as in the triangle drawn by full lines, and angle A opposite side a still remains 32 degrees; but it will be seen that in this triangle the angle B is very much smaller than in the triangle drawn by the full lines. In every case, therefore, when two sides and one of the opposite angles are given, the problem is capable of two solutions, there being two triangles which fill the given requirements. In one of these triangles, the unknown angles opposite a given side is greater than a right angle, and in one it is less than a right angle. When the triangle to be calculated is drawn to the correct shape, it is, therefore, possible to determine from the shape of the triangle which of the two solutions applies. When the triangle is not drawn to the required shape, both solutions must be found and applied to the practical problem requiring the solution of the triangle; it can then

usually be determined which of the solutions applies to the practical problem in hand.


Example 1.—Assume that the sides a and b in Fig. 38 are 20 and 17 inches, respectively, as shown, and that angle A opposite the known side a is 61 degrees. Find angles B and C, side c, and the area of the triangle.

The angle B opposite the known side b may be found by the following rule: The sine of the angle opposite one of the known sides equals the product of the side opposite this angle times the sine of the known angle, divided by the side opposite the known angle.

From this rule we derive the following formula for the sine of angle B:

$$\sin B = \frac{b \times \sin A}{a} \tag{11}$$

If we insert the known values for sides b and a and angle A in this formula we have:

Having sin B = 0.74343, we find from the tables that $B = 48^{\circ}$ 1'. As it is shown in Fig. 38 that angle B is less than a right angle, the solution found is the one which applies in this case.

Angle C is now found from Formula (9):

$$C = 180^{\circ} - (A + B) = 180^{\circ} - (61^{\circ} + 48^{\circ} 1') = 70^{\circ} 59'.$$

Side c is found by Formula (5):

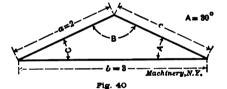
$$c = \frac{a \times \sin C}{\sin A} = \frac{20 \times \sin 70^{\circ} 59'}{\sin 61^{\circ}} = \frac{20 \times 0.94542}{0.87462} = 21.62 \text{ inches.}$$

The area is found by Formula (6):

Area =
$$\frac{a \times b \times \sin C}{2} = \frac{20 \times 17 \times \sin 70^{\circ} 59'}{2} = 160.72$$
 square inches.

All the required quantities of this triangle have now been found. Example 2.—In Fig. 39, a = 5 inches, b = 7 inches, and A = 35 degrees. Find B, C, c and the area.

44


According to the rule and formula in the previous example:

$$\sin B = \frac{b \times \sin A}{a} = \frac{7 \times \sin 35^{\circ}}{5} = \frac{7 \times 0.57358}{5} = 0.80301$$

Having sin B = 0.80301, we find from the tables that $B = 53^{\circ} 25'$. However, in the present case we see from the figure that B is greater than 90 degrees. The solution obtained is, therefore, not the solution applying to this case. It is explained in Chapter V that the sine of an angle also equals the sine of 180 degrees minus the angle. Therefore, 0.80301 is the sine not only of $53^{\circ} 25'$, but also of $180^{\circ} - 53^{\circ} 25' =$ $126^{\circ} 35'$. The value of angle B applying to the triangle shown in Fig. 39 is therefore $126^{\circ} 35'$, because of the two values obtained this is the one which is greater than a right angle.

When angle B is found, angle C, side c and the area are found in the same manner as in Example 1.

Example 3.—In Fig. 40, a = 2 feet, b = 3 feet and A = 30 degrees. Find B, C, c and the area.

The sine of angle B is found as in the previous example:

$$\sin B = \frac{b \times \sin A}{a} = \frac{3 \times \sin 30^{\circ}}{2} = 0.75000.$$

Having sin B = 0.75000, we find from the tables that $B = 48^{\circ} 35'$. From Fig. 40 it is apparent, however, that B is greater than 90 degrees, and as 0.75000 is the sine not only of 48° 35', but also of $180^{\circ} - 48^{\circ} 35' = 131^{\circ} 25'$, angle B in this case equals $131^{\circ} 25'$.

When the angle B is found, angle C, side c and the area are found in the same manner as in Example 1.

Summary of Formulas

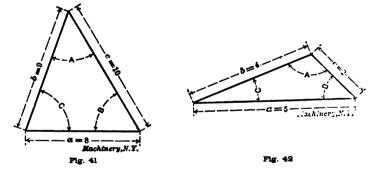
If the angles of a triangle are called A, B and C, and the sides opposite each of the angles a, b and c, respectively, as shown in Fig. 37; then if any two sides and one angle opposite one of the known sides are given, the other angles, the remaining side, and the area may be found. The angle opposite the other known side is first found by any of the formulas below:

No. 54-SOLUTION OF TRIANGLES

$$\sin C = \frac{c \times \sin A}{a} \qquad \qquad \sin C = \frac{c \times \sin B}{b}$$

The third angle, the remaining side and the area are then found by using Formulas (4) to (9) inclusive.

4. Three Sides Known


. Example 1.—In Fig. 41 the three sides a, b and c of the triangle are given; a = 8 inches, b = 9 inches and c = 10 inches. Find the angles A, B and C and the area.

Either of the angles can be found by the formulas given below:

$$\cos A = \frac{b^2 + c^2 - a^2}{2 \times b \times c} \tag{12}$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2 \times a \times c} \tag{13}$$

$$\cos C = \frac{a^3 + b^2 - c^2}{2 \times a \times b} \tag{14}$$

If we insert the given lengths of the sides in the first of the formulas above we have:

$$\cos A = \frac{9^{2} + 10^{2} - 8^{3}}{2 \times 9 \times 10} = \frac{9 \times 9 + 10 \times 10 - 8 \times 8}{2 \times 5 \times 10} = \frac{31 + 100 - 64}{180}$$
$$= \frac{117}{180} = 0.65000$$

Having cos A = 0.65000 we find from the tables that angle $A = 49^{\circ} 27'$.

Having found angle A, the easiest method for finding angle B is by Formula (11). From this formula we have:

$$\sin B = \frac{b \times \sin A}{a} = \frac{9 \times \sin 49^{\circ} 27'}{8} = \frac{9 \times 0.75984}{8} = 0.85482$$
Digitized by Google

Having sin B = 0.85482, we find from the tables that $B = 58^{\circ}$ 44'. Angle C is now found by Formula (9): $C = 180^{\circ} - (A + B) = 180^{\circ} - (49^{\circ} 27' + 58^{\circ} 44') = 71^{\circ} 49'.$ The area is finally found from Formula (6):

$$\operatorname{Area} = \frac{a \times b \times \sin C}{2} = \frac{8 \times 9 \times \sin 71^{\circ} 49'}{2} = \frac{8 \times 9 \times 0.95006}{2}$$

= 34.20 square inches.

Example 2.—In Fig. 42, a = 5 inches, b = 4 inches and c = 2 inches. Find the angles of the triangle.

Using Formula (12), given in Example 1, we have:

$$\cos A = \frac{4^{2} + 2^{2} - 5^{3}}{2 \times 4 \times 2} = \frac{16 + 4 - 25}{16} = \frac{20 - 25}{16}$$

It will be seen that in the numerator of the last fraction above, the number to be subtracted from 20 is greater than 20. The numbers are therefore reversed, as explained in Chapter III, 20 being subtracted from 25, the remainder then being negative. Hence:

$$\cos A = \frac{20 - 25}{16} = \frac{-5}{16} = -0.31250.$$

The final result is negative, because a negative number (-5) is divided by a positive number (16). In Chapter V it is stated that the cosines of angles greater than 90 degrees and smaller than 180 degrees are negative. In an example in the same chapter is shown how to find the angle whose tangent is negative; an angle whose cosine is negative is found in a similar manner: Find the value nearest to 0.31250 in the columns of cosines in the tables. It will be seen that the nearest value is 0.31261, which is the cosine of 71° 47′. As the cosine here is negative, angle A, however, is not 71° 47′ but = $180^{\circ} - 71^{\circ} 47' = 108^{\circ} 13'$. Now angle B is found by the formula:

$$\sin B = \frac{b \times \sin A}{a} = \frac{4 \times \sin 108^{\circ} \, 13'}{5}$$

As stated in Chapter V, $\sin 108^{\circ} 13' = \sin (180^{\circ} - 108^{\circ} 13') = \sin 71^{\circ} 47'$. Hence:

$$\sin B = \frac{4 \times \sin 71^{\circ} 47'}{5} = \frac{4 \times 0.94988}{5} = 0.75990$$

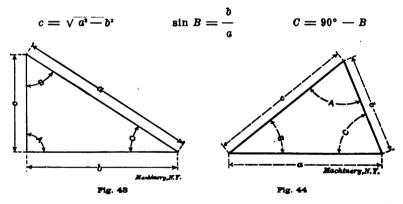
and B == 49° 27'.

÷

Finally, angle C is found by the formula:

 $C = 180^{\circ} - (A + B) = 180^{\circ} - (108^{\circ} 13' + 49^{\circ} 27') = 22^{\circ} 20'.$

CHAPTER X


SUMMARY OF FORMULAS FOR SOLUTION OF TRIANGLES

In the following will be given a summary of all the required formulas, and the methods of procedure for solving both right- and obliqueangled triangles.

Right-angled Triangles

In all the formulas for right-angled triangles reference is made to Fig. 43, in which the sides and angles are given the same names as in the formulas. Use the formulas in the order given.

1. When the hypotenuse and one of the sides forming the right angle are given, call the hypotenuse a and the known side b. Then:

2. When the two sides forming the right angle are given, call them b and c. Then:

 $a = \sqrt{b^2 + c^2}$ $\tan B = \frac{b}{c}$ $C = 90^\circ - B$

3. When the hypotenuse and one acute angle are given, call the hypotenuse a and the known angle B. Then:

$$c = a \times \cos B$$
 $b = a \times \sin B$ $C = 90^{\circ} - B$

4. When one acute angle and its adjacent side are given, call the angle B and the adjacent known side c. Then:

$$a = \frac{c}{\cos B}$$
 $b = c \times \tan B$ $C = 90^{\circ} - B$

5. When one acute angle and the side opposite it are given, call the angle B and the known opposite side b. Then:

Digitized by Google

t.

 $a = \frac{b}{\sin B}$ $c = b \times \cot B$ $\cdot C = 90^{\circ} - B$

The area of all right-angled triangles equals the product of the sides forming the right angle divided by 2; or, referring to Fig. 43:

$$Area = \frac{b \times c}{2}$$

Oblique-angled Triangles

In all the formulas for oblique-angled triangles reference is made to Fig. 44, in which the sides and angles are given the same names as in the formulas. Use the formulas in the order given.

1. When two angles and one side are given, call the given side a, the angle opposite it A, and the other angle B. Then if A is known:

$$C = 180^{\circ} - (A + B)$$

$$b = \frac{a \times \sin B}{\sin A}$$

$$c = \frac{a \times \sin C}{\sin A}$$
Area = $\frac{a \times b \times \sin C}{2}$

If B and C are given, but not A, then $A = 180^{\circ} - (B + C)$, the other formulas being as above.

2. When two sides and the included angle are given, call the given sides a and b and the given angle between them C. Then:

$$\tan A = \frac{a \times \sin C}{b - a \times \cos C}$$
$$B = 180^{\circ} - (A + C)$$
$$c = \frac{a \times \sin C}{\sin A}$$
$$\operatorname{Area} = \frac{a \times b \times \sin C}{2}$$

3. When two sides and the angle opposite one of the sides are given, call the given angle A, the side opposite it a and the other given side b. Then:

$$\sin B = \frac{b \times \sin A}{a}$$

$$C = 180^{\circ} - (A + B)$$

$$c = \frac{a \times \sin C}{\sin A}$$

C I .

$$\operatorname{Area} = \frac{a \times b \times \sin C}{2}$$

4. When the three sides of a triangle are given, call them a. b and c and the sngles opposite them A, B and C, respectively. Then:

$$\cos A = \frac{b^{2} + c^{2} - a^{3}}{2 \times b \times c}$$
$$\sin B = \frac{b \times \sin A}{a}$$
$$C = 180^{\circ} - (A + B)$$
$$\operatorname{Ares} = \frac{a \times b \times \sin C}{a}$$

The cases given include all conditions where a solution of the triangle is possible. If all the angles are given, but none of the sides, the triangle may be of any size, but the three sides will be in exact proportion to each other. The formulas below give this relationship:

> $a: b = \sin A : \sin B$ $b: c = \sin B : \sin C$ $a: c = \sin A : \sin C$

CHAPTER XI

THE USE OF LOGARITHMS IN SOLVING TRIANGLES

Before undertaking to study the use of logarithms for solving triangles, the student should thoroughly understand the use of logarithms in ordinary numerical examples, as explained in MACHINERY'S Reference Series No. 53, "The Use of Logarithms and Logarithmic Tables." When the use of logarithms in ordinary calculations is well understood, their application to trigonometric problems is very simple. It is merely a question of finding the logarithm for the function of the angle from the tables in Part II of this treatise, and carrying out the calculation in the same manner as with logarithms in general. The heavy-faced figures in the columns headed "Log." in the tables give these logarithms. A few explanatory remarks as to the method in which they are given, will, however, be necessary.

In all cases in these tables, the characteristic is given together with the mantissa. The complete logarithm of the functions, therefore, is found directly from the tables. As however, the values of the natural functions in the three first columns from the left in the tables are always less than 1, the characteristic would always be negative. In order to avoid this negative characteristic, the logarithm as given has had

LOGARITHMS

10 added to its value, so that the actual value of the logarithm for $\cos 3$ deg., for example, is 9.99940 - 10, as is evident if we remember that the logarithm of a number less than 1 must be negative. When using these logarithms in calculations with other logarithms, the calculations can be carried out exactly as explained in Reference Series No 53, if when writing down the logarithm taken from the tables we write I.99940 for 9.99940, 2.71940 for 8.71940, 3.30882 for 7.30882, and so forth, changing the form to that which was made use of in the previous Reference book. It should be remembered, however, that this change refers only to the three first columns of logarithms. In the fourth column (headed Cot.), the logarithm is given in the exact form in which it is to be used. Of course, if it appears in the divisor of an expression, it must be transformed to its *negative* value, as explained on page 10, Reference Series No. 53.

A few examples will give a better idea of the methods to be followed. The student should carefully study these examples, until all the methods employed are perfectly clear to him. The logarithms of ordinary numbers are found from Reference Series No. 53, and the logarithms for functions of angles from Reference Series No. 55.

Example 1.—Find the area of a triangle where the lengths of two sides are 53 and 82 inches, and the angle between them is 30 degrees.

The area is found by the formula:

$$\operatorname{Area} = \frac{a \times b \times \sin C}{2} = \frac{53 \times 82 \times \sin 30^{\circ}}{2}$$

Proceed now to find the logarithms:

$$\begin{array}{rrrr} \log 53 & = 1.72428 \\ \log 82 & = 1.91381 \\ \log \sin 30^\circ = 1.69897 \\ -\log 2 & = 1.69897 \\ \hline & 3.03603 \end{array}$$

The logarithm of the area thus is 3.03603, and from the tables in Reference Series No. 53 we find by interpolation that the area then equals 1086.5 square inches.

Example 2.—Angles A and C and side a in a triangle are known. (See Fig. 44.) $A = 37^{\circ} 42'$; $C = 68^{\circ} 12'$; a = 12 inches. Find side c. The formula for finding side c is:

$$c = \frac{a \times \sin C}{\sin A} = \frac{12 \times \sin 68^{\circ} 12'}{\sin 37^{\circ} 42'}$$

When finding the logarithms, note that as log sin $37^{\circ} 42' = 1.78642$, the negative value of the logarithm equals 0.21358.

$$\begin{array}{r} \log 12 &= 1.07918 \\ \log \sin 68^{\circ} 12' &= 1.96778 \\ -\log \sin 37^{\circ} 42' &= 0.21358 \\ \hline 1.26054 \end{array}$$

Thus log c = 1.26054, and hence c = 18.22 inches.

Example 3.—Two sides of a triangle are 9 and 17 inches long. The angle included between them is 32 degrees. Find the angle opposite the side 9 inches long.

The formula by means of which the angle sought can be found is (see Chapter IX):

$$\tan A = \frac{a \times \sin C}{b - a \times \cos C} = \frac{9 \times \sin 32^{\circ}}{17 - 9 \times \cos 32^{\circ}}$$

As only multiplications and divisions can be carried out by means of ordinary logarithms, the subtraction in the denominator must be made independently of logarithms; but logarithms can be used for the multiplications and divisions required. The first step will be to find the value of the denominator; we must then first find the product $9 \times \cos 32^{\circ}$.

$$\frac{\log 9}{\log \cos 32^{\circ} = 1.92842}$$

Hence $9 \times \cos 32^{\circ} = 7.6323$, and 17 - 7.6323 = 9.3677. Therefore,

$$\tan A = \frac{9 \times \sin 32^{\circ}}{9.3677}$$

$$\log 9 = 0.95424$$

$$\log \sin 32^{\circ} = 1.72421$$

$$-\log 9.3677 = 1.02837$$

Log tan A = 1.70682, or as given in the tables 9.70682. Hence $A = 26^{\circ} 59'$.

The columns "d" (difference) and "c. d." (common differences) in the tables, give the differences between consecutive logarithms for use in interpolation in cases where subdivisions of minutes are required. The method used is the same as that used when interpolating between logarithms of ordinary numbers. It is seldom, however, in ordinary shop calculations or in machine design, that finer divisions of the angle than minutes are required.

No. 22. CALCULATION OF ELEMENTS OF MACHINE DESIGN.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. THEORY OF CRANE DESIGN.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys, etc.

No. 24. EXAMPLES OF CALCULATING DESIGNS.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. DEEP HOLE DRILLING.—Methods of Drilling; Construction of Drills.

No. 26. MODERN FUNCH AND DIE CONSTRUCTION.—Construction and Use of Sub-press Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. LOCOMOTIVE DESIGN, Part I.-Boilers, Cylinders, Pipes and Pistons.

No. 28. LOCOMOTIVE DESIGN, Part II.—Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. LOCOMOTIVE DESIGN, Part III.—Smokebox; Exhaust Pipe; Frames; Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels.

No. 30. LOCOMOTIVE DESIGN, Part IV.-Springs, Trucks, Cab and Tender.

No. 31. SCREW THREAD TOOLS AND GAGES.

No. 32. SCREW THREAD CUTTING.-Change Gears; Thread Tools; Kinks.

NO. 33. SYSTEMS AND PRACTICE OF THE DRAFTING-ROOM.

No. 34. CARE AND REPAIR OF DYNAMOS AND MOTORS.

No. 35. TABLES AND FORMULAS FOR SHOP AND DRAFTING-ROOM.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. IRON AND STEEL.—Principles of Manufacture and Treatment.

No. 37. BEVEL GEARING.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. GBINDING AND LAPPING.—Grinding and Grinding Machines; Disk Grinders; Bursting of Emery Wheels; Kinks; Lapping Flat Work and Gages.

No. 39. FANS. VENTILATION AND HEATING .- Fans: Heaters: Shop Heating.

No. 40. FLY-WHEELS.-Their Purpose, Calculation and Design.

No. 41. JIGS AND FLXTURES, Part I.—Principles of Jig and Fixture Design; Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. JIGS AND FIXTURES, Part II.-Open and Closed Drill Jigs.

No. 43. JIGS AND FIXTURES, Part III.—Boring and Milling Fixtures.

No. 44. MACHINE BLACKSMITHING .- Systems, Tools and Machines used.

No. 45. DBOP FORGING .- Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. HARDENING AND TEMPERING .- Hardening Plants; Treating High-

Speed Steel; Hardening Gages; Case-hardening; Hardening Kinks.

No. 47. ELECTRIC OVER-HEAD CRANES .-- Design and Calculation.

No. 48. FILES AND FILING .- Types of Files; Using and Making Files.

NO. 49. GIBDERS FOR ELECTRIC OVERHEAD CRANES.

No. 50. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS. Part I.

No. 51. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part II.

NO. 52. ADVANCED SHOP ARITHMETIC FOR THE MACHINIST.

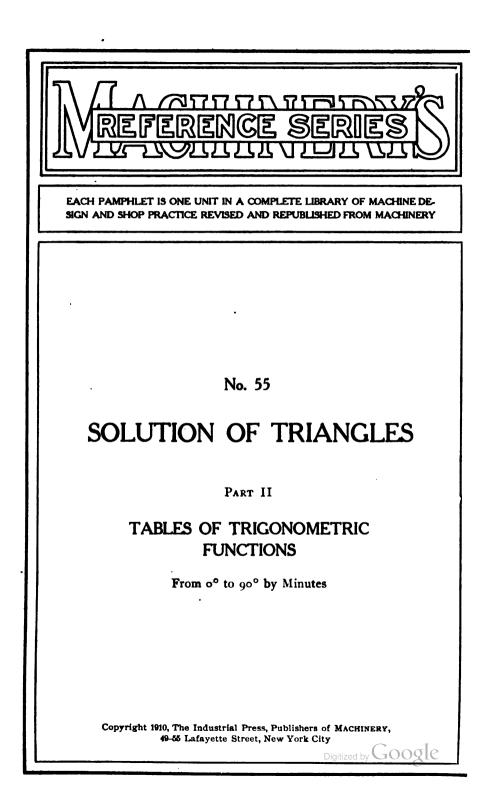
No. 53. USE OF LOGARITHMS, AND LOGARITHMIC TABLES.

No. 54. Solution of TRIANGLES, Part I.—Methods, Rules and Examples.

No. 55. Solution of TRIANGLES, Part II.-Tables of Natural Functions.

No. 56. BALL BEARINGS .- Principles of Design and Construction

No. 57. METAL SPINNING.-Machines, Tools and Methods Used.


No. 58. HELICAL AND ELLIPTIC SPRINGS.—Calculation and Design.

No. 59. MACHINES, TOOLS AND METHODS OF AUTOMOBILE MANUFACTURE.

No. 60. CONSTRUCTION AND MANUFACTURE OF AUTOMOBILES.

The Industrial Press, Publishers of MACHINERY 49-55 Lafeyette Street ^{Subway Station}, New York City, U.S.A.

MACHINERY'S REFERENCE SERIES

This treatise is one unit in a comprehensive Series of Reference books, originated by MACHINERY, and including an indefinite number of compact units, each covering one subject thoroughly. The whole series comprises a complete working library of mechanical literature in which the Mechanical Engineer, the Master Mechanic, the Designer, the Machinist and Tool-maker will find the special information he wishes to secure, selected, carefully revised and condensed for him. The books are sold singly or in complete sets, as may be desired. The price of each book is 25 cents, and it is possible to secure them on even more favorable terms under special offers issued by MACHINERY's circulation department and sent to any one on request.

The success of the Reference Series was instantaneous and copies are now widely distributed in machine shops and metal working plants everywhere.

CONTENTS OF REFERENCE BOOKS

No. 1. WORM GEARING.—Calculating Dimensions for Worm Gearing; Hobs for Worm-Gears; Location of Pitch Circle; Self-Locking Worm Gearing; etc.

No. 2. DEAFTING-ROOM PEACTICE.—Drafting-Room System; Tracing, Lettering and Mounting; Card Index Systems.

No. 3. DRILL JIGS.—Elementary Principles of Drill Jigs; Drilling Jig Plates; Examples of Drill Jigs; Jig Bushings; Using Jigs to Best Advantage.

No. 4. MILLING FIXTURES.—Elementary Principles of Milling Fixtures; Collection of Examples of Milling Fixture Design, from practice.

NO. 5. FIRST PRINCIPLES OF THEORETICAL MECHANICS.

No. 6. PUNCH AND DIE WORK.—Principles of Punch and Die Work; Suggestions for the Making and Use of Dies; Examples of Die and Punch Design.

No. 7. LATHE AND PLANER TOOLS.—Cutting Tools for Planer and Lathe; Boring Tools; Shape of Standard Shop Tools; Forming Tools.

No. 8. WORKING DRAWINGS AND DRAFTING-ROOM KINKS.

No. 9. DESIGNING AND CUTTING CAMS.—Drafting of Cams; Cam Curves; Cam Design and Cam Cutting; Suggestions in Cam Making.

No. 10. EXAMPLES OF MACHINE SHOP PRACTICE.—Cutting Bevel Gears with Rotary Cutters; Making a Worm-Gear; Spindle Construction.

No. 11. BEABINGS.—Design of Bearings; Causes of Hot Bearings; Alloys for Bearings; Friction and Lubrication; Friction of Roller Bearings.

No. 12. MATHEMATICS OF MACHINE DESIGN.—Compiled with special reference to shafting and efficiency of hoisting machinery.

No. 13. BLANKING DIES.—Making Blanking Dies; Blanking and Piercing Dies; Construction of Split Dies; Novel Ideas in Die Making.

No. 14. DETAILS OF MACHINE TOOL DESIGN.—Cone Pulleys and Belts; Strength of Countershafts; Tumbler Gear Design; Faults of Iron Castings.

No. 15. SPUE GEABING.—First Principles of Gearing; Formulas for Spur Gearing; Design and Calculation of Gear Wheels; Strength of Gear Teeth.

No. 16. MACHINE TOOL DRIVES.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. STRENGTH OF CYLINDERS .--- Formulas, Charts, and Diagrams.

NO. 18. SHOP ABITHMETIC FOR THE MACHINIST.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. USE OF FORMULAS IN MECHANICS .- With numerous applications.

No. 20. SPIRAL GEARING.—Calculating Spiral Gears; Rules, Formulas, and Diagrams for Designing Spiral Gears; Efficiency of Spiral Gearing, etc.

No. 21. MEASUBING TOOLS.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc. See inside back cover for additional titles

MACHINERY'S REFERENCE SERIES

EACH NUMBER IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DESIGN AND SHOP PRACTICE REVISED AND REPUB-LISHED FROM MACHINERY

NUMBER 55

SOLUTION OF TRIANGLES

Part II

TABLES OF TRIGONOMETRIC FUNCTIONS

From 0° to 90° by Minutes

Copyright, 1910, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City

TABLES OF TRIGONOMETRIC FUNCTIONS

On the following pages are given tables for the natural trigonometric functions, sines, cosines, tangents and cotangents, and their logarithms, for every minute in the angle. The logarithms are printed with heavier face type so that no confusion need result from the fact that both the logarithms and the natural functions are given on the same page. The values of the secants and cosecants are not given in these tables, as they are not generally necessary for the solution of triangles, and all the rules and formulas in Part I of this treatise (MACHINERY'S Reference Series No. 54), are given in a form which does not introduce these two functions.

Should, however, the values of these functions be required, they can easily be derived from the tables. The secant is found by dividing 1 by the cosine of the angle, and the cosecant is found by dividing 1 by the sine of the angle. Written as formulas, these rules would be:

 $sec \ a = \frac{1}{\cos a}$ $cosec \ a = \frac{1}{\sin a}$

Example: Find the secant and cosecant of 15 degrees 42 minutes.

sec 15° 42' = $\frac{1}{\cos 15^{\circ} 42'} = \frac{1}{0.96269} = 1.0887$ cosec 15° 42' = $\frac{1}{\sin 15^{\circ} 42'} = \frac{1}{0.27060} = 3.6955$

The use of the tables has been fully explained in Part I, and it is, therefore, not necessary to give any further explanations here; if the use of the tables is not thoroughly understood, the explanatory matter found in Chapter V of Part I should be carefully studied.

	•		()°			
•	Nat. Sin Log.	d.	Nat.CosLog.	Nat.TanLog.	c. d.	Log. Cot Nat.	
0	00000		T.00000 IO.00000	00000		00	60
1 2	020 6.46373 058 6.76476 087 6.94085	30103 17609	000 0.00000	029 6.46373 058 6.76476	30103 17609	3.53027 3437.7 3.23524 1718.9	59 58
3	087 6.94085 116 7.00579	12494	000 0.00000	087 6.94085 116 7.00579	12494	3.05915 1145.9 2.93421 859.44	57 56
5	00145 7.16270	9691	00000.010.00000	00145 7.16270	9691		55
6	175 7.24188 204 7.30882	7918 6694	000 0.00000	175 7.24188 204 7.30882	7918 6694	2.83730 687.55 2.75812 572.96 2.69118 491.11	54
7 8	233 7.36682	5800 5115	000 0.00000	233 7.36682	5800 5115	2.63318 429.72	53 52
<u>9</u> 10	262 7.41797	4576	000 0.0000	262 7.41797	4576	2.58203 381.97	51
10	00291 7.46373 320 7.50512	4139	1.00000 I0.00000 99999 0.00000	00291 7.46373 320 7.50512	4139	2.53627 343.77 2.49488 312.52	50 40
12	349 7.54201	3779 3476	999 0.00000	349 7.54291	3779 3476	2.45709 280.48	49 48
13 14	378 7.57707 407 7.00985	3218	999 0.00000 999 0.00000	378 7.57767 407 7.60986	3219	2.42233 264.44 2.39014 245.55	47 46
15	00436 7.63082	2997 2802	9999910.00000	00436 7.63082	2996 2803	2.36018 229.18	45
16 17	465 7.60784 495 7.69417	2633	999 0.00000 999 0.00000	465 7.60785 495 7.60418	2633	2.33215 214.86 2.30582 202.22	44 43
18	524 7.71900	2483 2348	999 9-999999	524 7.71900	2482 2348	2.28100 190.98	42
19 20	553 7.74248	2227	998 9-999999	553 7.74248	2228	2.25752 180.93	41
21 21	00582 7.76475 611 7.78504	2119	99998 9 .99999 998 9 .99999	00582 7.76476 611 7.78505	2119	2.23524 171.89 2.21405 163.70	40 39
22	611 7.78594 640 7.80015	2021 1930	00000.0 800	611 7.78595 640 7.80015	2020 1931	2.21405 163.70 2.19385 156.26	38
23 24	669 7.82545 698 7.8439 3	1848	998 9 .99999 998 9 .99999	669 7.82546 698 7.84394	1848	2.17454 149.47 2.15000 143.24	37 36
25	00727 7.80166	1773 1704	99997 9-99999	00727 7.86167	1773 1704	2.13833 137.51	85
26 27	75 ⁶ 7.87870 785 7.89509	1639	997 9-99999 997 9-999999	756 7.87871 785 7.89510	1639	2.12129 132.22 2.10490 127.32	34 33
28	814 7.91088	1579 1524	997 9-999999	815 7.91089	1579 1524	2.08011 122.77	32
29 80	844 7.92612	1472	<u>996 9.99998</u>	844 7.92613	1473	2.07387 118.54	31
3I	00873 7.94084 902 7.05508	1424	99996 9.99998 996 9.99998	002 7.05510	1424	2.05914 114.59 2.04490 110.89	30 29
32	902 7.95508 931 7.96887	1379 1336	995 9.99998	902 7.95510 931 7.96889	1379 1336	2.03111 107.43	28
33 34	960 7.98223 989 7.99520	1297	995 9-99998 995 9-99998	960 7.98225 989 7.99522	1297	2.01775 104.17 2.00478 101.11	27 26
85	01018 8.00779	1259 1223	99995 9.99998	01018 8.00781	1259 1223	1.99219 98.218	25
36 37	047 8.02002 076 8.03192	1190	995 9 .99998 994 9 .99997	047 8.02004 076 8.03194	1190	1.97996 95.489 1.96806 92.908	24 23
38	105 8.04350	1158 1128	994 9-99997	105 8.04353	1159 1128	1.05647 90.463	22
<u>39</u> 40	134 8.05478	1100	994 9-99997	135 8.05481	1100	1.94519 88.144	21 20
41	01164 8.00578 193 8.07050	1072	99993 9-99997 993 9-99997	01164 8.06581 193 8.07653	1072	1.93419 85.940 1.92347 83.844	19
42	222 8.08696 • 251 8.09718	1046 1022	993 9 .99997	222 8.08700 251 8.09722	I047 I022	1.91300 81.847 1.90278 79.943	18
43 44	280 8.10717	999	992 9.99997 992 9.99996	280 8.10720	998	1.89280 78.126	17 16
45	01309 8.11693	976 954	99991 9.99996	01309 8.11696	976 955	1.88304 76.390	15
46 47	338 8.12647 367 8.13581	934	991 9 .99996 991 9 .99996	338 8.12651 367 8.13585	934	1.87340 74.729 1.86415 73.139 1.85500 71.615	14 13
48	396 8.14495	914 896	990 9.99996	396 8.14500	915 895	1.85500 71.615	12
49 50	425 8.15391 01454 8.16268	877	990 9.999996 99989 9.999995	425 8.15395 01455 8.16273	878	1.84005 70.153	11
51	483 8.17128	860 843	080 0.00005	484 8.17133	860 843	1.83727 68.750 1.82807 67.402	9
52 53	513 8.17971 542 8.18798	827	989 9-99995	513 8.17970 542 8.18804	828	1.82024 66.105 1.81196 64.858	8
53 54	571 8.19010	812	988 9.99995 988 9.99995	571 8.19616	812	1.80384 63.657	7 6
55	01600 8.20407	797 782	99987 9-99994	01600 8.20413	797 782	1.79587 62.499	5
56 57	629 8.21189 658 8.21958	769	987 9.99994 986 9.99994	629 8.21195 658 8.21964	769	1.78805 61.383	4
57 58	687 8.22713	755 743	986 9.99994	687 8.22720	756 742	1.77280 59.266	2
58	716 8.23450 745 8.24180	730	985 9-99994 985 9-99993	716 8.23462	730	1.76538 58.261 1.75808 57.290	I 0
	Nat. Cos Log.	d.	1	Nat.CotLog.	c. d.	Log.TanNat.	

89°

•	0
	-

I Nat. Cos Log. Nat. Tan Log. c.d. Log. Cqt Nat. 0 01745 8.24160 777 9938 90000 01746 8.24100 776 1.77808 57.300 600 3 833 8.30004 654 9938 990000 803 8.3011 566 1.77808 57.400 653 1.77808 57.400 653 1.77808 57.445 557 57 1.77808 57.445 51 56 663 1.77808 57.445 51 54 53 56 53 56 53 56 53 56 53 56 53 56 53 56 53 56 57 1.77307 57.56 53 56 57 1.60712 47.774 43 1.77307 57.57 53 56 57 1.60728 47.7740 43 1.77307 57.57 57 57 57 57 57 57 57 57 57 57 57	1	Mat C	in T	3	bree C		- 	0 D I og	a d	Log Co	t Nat	
1 772 8.1400 773 8.1500 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000 773 8.1000				d.					c.a.	1		
a Bog 3 B.32500 / 000 Bog 3 B.200003 Bog 3 B.200000 D.20000 D.200000 D.20000 D.200000 D.200000 D.200000 D.200000 D.200000 D.2000	-				99985				718	1.75808		
3 832 8.30698 673 983 9.09009 803 8.20690 673 1.73048 54.501 57 6 01801 8.20698 673 983 9.09009 803 8.20696 673 1.73048 53.205 57 6 01801 8.20691 673 983 9.09000 949 8.20696 673 1.77044 51.3705 53 53 53 53 53 53.305 634 1.77044 51.3705 50.49 53 50.49 53 50.49 53 50.49 53 50.49 53 50.49 53 50.49 53 50.49 53 50.49 53 50.49 53 50.49 50 77 4.43 575 77 4.90090 035 8.3305 564 1.060114 4.53.29 553 1.06728 4.6449 4.6449 4.6449 4.643 1.63514 4.6449 4.643 3.554 1.065114 4.6464 4.6449		803	8.25000	706	084		804	8.25616		T 174284		
4 86a 8.3.0988 6.4.4.3.09990 86a 8.3.0900 7.7.7.3004 5.3.2.88a 6.5.7.7.7.3004 5.3.2.88a 6.5.7.7.7.7.3004 5.3.2.88a 6.5.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	3	832	8.20304	695	983		833	8.20312	684	1.73688	54.561	57
a) 01891 8.27001 653 9928 9.999903 938 8.2833 654 1.77034 51.353 53 9 90207 8.30521 653 958 9.999903 938 8.28335 654 1.77034 51.353 53 93 9 90207 8.30251 654 9979 9.999901 93036 8.30836 677 1.07124 49.314 55 10 0056 8.30702 509 977 9.999901 10036 8.30888 677 1.07280 .085 44 45 1.07280 .085 44 45 1.07280 .085 44 45 1.07280 .085 44 45 1.04553 454 1.04553 44 45 1.04553 44 45 1.04553 44 45 1.04553 44 45 1.045533 454 1.045533 44 45 1.045533 44 44 45 1.045533 44 44 45 1.045533 44 44 45 1.045533 44 1.045533 1.04234 44 </td <td>4</td> <td>862</td> <td>8.26988</td> <td></td> <td></td> <td>9-99992</td> <td>862</td> <td></td> <td></td> <td>1.73004</td> <td></td> <td></td>	4	862	8.26988			9-99992	862			1.73004		
7 949 8.28986 231 1.71014 51.3093 53 33 9 90207 8.30253 634 960 909001 0207 8.30253 634 1.69737 49.816 51 10 00236 8.30873 634 960 909001 02036 8.30888 617 1.64024 44.14 60 112 094 8.332703 509 977 909001 02036 8.33836 617 1.64024 44.14 46 113 123 8.332703 509 977 909000 0138 8.33836 551 1.66024 44.44 47 124 8.337125 553 977 9.99900 0138 8.33680 553 1.663311 44.49 44 44.44 44 43 43.4401 553 1.653311 44.49 44 43.8376 553 1.663311 44.496 44 43.8376 553 1.663311 44.496 44 44.38.3496 574 1.663311 44.496 44 43.8376 553 1.663311					99982			8.27669		1.72331		
8 976 8.30029 674 8.30029 674 1.70371 50.543 53 10 00205 8.30255 664 99079 9.909001 00207 8.30235 662 1.60114 49.112 49 11 005 8.31405 668 977 9.909001 005 8.31137 599 1.60714 49.144 49 13 123 8.33405 565 977 9.909001 0015 8.31137 599 1.60728 4.449 46 14 153 8.33405 555 9776 9.909001 0015 8.3188 555 575 9766 9.90900 0013 8.33886 554 1.66028 4.449 46 16 00237 8.30785 555 9776 9.90908 206 8.336049 5561 1.64471 4.439 44 4.43 8.30795 503 1.632311 4.449 4.14 3.44 8.30795 503 1.632311 4.9494 4.16 .668 9.9096 538 8.3068 5571 1.640171			8.28324			9.99992		8.28332	654	1.71008		
9 0	8		8.20621						643		50.540	
10 corage 8.30495 68.31405 68.31405 600 11 corage 8.31405 668 979 9.99990 corage 8.31112 599 1.60124 4.112 4.112 4.112 4.112 4.112 4.112 4.112 4.112 4.112 4.112 4.112 4.112 4.112 4.112 4.117 4.117 4.117 4.117 4.117 4.117 4.117 4.117 4.117 4.117 4.117 4.117 4.117 4.117 4.118 4.117 4.118 4.118 4.117 4.117 4.117 4.117 4.118 5.111 4.114 4.117 4.118 5.111 4.114 4.117 4.118 5.111 4.114 4.117 4.118 5.111 4.114 4.110 5.051 1.103857 4.313 4.110 5.051 1.103857 4.313 4.114 4.113 3.110 4.114 4.113 3.111 4.113 3.111 4.114 4.113 3.111 4.114 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111								8.30263			49.816	51
11 cods 8.3103 code 979 9.99990 code 8.31505 code 1.64305 d+1.14 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 3.3300 599 777 9.99990 1.4 8.33800 584 1.67280 .685 47 14 152a 8.33802 533 77 9.99990 123 8.33802 584 1.66114 4.5329 44 15 211 8.34615 553 774 9.99990 208 8.35013 564 1.66471 4.659 43 18 200 8.33678 553 774 9.99998 208 8.35143 554 1.67711 4.33 39 21 356 8.37750 530 771 9.99998 2473 8.3023 557 1.67311 4.413 3.377 5732 1.67711 4.33 39 23 356 8.4776 540 540 377 9.9998 544 8.	10	02036	8.30879		99979	9.99991		8.30888				
13 123 8.32701 5.99 977 0.00000 124 8.32711 5.99 1.67280 .085 47.44 14 152 8.33805 583 99976 0.90000 123 8.33885 554 1.66124 4.58 4.56 15 8.33875 553 976 0.90000 0.0128 8.33885 554 1.66124 4.538 4.533 1.64120 .286 4.53 1.64120 .286 4.53 1.64120 .286 4.44 4.53877 1.63837 4.438 8.35775 553 977 0.90008 0.02328 8.35669 540 1.64120 .66144 4.40 20 0.2377 8.30075 550 977 0.900987 3.37 8.3720 533 1.64170 .433 39 1.63211 42.064 40 1.60771 4.436 8.30731 539 7.60834 1.60771 4.436 8.30731 539 7.60834 1.60771 4.436 8.30731 539 1.60771 4.436 8.30731 539 1.60771 4.436 8.30731			8.31495		979				607	1.68405		49
15 oza81 833875 503 99976 999900 oza84 833885 574 1.66114 45.802 44 16 art 833075 568 975 999906 art 833885 574 1.65339 226 44 19 op8 830735 553 974 9.99996 aco 833578 553 1.64120 oco64 42 20 02327 836078 547 99975 9.99998 357 8.37230 553 1.64170 .44183 3387 433 39 974 9.99998 357 8.37230 553 1.64171 443 3387 553 1.64171 433 39 737 3.99998 357 8.37230 553 1.60771 44.33 399 550 8.40830 550 1.60077 44.43 8.38233 550 1.60077 44.436 856 550 8.40830 451 1.50170 350 1.60077 44.436 856 550 8.40830 450 1.50170 373 8.41307 1.50066 550 </td <td></td> <td>094</td> <td></td> <td></td> <td></td> <td>9.999990</td> <td></td> <td></td> <td>599</td> <td>1.07000</td> <td></td> <td></td>		094				9.999990			599	1.07000		
15 oza81 833875 503 99976 999900 oza84 833885 574 1.66114 45.802 44 16 art 833075 568 975 999906 art 833885 574 1.65339 226 44 19 op8 830735 553 974 9.99996 aco 833578 553 1.64120 oco64 42 20 02327 836078 547 99975 9.99998 357 8.37230 553 1.64170 .44183 3387 433 39 974 9.99998 357 8.37230 553 1.64171 443 3387 553 1.64171 433 39 737 3.99998 357 8.37230 553 1.60771 44.33 399 550 8.40830 550 1.60077 44.43 8.38233 550 1.60077 44.436 856 550 8.40830 451 1.50170 350 1.60077 44.436 856 550 8.40830 450 1.50170 373 8.41307 1.50066 550 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.66608</td> <td>46.449</td> <td></td>										1.66608	46.449	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			8.33875			0.00000					45.829	45
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		211	8.34450	575		0.00080		8.344 6 1	575	1.65539	.226	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		240	8.35018	560		0.00000			561	1.04071		
90 0237 8.36676 347 99973 0.909088 02328 8.36689 540 1.62771 4.33 39 23 356 8.37717 533 972 0.909088 386 8.37762 533 1.62738 4.43 3.93 1.62238 4.1916 33 23 348 8.38705 556 971 0.909097 4414 8.38809 557 1.67711 -4.11 37 24 443 8.38705 556 971 0.909097 62473 8.39323 5502 1.60077 40-436 86 26 501 8.39818 502 99059 0.909067 5528 8.40334 4901 1.50166 3.9053 3.40334 4901 1.50166 3.9056 3.40334 4901 1.50166 3.9056 3.40334 4901 1.50166 3.9056 3.40334 4901 1.50166 3.9056 3.31 1.50166 3.9056 3.31 1.50166 3.9056 3.31 1.50166 3.9056 3.31 1.50166 3.9056 3.31 1.50166 <td< td=""><td></td><td></td><td>8.35578 8.20121</td><td>553</td><td></td><td>9-99989</td><td></td><td>8 20142</td><td>553</td><td>1.04410</td><td></td><td></td></td<>			8.35578 8.20121	553		9-99989		8 20142	553	1.04410		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0.00088			546	I		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.00088						
23 414 8.38700 500 970 9.90997 415 8.382800 500 1.61191 4.917 37 24 443 8.38700 514 905 9.90997 444 8.38800 500 1.61191 4.917 37 25 501 8.30818 502 905 9.90996 502 8.30832 500 1.50107 40.436 85 29 580 8.44130 491 905 9.90965 550 8.40320 401 1.50107 -057 32 20 580 8.41730 485 99056 9.90985 560 8.40320 401 1.55803 38.18 30 30 056 8.41730 485 99056 9.90984 775 8.41807 480 1.55723 38.18 30 31 647 8.4130 474 964 9.90984 7735 8.43050 464 1.557238 3.56.95 2.157738 3.58 32 1.55748 3.56.95 2.57 1.55736 3.426 1.55339 3.56.95<	22		8.37750	533		0.00088	386	8.37762		1.02238	41.916	38
44 443 6.30700 514 9970 999097 0444 6.30803 514 1.0017 40.436 35 27 530 8.30818 502 969 9.90966 503 8.30833 502 1.00168 39.955 34 27 530 8.40320 496 966 9.90966 550 8.40834 491 1.50070 .057 32 29 580 8.41307 485 99966 9.90985 589 8.41321 486 1.50070 .057 33 30 02618 8.41702 480 965 9.90985 648 8.41227 470 1.58103 38.188 30 31 647 8.42277 470 965 9.90984 676 8.41307 470 1.577.33 3.77.92 29 33 705 8.43206 440 1.50768 8.056 77 8.44594 450 9.90964 776 8.43207 470 1.557369 3.5801 24 33 705 8.44594 455			8.38270			0.00087		8.38289	520			37
xab cod472 8.39310 cod 99900 0.99900 cod473 8.39333 cod 1.6017 4.1430 2.33 xab 500 8.39833 500 9069 909066 531 8.39833 500 1.60168 39.953 34 33 500 8.40374 491 966 9.99985 589 8.41307 480 1.50170 .507 33 30 coz618 8.41377 480 965 9.99985 589 8.41307 480 1.55170 33.755 33.8188 30 31 c47 8.42374 474 965 9.99984 676 8.43232 477 1.57713 37.759 29 32 c56 8.43264 459 99052 9.99984 735 8.43232 477 1.55349 35.81 24 33 755 8.43264 455 960 9.99987 9.9448 441 1.55349 35.801 24 1.55349 3.5.												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			8.30310		99909	9.99987		8.30323	509	1.00077		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			8.40320		668	0.00086					.506	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			8.40816		967	0.000000		8.40830		1.50170	.057	32
						9.99985						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					99966	9.99985			480			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			8.42272			9-99985						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			843210	470		0.00084		8.43232		1.50708		
		734	8.43680		963	0.00084						26
30 792 8.44594 450 960 9.09083 793 8.44011 450 1.53389 35.801 42 37 811 8.45044 450 960 9.09083 822 8.45061 450 1.54939 431 23 39 879 8.45044 445 950 9.09082 851 8.45061 441 1.54939 431 23 39 879 8.45030 433 955 9.09082 0818 8.45048 437 1.53015 34.368 70 22 40 cagos8 8.47050 433 9955 9.09081 939 8.46817 432 1.53015 34.368 707 12 1.53015 34.368 707 15 16 1.51317 21 1.53183 .52775 33.694 18 1.52775 33.694 18 1.52195 32.697 16 1.51917 .421 1.51318 13 13 1.5191 .242 1.5075 .118 13 14 1.50775 .118 13 14 1.50775 .1	85	02763			99962	9.99983	02764	8.44156		1.55844	36.178	25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			8.44594		961	9-99983		8.44611				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37		8.45044			9-99983						
40 cooped8 846366 433 popo58 popo57 popo58 popo59 popo57 popo59 popo59 popo79 res <td< td=""><td></td><td>879</td><td>845030</td><td></td><td></td><td>0.00082</td><td>881</td><td></td><td></td><td></td><td></td><td></td></td<>		879	845030			0.00082	881					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0.00082	02010					20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4I	938	8.46799		957	0.00081	939	8.46817	432	1.53183	.027	
	42	967	8.47220		956	9.99981		8.47245		1.52755	33.694	
			8.47050			9.99981		8.47000	420			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			8 48482			0.00080			416			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			8.48800	411		0.00070	084	8.48017	412	1.51083	.421	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	47	112	8.40304		952	9-99979	114	8.49325	400	1.50075	.118	13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	48		8.49708		951	9-99979				1.50271		
51 2360 63504 393 99949 950977 393 144063 393 9144 9145 9147 9147 9147 9147 9147 9147 9147 9147 9143 9147 9147 9147 9147 9147 9147 9147 9147 9143 9147 9143 9147 9143 9147 9143 9147			0.50108									_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.50504 8 c0807	393					393	1.49473		
53 286 8.51673 380 946 9.09077 288 8.51696 383 1.48304 .412 7 54 316 8.53055 382 945 9.09077 317 8.52079 383 1.48304 .412 7 55 03345 8.52434 376 99944 9.909776 03346 8.52459 376 1.47021 .145 6 56 374 8.53183 373 943 9.90975 376 8.53208 376 1.47105 .624 4 57 403 8.53183 373 942 9.90975 405 8.53208 370 1.40792 .371 3 58 432 8.53552 367 940 9.90974 438 8.53378 367 1.40792 .321 3 59 461 8.53552 367 940 9.90974 463 8.53945 363 1.40565 28.877 1 60 <td< td=""><td>52</td><td></td><td>8.51287</td><td>390</td><td></td><td></td><td></td><td></td><td></td><td>1.48600</td><td>.683</td><td>8</td></td<>	52		8.51287	390						1.48600	.683	8
54 316 8,53055 379 945 9.99976 317 8,52079 380 147921 .145 0 56 374 8,53183 379 99944 9.99976 03346 8,52459 376 147921 .145 0 56 374 8,53813 379 943 9.99975 376 8,53450 376 147541 29.882 6 57 403 8,53183 373 942 9.99975 405 8,53208 370 140792 .371 3 58 432 8,53552 367 940 9.99974 434 8,5376 367 140792 .371 3 59 461 8,53513 363 363 949 9.99974 463 8,5376 367 146222 .122 2 2 363 146255 28.877 1 146555 28.877 1 146552 26.8.677 1 146552 26.8.77 1 14	53	286	8.51673	380	946			8.51696		1.48304	.412	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		316	8.52055		945				380			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.52434			9.99976	03346	8.52459	376	1.47541		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		374		373		9-99975		0.52835 8 52208	373	1.47105	• •	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57			369				8.53578	370		.122	
60 490 8.54282 303 939 9.99974 492 8.54308 303 1.45692 .636 0 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. c.d. Log. Tan Nat. /	59	461	8.53010	307	940	9.99974	463	8.53045		1.46055	28.877	I
Nat. OUS Log. U. Mat. OIN Log. Nat. OUL Log. C.U. Log. Full Mat.	60	490	8.54282	503		9-99974	492	8.54308	303	1.45692	.636	0
Nat. OUS Log. U. Mat. OIN Log. Nat. OUL Log. C.U. Log. Full Mat.		Nat C	OS Log	Ь	Nat S	in Log	Nat C	ot Log	c.d	Log Ta	n Nat	,
		at. 0	aa Log.	u.		Log.		J. Log.				

88°

.

2

١.

' Nat. Sin Log. d. Nat. Cos Log. Nat. Tan Log. c.d. Log. Cot Nat. 0 03490 8,5402 360 9938 99071 550 8,5402 357 2 548 8,5402 357 737 99071 550 8,5402 351 4 600 8,55743 335 935 99071 500 8,55743 334 7 53 8,5743 336 9934 99071 500 8,5743 334 14,3327 775 35 7 752 8,5743 336 9924 900070 735 8,7743 336 14,4254 6,373 13 10 03728 8,57473 336 99249 900006 6473 8,5743 335 14,4254 6,324 60 11 800 8,5747 335 99249 900006 6473 8,5404 333 14,4324 6,034 14,4324 6,034 14,4324 6,031 14,4324<	_								_			-
1 510 8.5400 350 933 5.00073 353 8.55074 355 1.44056 712 355 4 656 8.55795 337 933 9.99971 556 8.55734 349 1.44366 712 355 6 6 6.55795 349 9933 9.99971 656 8.55743 349 1.44366 712 357 7 653 8.57743 349 933 9.99971 656 8.56783 344 1.43571 727 757 35 7 653 8.57743 349 933 9.99970 658 8.57783 336 1.44254 6.377 336 1.43584 6.537 333 1.44254 6.377 336 1.43584 6.537 333 1.44254 6.377 336 1.44254 6.377 336 1.44254 6.377 1.4358 1.43546 6.337 1.44542 6.377 336 1.44254 6.377 336 1.44542 6.377 336 1.44542 1.43256 6.377 336 1.44542 <th></th> <th>Nat. S</th> <th>in Log.</th> <th>d.</th> <th>Nat. C</th> <th>OS Log.</th> <th>Nat.T</th> <th>an Log.</th> <th>c.d.</th> <th>Log. Co</th> <th>t Nat.</th> <th></th>		Nat. S	in Log.	d.	Nat. C	OS Log.	Nat. T	a n Log.	c.d.	Log. Co	t Nat.	
a 548 55499 357 935 935 935 5557 355 144032 356 144032 357 576 855343 353 144618 277.57 57 855343 353 144618 277.57 57 855343 353 144618 277.57 57 855343 351 144618 277.57 57 855343 351 144618 277.57 53 6 6644 5577 334 1.43317 271 54 6643 537 1.43317 271 54 6643 537 1.43317 233 1.43546 6637 51 1.43317 233 1.43546 6637 51 1.43317 233 1.43546 6637 51 1.43317 233 1.441579 233 1.441579 233 1.441549 231 4.43546 6537 51 1.441549 231 4.444 1.43321 2.5432 46 13 8668 859749 311 <t< td=""><td></td><td></td><td></td><td>260</td><td></td><td>9-99974</td><td>03492</td><td>8.54308</td><td>261</td><td>1.45692</td><td>28.636</td><td></td></t<>				260		9-99974	03492	8.54308	261	1.45692	28.636	
3 577 8.5534 335 935 9.90972 579 8.55342 335 1.44068 2712 56 6 03655 8.56743 349 99934 9.90971 00538 8.57643 349 1.44058 27.27.90 555 7 693 8.57743 347 933 9.90970 65 8.57743 341 1.432571 -27.7 54 7 593 8.57743 347 933 9.90970 6728 8.57743 361 1.44286 6.63712 56 7 753 8.57643 337 933 9.90970 6728 8.57748 336 1.44286 6.63712 56 712 8.557443 337 922 9.90906 6.788 8.57748 337 1.41549 -337 44 14 867 8.57743 36 922 9.90906 9378 8.597463 331 1.41549 -337 46 13 6838 59775 316 922 9.90906 9478 8.50743 311 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>145331</td><td>•399</td><td>59</td></td<>										145331	•399	59
5 2/6 8.53795 311 933 9.93977 527 8.53794 332 1.44205 7/12 32 6 6035 8.50743 341 933 9.90977 6073 8.50743 344 1.43917 7.7 <th7.7< th=""> 7.7 7.7 7</th7.7<>									355	1.44973		
6 05633 8.50043 349 99934 0.90071 07938 8.50043 346 1.43217 27.400 55 7 633 8.57043 343 933 0.90071 057 8.57143 341 1.43287 0.9753 8.57143 341 1.43287 0.9753 8.57143 341 1.43286 0.667 8.57143 336 1.43212 0.6375 5.5 357114 338 1.43212 0.6378 8.57778 356 9.99900 7254 8.57718 336 1.442549 0.31 48 13 858 8.557471 335 9.925 0.99906 8.7788 336 1.442549 0.31 48 13 858 8.597471 335 9.925 0.99906 9.928 8.59428 331 1.442549 0.31 48 14 7.948 8.00033 316 912 0.99906 9.928 8.59428 331 1.44549 0.31 48 43354 4356 436 4356 436 4356 436 4356 436 436							579			T 44010		5%
6 364 923 939977 367 344 143271 -271 54 7 653 857043 341 923 939977 656 85773 341 143277 -271 54 9 723 857421 336 930 999907 656 857452 336 1438 143287 -357 53 10 03761 85773 331 9909 990906 6738 857482 336 144286 6.637 511 11 810 858410 333 994 990907 90006 871 8.59171 336 1440805 6.0427 46 15 953 8.59743 311 9923 990907 9000 6.958 8.9749 311 1440805 6.0427 46 16 955 8.59713 318 9923 990905 90300 8.5918 311 1440305 6.0427 46 17 944 8.60431 316 913 9917 909064 947 956 8.60743				349			-		349			
7 6.93 8.57643 343 933 933 933 9344 934 <							667		346			
a 723 8.57(24) 373 9.99900 7725 8.57(14) 373 1.412800 2.64248 6.537 511 10 03761 8.576410 333 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.99900 9.85102 333 1.413600 0.9044 9.99900 9.99900 9.99900 9.99900 9.85102 333 1.413600 0.9044 4.1151 9.9353 4.99907 9.99908 8.99174 3.861714 3.87 1.413600 0.9345 4.85445 5.8 3.74 1.443671 2.54.52 4.8 4.8 5.9917 3.99904 9.99000 9.985 5.9918 3.11 1.413600 0.9345 4.8 5.9917 9.9917 9.99000 9.987 8.50428 3.16 1.239011 2.4.542 4.0 1.338001 2.4.542 4.0 1.338001 2.4.542 4.0 1.338001 2.4.542		603						8.5677		1.43227	.057	
9 75a 8.57452 335 1.42548 .637 51 10 03781 8.57773 333 9930 9.9990 0.99906 833 335 1.42312 26.337 51 11 850 8.58083 937 9.99906 842 8.54451 336 1.41321 26.337 51 12 839 8.59173 332 9930 9.99906 878 8.59105 333 1.41540 .031 48 13 808 8.59747 332 9932 9.99906 0302 8.59105 333 1.40592 .644 44 15 9358 8.59747 339 9932 9.99906 0308 8.331 1.40592 .6424 46 14 8.79718 8.59747 339 9912 9.99906 0468 8.59174 314 1.30516 4.8484 314 1.30516 4.4984 43 1.49521 6443 301 1.30516 4.4984	8	723	8.57084			9.99970		8.57114		1.42886	26.845	52
10 03781 8.57775 3.30 99939 0.90960 03783 8.57786 3.30 1.42212 26.32 6.90 11 8308 8.56419 330 330 330 1.412879 2.30 40 13 868 8.56474 335 9.9993 9.99906 812 8.58771 332 1.412819 2.30 40 14 897 8.59747 335 9.99933 9.99906 9.98 8.59749 331 1.41211 2.8335 47 15 03926 8.590749 311 9.99933 9.99906 9.98 8.59749 331 1.40805 5.44 44 16 9.958 8.59749 311 1.330012 .0864 316 1.330012 .0864 311 1.330012 .0864 431 17 10.48 8.60120 311 9917 9.99065 .04016 8.60130 311 1.330012 .0864 301 1.33874 .066 385 333 1.41211 .3263 331 1.338611 .3338 .1338					930	9.99969	754			1.42548	.637	51
13 863 85,8747 326 926 900068 842 85,8177 326 141520 0.031 48 14 897 85,9071 325 924 900067 9000 859105 327 140835 6422 46 15 03926 85,00715 318 9923 909007 9329 85,9043 311 140251 254,52 45 16 9355 85,0715 318 922 909005 9958 85,9743 311 140251 2.44,24 46 17 944 860033 313 9219 990005 90005 9016 64075 8.61003 311 1.330302 .715 41 180 94071 8.60736 307 955 900053 133 8.61031 1.330616 24.688 392 21 180 8.612549 307 955 900050 14025 8.61233 301 1.330616 .24542 405 24 188 8.62126 307 1.33700 32.356.58 355		03781	8.57757		99929	9.99969	03783	8.57788			26.432	
13 858 8.59747 328 975 90907 871 8.5977 328 144731 25.35 477 14 877 8.5977 323 924 9.99907 909 8.59175 328 144251 25.35 47 15 9355 8.59775 323 9992 9.99907 9392 8.59740 321 1.40957 25.45 44 17 984 8.6023 316 919 9.99905 0.4076 8.60408 316 1.30021 24.654 44 19 0.42 8.60605 311 9917 9.99004 0.4075 8.60109 311 1.33801 24.542 40 10 0.427 8.61243 307 915 9.99005 1.028 8.6131 301 1.338001 24.542 40 12 9.99053 9.99050 1.028 8.6131 301 1.338001 24.542 40 13 313 8.61243 302 1.338001 24.542 40 302 1.338001 24.542 40			8.58089			9.99968		8.58121				49
14 627 629073 323 99923 99903 99923 99903 9329 829105 331 140573 32.452 45 15 958 850715 330 99923 99906 9329 850428 331 140573 32.452 45 17 984 8.60033 316 921 999066 958 8.59749 331 1.40251 .2044 44 19 042 8.606063 313 919 9.999064 04075 8.60798 314 1.33901 24.542 40 10 8.61383 307 915 9.99907 104 6.60784 313 1.36881 .368 303 21 108 8.61283 307 915 9.999071 128 8.61231 303 1.37766 32.859 36 24 188 8.61295 304 9910 9.99907 128 8.62334 303 1.37766 32.38 34 32.3 1.36574 .21.41 32 1.36574 .21.41 32 3.3669 <		839	8.58419	328		9.99908	842	8.58451		1.41549	.031	48
15 03926 8.53326 323 99923 99				325		9.999907	071	0.50779 8 50705	326		25.035	
16 955 8.59712 320 9922 99906 958 8.59749 321 1.40351 .244 44 17 984 8.60303 316 922 999064 946 8.60408 316 1.33056 24.864 44 19 0.4271 8.60973 311 918 9.99907 0.4076 8.60408 314 1.33056 24.864 44 20 0.4071 8.60973 309 915 9.999061 104 8.61319 307 1.38681 .368 393 21 100 8.61280 307 915 9.999052 101 8.60234 307 1.38681 .368 303 1.37066 23.859 365 24 188 8.612106 301 99911 9.999051 279 8.61321 297 1.37066 23.83 292 1.37066 23.83 292 1.37066 23.93 292 1.3706 23.93 23.93 23.93 23.93 23.93 23.93 23.93 23.93 23.93 23.93 23.93 <t< td=""><td></td><td></td><td></td><td>323</td><td></td><td></td><td></td><td></td><td>323</td><td></td><td></td><td></td></t<>				323					323			
18 cup 013 8.600340 313 919 9.909055 cup 06 8.60038 314 1.30300 -7.19 41 10 cup 04 8.600502 311 918 9.909054 cup 6 8.60056 314 1.30300 -7.19 41 100 8.601205 307 915 9.909053 133 8.60120 305 1.38304 .4563 366 397 1.38304 .4563 365 37 1.38304 .4563 365 37 1.38304 .4563 385 301 1.38304 .4563 385 301 1.38304 .026 37 31.37706 32.53 301 1.37405 32.69305 35 36.42334 297 1.36574 .214 32 32.33 8.63078 391 999050 .999050 337 8.633450 292 1.35774 .214 32 1.35722 .752 29 333 4.63381 290 .999055 .4364 365 1.35792 .752 29 32 34 .357 .3574 .214 32 .135792		03920	0.59395 8 50715			9.99907		8 50740				
18 cup 013 8.600340 313 919 9.909055 cup 06 8.60038 314 1.30300 -7.19 41 10 cup 04 8.600502 311 918 9.909054 cup 6 8.60056 314 1.30300 -7.19 41 100 8.601205 307 915 9.909053 133 8.60120 305 1.38304 .4563 366 397 1.38304 .4563 365 37 1.38304 .4563 365 37 1.38304 .4563 385 301 1.38304 .4563 385 301 1.38304 .026 37 31.37706 32.53 301 1.37405 32.69305 35 36.42334 297 1.36574 .214 32 32.33 8.63078 391 999050 .999050 337 8.633450 292 1.35774 .214 32 1.35722 .752 29 333 4.63381 290 .999055 .4364 365 1.35792 .752 29 32 34 .357 .3574 .214 32 .135792	17	084	8.00022			0.000066	087	8.00068				
\$\$0 \$\$00000000000000000000000000000000000			8.60349		919	9.99965		8.60384				
ar Cury 1 Story 3 gog 99917 999040 Cury 5 Story 3 got 10 got 24 got 23 got 23	-	042						8.60098				
22 139 8.67580 307 915 5.00005 132 8.61264 305 1.38005		04071	8.60973	-	99917	9.99964	04075	8.61000		1.38001	24.542	40
129 6.01560 305 915 9.09003 133 6.01020 305 1.36374 1.169 306 24 188 8.61126 302 913 9.09062 158 8.61133 301 1.36374 1.36374 1.36374 1.36374 1.36374 1.37705 23.859 36 24 188 8.61207 301 99911 9.090061 250 8.61834 297 1.37705 23.859 36 37.3 1.37705 23.859 36 37.3 301 1.37705 23.859 36 37.3 399 1.30574 2.21 3.3669 .372 33 34.9 36.6378 297 1.30574 2.21 3.3659 36 36.64126 287 1.30572 .752 292 1.30572 .752 292 1.30572 .752 292 1.30572 .752 292 1.30572 .752 292 1.30572 .752 292 1.30572 .752 292 1.30572 .752 292 1.335702 .752 292 1.335702 .752 292 1.334			8.61282			9-99963				1.38681	.368	39
-24 183 8.05104 302 973 99905 102 8.05134 303 1.38009 23.859 36 24 183 8.05176 306 99911 9.99006 103 8.05235 309 1.37705 23.859 36 25 6.4247 8.63497 306 99911 9.99006 250 8.63243 297 1.37705 23.859 36 27 75 8.63208 294 907 9.99006 270 8.63111 297 1.36809 .522 34 30 6.43543 297 9.333 8.63748 290 1.35072 .753 29 31 391 8.64243 287 9.99055 9.99055 8.64248 287 1.35415 .602 28 1.35702 .753 29 33 449 8.64543 287 1.35415 .602 28 1.35130 .454 7 355 .51 8.6514 285 1.34265 .224 24 3.65154 280 1.34267 .602 .224 1.33102			8.01589	305		9-99903		8.01020		1.38374		
25 04217 8.62497 201 99911 9.99051 04220 8.62335 201 1.37465 23.655 85 26 246 8.63795 296 900 9.99960 250 8.63334 297 1.37465 23.653 231 333 8.6378 294 900 9.99960 279 8.63131 297 1.36805 232 1.36805 232 1.36574 .214 32 30 0.4362 8.63368 289 99905 9.99959 337 8.63718 291 1.35702 .752 29 33 31 391 8.64543 287 9.09955 444 8.64576 286 1.35730 .454 27 33 449 8.64877 283 9.99955 541 8.65715 286 1.34285 222.64 285 34 476 8.65707 277 896 9.99955 576 8.65735 276 1.34285 2276 1.33164 <td></td> <td>159</td> <td>8 62100</td> <td>302</td> <td></td> <td></td> <td></td> <td>8 62224</td> <td>303</td> <td></td> <td></td> <td>37</td>		159	8 62100	302				8 62224	303			37
ac ac <thac< th=""> ac ac ac<!--</td--><td></td><td></td><td></td><td>301</td><td></td><td></td><td></td><td></td><td>301</td><td>1.3//00</td><td></td><td></td></thac<>				301					301	1.3//00		
28 304 8.03385 203 907 9.099000 305 8.03480 202 1.36574 .214 32 29 333 8.63476 203 906 9.99959 0.4365 8.64166 202 1.35591 22.904 30 30 0.4365 8.64256 28 9905 9.99959 0.4365 8.64298 287 1.35591 22.904 30 31 490 8.64453 28 902 9.99956 444 8.64535 285 1.35591 22.904 30 33 449 8.64543 28 902 9.99956 443 8.64535 285 1.35513 .454 27 33 34 9.86510 279 897 9.99955 541 8.65175 278 1.34505 22.164 25 36 5.36547 277 897 9.99955 570 8.65035 276 1.33731 7.43 22 21 1.33731 7			8.62705		99911			8.62824		1.27100		
28 304 8.03385 203 907 9.099000 305 8.03480 202 1.36574 .214 32 29 333 8.63476 203 906 9.99959 0.4365 8.64166 202 1.35591 22.904 30 30 0.4365 8.64256 28 9905 9.99959 0.4365 8.64298 287 1.35591 22.904 30 31 490 8.64453 28 902 9.99956 444 8.64535 285 1.35591 22.904 30 33 449 8.64543 28 902 9.99956 443 8.64535 285 1.35513 .454 27 33 34 9.86510 279 897 9.99955 541 8.65175 278 1.34505 22.164 25 36 5.36547 277 897 9.99955 570 8.65035 276 1.33731 7.43 22 21 1.33731 7	27		8.63001				279	8.03131		1.30800		
29 333 c.030/7 290 9005 90059 c.4365 201 133022 c.053 31 30 04362 8.63908 288 99905 9.99959 c.4365 8.64909 289 1.35702 .752 29 31 301 8.64453 287 902 9.99957 4.54 8.64907 288 1.35702 .752 29 32 440 8.64437 287 901 9.99957 4.54 8.64407 284 1.35702 .752 29 33 440 8.64577 283 901 9.99956 451 8.65357 286 1.34565 22.164 25 36 64507 8.65070 777 896 9.99955 570 8.65703 278 1.34565 22.164 25 37 565 8.65047 277 896 9.99955 570 8.65703 278 1.34285 22.2.64 21.3371 7.43 22 <t< td=""><td></td><td></td><td>8.63385</td><td></td><td></td><td></td><td>308</td><td>8.63426</td><td></td><td>1.20574</td><td></td><td></td></t<>			8.63385				308	8.63426		1.20574		
80 0.4362 8.63908 288 99905 9.99058 c.4365 8.64000 289 1.35991 22.904 30 31 391 8.64256 287 904 9.99058 395 8.64198 289 248 1.35702 .752 29 32 440 8.64427 283 902 9.99056 443 8.64576 285 1.35130 .454 2.204 30 33 449 8.64427 283 902 9.99056 483 8.65154 285 1.35130 .454 2.204 20 34 478 8.65101 281 90955 541 8.65435 280 1.34265 .222 24 37 555 8.65047 276 894 9.99055 541 8.65433 276 1.34285 .022 24 38 504 805 9.99054 509 8.65033 276 1.33184 21.470 20 41			8.63678		906		337		-	1.36282	.058	31
31 301 8.04250 287 904 9.99958 305 8.04298 287 1.35702 .752 29 32 440 8.64537 284 902 9.99958 444 8.64555 285 285 1.35130 .454 27 34 478 8.65110 281 902 9.99956 483 8.65154 281 1.35436 .308 26 36 0.4507 8.65301 211 9.99955 541 8.65435 280 1.34565 222 24 345 1.34565 222 24 34565 226 243 36 541 8.65154 280 1.34565 222 24 37 555 8.65047 277 896 9.99955 570 8.65203 274 1.33407 21.881 23 39 633 8.66407 274 893 9.99954 648 8.65134 271 1.33184 21.470 20 41 662 8.67039 270 889 9.99952 657 8.67043 271 1.33184		04362				9-99959	04366		-			
33 440 0.04953 28,4 901 909956 443 8.04574 28,5 28,5 1.35415 .002 28 34 478 8.65317 28,3 901 909957 483 8.65154 28 1.35415 .002 28 1.35415 .002 28 1.35415 .002 28 1.34264 .308 26 36 5070 8.65301 277 897 9.99955 541 8.65435 280 1.34265 .22.24 24 37 55 8.65477 27 896 9.99955 541 8.65435 276 1.34285 .02.2 24 40 0.4653 8.66497 27 896 9.99955 570 8.60309 271 1.33731 .743 22 41 682 8.67339 270 8932 9.99952 716 8.67957 266 886 9.0797 271 1.33184 21.470 20 42 711 8.67303 270 889 9.99952 716 8.67956 266	31		8.04250			9.99958						29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34		8.64827	284		9-99950						
35 0.4507 8.65301 279 99898 9.99955 541 8.65435 280 1.34565 22.164 25 36 536 8.65070 277 897 9.99955 541 8.65435 280 1.34565 22.164 25 37 558 8.65047 277 896 9.99955 57 8.65020 276 1.34707 21.881 23 38 594 8.66023 2776 894 9.99954 529 8.66360 274 1.33731 .743 22 40 0.4653 8.66479 279 9892 9.99952 668 8.663163 271 1.33184 21.470 20 41 682 8.67356 267 8.663164 20 9.99951 745 8.67736 260 1.32044 .205 17 43 740 8.67375 266 888 9.99951 747 8.67356 266 1.32102 2.046 1.311840 2.0819 15 45 6.68104 259 888 9.99951				283			483			1.34846	.308	
36 536 8.65070 -77 807 9.99955 541 8.65715 278 1.34285 .022 24 37 505 8.65047 276 896 9.99955 570 8.65903 276 1.33731 .743 22 39 633 8.66497 274 893 9.99954 599 8.66543 271 1.33731 .743 22 40 0.4653 8.66497 272 99892 9.99954 628 8.66543 271 1.33731 .743 22 41 682 8.67308 270 99892 9.99952 716 8.67356 268 1.32134 .21.743 1.3264 .20.75 16 43 740 8.67755 266 886 9.99951 744 8.67947 266 1.32110 20.946 16 43 749 8.687641 23 99885 9.99950 833 8.68174 261 1.31846 20.819 15 45 0.4798 8.68104 23 99885 9.999950					00808					1.24563		25
37 505 8.65047 276 805 9.99955 570 8.65093 276 1.34007 21.881 23 38 504 8.66023 274 894 9.99954 599 8.65093 277 1.33457 .743 22 40 0.4653 8.660709 272 99892 9.99952 687 8.660767 271 1.33457 .666 211 41 682 8.67739 270 889 9.99952 687 8.67947 220 1.33184 21.470 20 43 740 8.67757 267 888 9.99951 745 8.67644 266 1.32370 .075 17 44 769 8.6775 267 888 9.99951 774 8.67804 266 1.32370 .075 17 44 769 8.67841 263 9.985 9.99950 74 8.67804 266 1.3153 .693 14 45 64708 8.68076 258 881 9.999040 852 8.68078 265<	36	536	8.65070		897			8.65715		1.34285		24
38 594 8.00223 74 894 9.99954 599 8.00209 274 1.33731 .743 22 39 623 8.66497 274 893 9.99954 598 8.06209 274 1.33457 .666 21 40 0.4653 8.67039 270 99892 9.99952 687 8.67087 271 1.32184 21.470 20 41 682 8.67039 260 889 9.99952 716 8.67365 266 1.32014 .2051 1.32101 2.09154 260 1.32101 2.09164 1.66 267 8.67364 266 1.32101 2.09164 16 43 740 8.67375 266 888 9.99051 745 8.67644 266 1.32101 2.09164 16 45 0.4798 8.68104 25 882 9.99050 0.4803 8.68174 261 1.31533 .6931 14 47 8.56 8.66307 260 882 9.99040 833 8.68174 261 1.3153			8.65947			9-99953	570	8.65993			21.881	23
35 0.53 0.54 0.54 0.55 0		594										22
10 04053 8.80709 70 99892 999952 999952 64055 8.00810 271 1.33184 21.47 22.0 41 682 8.67308 269 890 999952 716 8.07307 266 1.32144 21.47 1.32044 .205 16 42 711 8.67308 267 888 999952 716 8.67356 266 1.32144 .205 16 43 740 8.67755 266 888 9.99951 744 8.67744 266 1.3210 20.946 16 44 709 8.667841 23 8681 9.99950 748.867890 263 1.31164 20.946 15 45 04798 8.66807 260 883 9.99949 833 8.68174 261 1.31846 20.819 15 46 837 8.686367 250 883 9.99948 833 8.68078 251 1.31543 .693 1.31543 .693 1.31543 .693 1.31543 .693 1.31543 .6												10000
41 002 007039 250 007039 250 007037 250 132113 337 19 42 711 8.67375 257 889 9.99952 716 8.67364 250 168 132376 257 18 43 740 8.67575 256 888 9.99951 745 8.67634 266 1.32376 2075 17 44 769 8.67575 257 256 888 9.99951 774 8.67630 266 1.32376 0.075 17 44 769 8.67841 263 9.9855 9.99950 0.4803 8.68154 263 1.31533 .693 14 45 04708 8.68307 250 883 9.99949 852 8.68078 260 1.3153 .693 14 47 856 8.68637 258 881 9.99948 892 8.680786 255 1.31543 .693 1.31644 .235 11 50 04943 8.69400 254 875 9.99948				270					271	1.33184		
43 740 8.0775 266 888 9.99951 745 8.07024 266 1.32370 .075 17 44 769 8.67841 263 886 9.99951 774 8.07890 266 1.32110 20.946 16 45 04798 8.668104 23 99885 9.99950 04803 8.668154 261 1.31846 20.819 15 47 856 8.668027 260 882 9.99949 803 8.668174 261 1.31846 20.819 14 49 914 8.69144 256 881 9.99948 920 8.69453 257 1.30844 325 11 50 04943 8.69054 253 875 9.99946 9507 8.690762 257 1.30847 302.067 10 51 972 8.69057 252 873 9.99946 0507 8.69078 255 1.3038 1.9070 8 53 05051 8.69057 253 875 9.99946 0507 8.69078			8.67308	269				8.67256		1.34913 1.22644		
45 04798 8.68104 233 99885 9.99950 04803 8.68154 263 1.31840 20.819 15 46 827 8.66307 203 883 9.99940 833 8.668174 261 1.31840 20.819 15 47 856 8.66307 203 882 9.99940 862 8.668478 261 1.31583 .60931 14 49 914 8.69144 258 879 9.99948 801 8.66938 257 1.30624 .325 11 50 04943 8.69106 254 9.9878 9.99946 976 8.69196 257 1.30647 20.20 102 252 1.30247 20.20 102 252 1.30232 .687 9.99946 976 8.69196 257 1.30247 20.20 15 3.032 .877 9.99946 976 8.69076 252 1.30247 20.20 875 9.99946 976 8.69076		740	8.67575	267		0.00051		8.07024		1.32370		
45 04798 8.68104 233 99885 9.99950 04803 8.68154 263 1.31840 20.819 15 46 827 8.66307 203 883 9.99940 833 8.668174 261 1.31840 20.819 15 47 856 8.66307 203 882 9.99940 862 8.668478 261 1.31583 .60931 14 49 914 8.69144 258 879 9.99948 801 8.66938 257 1.30624 .325 11 50 04943 8.69106 254 9.9878 9.99946 976 8.69196 257 1.30647 20.20 102 252 1.30247 20.20 102 252 1.30232 .687 9.99946 976 8.69196 257 1.30247 20.20 15 3.032 .877 9.99946 976 8.69076 252 1.30247 20.20 875 9.99946 976 8.69076		769	8.67841					8.67890				
46 837 8.86397 200 883 9.99949 833 8.68417 201 1.31583 .693 14 47 856 8.68687 250 882 9.99949 862 8.68078 260 1.31523 .569 13 48 855 8.68886 258 881 9.99948 891 8.68078 260 1.31052 .446 12 49 914 8.69144 256 99878 9.99948 920 8.69166 257 1.30804 .325 11 50 04943 8.69054 254 99878 9.99946 978 8.69162 257 1.30847 202.0 679 252 53 05007 8.59970 8 255 1.30247 20.20 67 9 252 1.3038 19.970 8 257 1.3038 19.970 8 257 1.3038 19.970 8 257 1.3038 19.970 8 257 1.3038 19.970 8 257 1.3038 19.970 8 257 1.30783 <t< td=""><td>45</td><td>04798</td><td>8.68104</td><td>203</td><td>99885</td><td></td><td></td><td>8.68154</td><td>204</td><td></td><td>20.819</td><td>15</td></t<>	45	04798	8.68104	203	99885			8.68154	204		20.819	15
47 856 8.68677 250 882 9.90949 862 8.68678 250 13.1322 .569 13 48 885 8.68686 258 881 9.90948 891 8.668078 258 1.31522 .466 13 49 914 8.69144 256 879 9.90948 892 8.66938 257 1.30547 .426 12 50 04943 8.60540 254 99878 9.90947 04949 8.69453 257 1.30547 20.206 10 51 972 8.60554 254 9875 9.90946 0507 8.609708 252 1.30232 .087 9 53 050 8.70490 250 873 9.90946 0578 8.609708 2525 1.30232 .087 9 54 0598 8.70459 250 872 9.90946 0505 8.70714 248 1.20236 19.627 5 55 05088 8.70658 249 99870 9.90941 152 8.71262 <t< td=""><td></td><td>827</td><td>8.68367</td><td>203</td><td>883</td><td>9.99949</td><td>833</td><td>8.68417</td><td>261</td><td>1.31583</td><td>.693</td><td></td></t<>		827	8.68367	203	883	9.99949	833	8.68417	261	1.31583	.693	
49 914 8.0040 258 879 9.99948 920 8.0943 258 1.30624 .440 12 49 914 8.0944 256 879 9.99948 920 8.6945 257 1.30547 20.205 10 50 04943 8.69040 253 99878 9.99948 920 8.69463 257 1.30547 20.205 10 51 972 8.69054 253 875 9.99946 978 8.69978 252 1.30547 20.205 10 53 05001 8.69907 253 875 9.99946 0507 8.69902 251 1.30247 20.205 10 54 059 8.70490 250 872 9.99944 05005 8.70714 249 1.29235 .74 6 55 05088 8.70658 249 99870 9.99943 124 8.70902 248 1.29236 1.9627 5 56 117 8.70905 247 869 9.99943 124 8.70262 24	47	856	8.68627		882	9-99949		8.68678				
47 9-4 6.5944 256 679 9.59946 942 6.69430 257 1.3084 .35 11 50 04943 8.69400 254 99878 9.99947 04949 8.69453 257 1.3084 .35 11 51 972 8.69054 254 99878 9.99946 978 8.69453 257 1.30247 20.206 10 52 05001 8.69007 253 875 9.99946 05007 8.69062 251 1.30238 1.9070 8 53 0500 8.70159 250 873 9.99946 05007 8.69062 251 1.30238 1.9070 8 54 059 8.70458 249 99870 9.99044 05005 8.70714 249 1.30238 1.740 65 7 5 1.3053 7.740 6 5 5 7 1.3053 7.40 6 5 5 7 1.30238 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.06038 8.607.06</td><td></td><td>1.31002</td><td></td><td></td></td<>								6.06038 8.607.06		1.31002		
51 972 8.6054 254 9876 9.99046 978 8.60708 255 1.30302 .087 9 52 05001 8.60907 253 875 9.99046 05007 8.69078 255 1.30302 .087 9 53 0300 8.70159 252 873 9.99046 05077 8.690702 251 1.30302 .087 9 54 059 8.70159 250 873 9.99044 0506 8.70414 252 1.30786 .855 7 54 059 8.70058 249 99870 9.99044 05005 8.70714 249 1.30286 19.627 \$ 55 07088 8.70052 247 869 9.99042 153 8.71208 246 1.30238 .516 4 56 17 8.71905 244 866 9.90942 153 8.71243 246 1.38547 .206 2 59 205									-			
52 05001 8.00907 252 875 9.09946 0507 8.09902 252 1.30738 19.970 8 53 030 8.70159 250 873 9.99945 037 8.70214 252 1.30736 8.55 7 54 059 8.70409 250 872 9.99945 056 8.70214 251 1.20736 8.55 7 55 05088 8.70658 249 99870 9.99944 0505 8.70714 248 1.20236 19.627 5 56 117 8.70905 247 869 9.99943 124 8.70062 246 1.20236 19.627 5 56 117 8.71905 246 867 9.99942 153 8.71263 246 1.20236 -9.05 3 58 17.5 8.71395 243 866 9.99941 212 8.71697 244 1.28547 .206 2 5 9.99943					99070			8.60709				
53 030 8.70159 252 873 9.99945 037 8.70144 252 1.30786 .855 7 54 059 8.70409 250 872 9.99044 0506 8.70465 241 1.30535 .740 6 55 05088 8.70058 249 99870 9.99044 05095 8.70714 249 1.30535 .740 6 56 117 8.70905 246 9.99043 124 8.70052 246 1.20535 .740 6 57 146 8.71151 244 867 9.99043 124 8.70052 246 1.20538 .516 4 58 175 8.71355 244 866 9.99042 153 8.71453 245 1.28547 .296 2 5 9 205 8.71638 243 864 9.99041 212 8.71097 244 1.38303 .188 1 80 234 8.		05001	8.60007		875			8.60062				8
54 059 8.70409 50 872 9.99044 066 8.70465 249 1.29535 .740 6 55 05088 8.70058 249 99870 9.99044 05095 8.70714 249 1.29535 .740 6 56 117 8.70905 246 9.99943 124 8.70972 248 1.29233 .516 4 57 146 8.71151 244 867 9.99943 153 8.71263 245 1.28792 .405 3 58 175 8.71355 244 866 9.99942 153 8.71263 245 1.28547 .296 2 59 205 8.71638 243 864 9.99941 212 8.71097 244 1.28547 .296 2 59 205 8.71880 242 863 9.99940 212 8.71097 244 1.28303 .188 1 60 234 8.7		030	8.70159		873		037	8.70214				7
56 175 8.70903 247 869 9.99943 124 8.70962 248 1.20280 19.027 9 56 117 8.70903 246 869 9.99943 124 8.70962 246 1.20280 19.027 6 57 146 8.71151 869 9.99943 124 8.70962 246 1.20280 5.16 4 57 146 8.71153 241 867 9.99942 153 8.71253 245 1.28792 405 3 58 175 8.71395 244 866 9.99942 182 8.71453 245 1.28547 .296 2 59 205 8.71638 243 864 9.99941 212 8.71697 243 1.28303 .188 1 60 234 8.71880 242 863 9.99940 241 8.71940 243 1.28000 .081 0		059	8.70409		872			8.70463		1.29535	_	
50 117 6.70505 246 609 9.99943 124 6.70502 246 1.20730 -5.10 4 57 146 8.71151 244 867 9.99943 153 8.71253 245 1.20730 -405 3 58 175 8.71355 244 866 9.99941 182 8.71453 245 1.28547 .906 2 59 205 8.71638 243 864 9.99941 212 8.71077 244 1.28303 .188 1 60 234 8.71880 242 863 9.99940 241 8.71940 243 1.28660 .081 0					99870							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1.20038		
59 205 8.71638 243 864 9.99941 212 8.71697 244 1.28303 .188 I 60 234 8.71880 242 864 9.99941 212 8.71697 244 1.28303 .188 I 60 234 8.71880 242 863 9.99940 241 8.71940 243 1.28000 .081 0	57						153			1.20792		
60 234 8.71880 242 863 9.99940 241 8.71940 243 1.28060 .081 0				243				8.71607	244	1.28302	.188	
	ĕÓ			242					243			
Nat. UOS Log. d. Nat. SIN Log. Nat. UOT Log. c.d. Log. I an Nat.								_	,		- NT -	
		Nat.C	OS Log.	d.	Nat. S	In Log.	Nat. C	OT Log.	c.d.	Log. I a	n Nat.	'

87°

Digitized by Google

 \mathbf{n}
 ~

					و	,					_
1	Nat. S	in Log.	d.	Nat. C	OS Log.	Nat. T	an Log.	c.d.	Log. Co	ot Nat.	
0	05234	8.71880	240	99863	9.99940	05241	8.71940 8.72181	241	1.28060'	19.081	60
I	263	8.72120	239	861 860	9.99940	270	8.72181	239	1.27819	18.976	58
2	292 321	8.72359	238	858	9-99939	299 328	8.72420 8.72659	239	1.27580 1.27341	.871 .768	58
3 4	350	8.72597 8.72834	237	857	9.99938 9.99938	357	8.72896	237	1.27104	.666	57 56
5	05379	8.73069	235	99855	9-99937	05387	8.73132	236	1.26868	18.564	55
6	408	8.73303	234	854	9-99930	416	8.73300	234	1.20034	-464	54
	437	8.72525	232	852	0.00030	445	8.73300 8.73000	234	1.26400	.366	53
7 8	466	8.73707	232 230	851	9-99935	474	8.73832	232 231	1.26168	.268	52
9	495	8.73997	229	849	9-99934	503	8.74063	220	1.25937	.171	51
10	05524	8.74220	228	99847	9-99934	o5533	8.74292	220	1.25708	18.075	50
11	553 582	8.74454 8.74680	226	846	9-99933	562	8.74521	227	1.25479	17.980	49
12	582	8.74080	226	844 842	9.99932	591 620	8.74748	226	1.25252 1.25026	.886	48
13 14	640	8.74906 8.75130	224	841	9.99932 9.99931	649	8.74974 8.75199	225	1.24801	•793 •702	47 46
175	05669	8 0000	223	99839		05678		224	1.24577	17.611	45
16	698	8.75353 8.75575	222	838	9.99930 9.99929	708	8.75423 8.75645	222	1.24355	.521	44
17	727	8.75705	220	836	0.00020		8.75645 8.75867 8.76087	222	1.24133	.431	43
18	756	8.75795 8.70015	220 219	834	9.99928	737 766	8.70087	220 219	1.23013	-343	42
19		8.70234	219	833	9-99927	795	8.76306	219	1.23694	.256	4 I
20	05814	8.76451 8.76607	216	99831	9.99926	05824	8.76525	219	1.23475	17.169	40
21	844	8.70007	216	829	9.99926	854	8.76742	216	1.23258	.084	39
22	873	8.76883	214	827	9.99923	883	8.76958	215	1.23042	16.999	38
23 24	902 931	8.77097	213	826 824	9-99924 9-99923	912 941	8.77173 8.77387	214	1.22013	.915 .832	37
25	05960	8.77310	212	99822			8.77600	213			36 35
26	989	8.77522 8.77733	211	821	9-99923 9-99922	05970 999	8.77811	211	1.22400	16.750 .668	34
27	06018	8.77043	210	810	9.99921	06020	8.77811 8.78022	211	1.21978	.587	33
28	047	8.77943 8.78152	209	817	0.00020	058	8.78232	210 209	1.21768	.507	32
29	076	8.78300	208	815	9.99920	087	8.78441	208	1.21559	.428	31
30	06105	8.78568	206	99813	9.99919	06116	8.78649	206	1.21351	16.350	80
31	134	8.78774	205	812	9.99918	145	8.78855	206	1.21145	.272	29
32 33	163 192	8.78979 8.79183	204	810 808	9.99917 9-99917	175 204	8.79061 8.79266	205	1.20039 1.20734	.195 .119	28 27
34	221	8.79386	203	806	0.00010	233	8.79470	204	1.20530	.043	26
35	06250	8.79588	202	99804	9.99915	06262	8.79073	203	1.20327	15.969	25
36	279	8.70780	201 201	803	9.99914	291	8.79875 8.80070	202 201	1.20125	.895	24
37	308	8.79990	199	801	9-99913	321	8.80070	201	1.19924	.821	23
38	337	06106.6	199	799	9.99913	350	8.80277	199	1.19723	.748	22
39	366	8.80388	197		9.99912		8.80470	198	1.19524	.676	21
40	06395	8.80585	197	99795	9.99911	06408	8.80674 8.80872	198	1.10320	15.605	20
41 42	424 453	8.80782 8.80978	196	793 792	9-999910 9-999999	438 467	8.81068	196	1.19128	•534 •464	19 18
43	453	8.81173	195	790	9-99999	496	8.81204	196	1.18736	·394	10
44	511	8.81307	194	788	9.99908	525	8.81450	195	1.18541	.325	16
45	06540	8.81560	193	99786	9.99907	06554	8.81653	194	1.18347	15.257	15
46	569	8.81752	192 192	784	0.00000	584	8.81840	193 192	1.18154	.189	14
47	598	8.81944	192	782	9-99905	613	8.82038	192	1.17002	.122	13
48	627 656	8.82134	190	780	9.99904	642	8.82230 8.82420	190	1.17770	.056	12
49 50	050	8.82324	189	778	9.99904	671		190		14.990	11 10
51 51	714	8.82513 8.82701	188	99776	9.99903 9.99902	06700 730	8.82610 8.82799	189	1.17390 1.17201	14.924 .860	9
51 52	743	8.82888	187	772	0.00001	759	8.82987	188		.000	8
53	773	8.83075	187 186	770	9.99900	788	8.83175	188 186	1.17013	.732	7 6
54	802	8.83261	185	768	9.99899	817	8.83361	186	1.16639	•732 .669	6
55	06831	8.83446	184	99766	9.99898	06847	8.83547	185	1.16453	14.606	5
56	860	8.83030	183	764	9.99898	876	8.83732	184	1.10208	•544	4
57 58	889 918	8.83813 8.83990	183	762	9.99897 9.99896	905	8.83916 8.84100	184	1.16084	482 421	3
50	947	8.84177	181	758	9.99895 9.99895	934 963	8.84282	182	1.15900 1.15718	.361	1
5 8 60	976	8.84358	181	756	9.99894	993	8.84464	182	1.15536	.301	Ô
	-		<u> </u>	<u> </u>							
	Nat. C	OS Log.	d.	Nat. S	in Log.	Nat. C	ot Log.	c.d.	Log. Ta	I n Nat.	1
البدود ال											

86°

Digitized by Google

- ----

Λ	σ
4	

.

1 07005 8.84230 101 7754 5.009803 07528 8.84240 128 1.15374 .15374 .15374 .15374 .15374 .15374 .15374 .15374 .15374 .15374 .15374 .15374 .15374 .1538 .114904 .12407 1.14904 .12407 1.14904 .12407 1.14207 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.14407 1.144									_			-
1 07005 8.84718 179 752 0.09802 0762 8.84641 180 1.15274 .153		Nat. S	in Log.	d.	Nat. C				c.d.			
a coga 8.8.4971 toga coga 8.8.4973 toga coga 8.8.4973 toga coga 8.8.4973 toga toga <thtoga< th=""> <thtoga< th=""> <thtoga< th=""></thtoga<></thtoga<></thtoga<>			8.84358	181		9-99894	06993	8.84464	182	1.15530	14.301	60
3 053 8.84497 179 753 9.90831 110 8.85783 179 1.14873 66 6 0713 8.85353 177 744 9.90881 110 8.85783 177 1.14873 66 7 179 8.8505 175 744 9.90886 0718 8.85780 177 1.14407 1.4407 1.4407 1.4407 1.4407 1.4407 1.4407 1.4407 1.4407 1.4407 1.14107 8.8518 177 1.14407 1.14107 8.8518 177 1.14407 1.14207			8.84539			9-99893		8.84040				59 58
4 092 8.8575 1/0 748 0.00801 110 8.85786 1/7 6 07121 8.85255 177 7748 0.00800 07130 8.85265 177 1.14637 1.14637 1.14637 1.14637 1.14460 3.931 7 79 8.85785 175 744 0.00887 278 8.85780 177 1.14243 .891 9 237 8.85055 175 749 0.00887 278 8.85061 171 1.14233 .891 11 235 8.80128 173 9976 0.00883 344 8.80445 174 1.13931 .753 .733 9.00883 344 8.80451 171 1.13453 .517 13 353 8.80765 173 734 9.00883 3744 8.80765 172 1.13400 3453 .517 14 .35697 175 9.00875 7640 .80776 .172 1.13433 .303 </th <th></th> <th>034</th> <th>8.84800</th> <th>179</th> <th></th> <th>0.00901</th> <th>051</th> <th>8.85006</th> <th>180</th> <th></th> <th></th> <th>57</th>		034	8.84800	179		0.00901	051	8.85006	180			57
6 77 177 97746 900800 7739 88505 177 1.14607 1.4007 7 79 88505 175 744 900800 176 885540 177 1.14400 13.951 8 208 88505 175 744 900807 277 885503 177 1.14400 13.951 9 237 8.85031 173 734 900807 278 8.85031 174 1.13091 758 757 909736 900808 778 1.14107 321 372 8.86070 174 1.1377 13.727 1.13737 1.13797 1.3797 1.3797 1.3797 1.3799 1.13804 1.3457 174 1.13804 1.3457 1.13804 1.3457 1.13804 1.3457 1.13804 1.3457 1.13804 1.3457 1.13804 1.3457 1.13804 1.3457 1.13804 1.3457 1.13849 1.3457 1.13234 1.32047 1.11217 1.12373 3.448			8.85075	178	748	0.00801		8.85185		1.14815	.065	56
6 150 8.8540 77 744 9.99880 168 8.8540 77 740 9.99887 237 8.85403 777 740 9.99887 237 8.85403 776 744 9.99887 237 8.85403 776 743 9.99886 236 8.80243 174 1.14203 8.99 10 07265 8.80130 773 734 9.99884 314 8.80473 174 1.132031 .758 13 353 8.80445 717 773 9.99881 342 8.80473 174 1.132031 .756 1.13205 .510 14 382 8.80451 717 777 9.99881 422 8.80703 177 1.13205 .510 1.13205 .510 1.13205 .13055 .510 1.13234 .300 .112343 .406 .112341 .300 .112343 .406 .112343 .406 .112343 .406 .112343 .406 .112343 .406 .112343 .406 .112343 .406 .112343 .406 .112343												55
7 179 8.85976 175 744 9.09887 278 8.85976 176 1.14107 8.89 9 237 8.85956 175 738 9.09886 256 8.80059 174 1.13021 .788 8.90 10 07265 8.80150 177 737 9.09883 344 8.80059 174 1.13021 .788 .788 8.90051 174 1.13021 .13323 .13323 .13327 .5505 .13327 .5505 .13327 .13327 .13327 .13327 .5505 .13327 .13328 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13327 .13328 .13328 .13328 .112324 .112324 .112324 <th></th> <th></th> <th>8.85420</th> <th></th> <th></th> <th>0.00880</th> <th>168</th> <th>8.85540</th> <th></th> <th>1.14400</th> <th></th> <th>54</th>			8.85420			0.00880	168	8.85540		1.14400		54
8 208 8.89760 774 9.09887 227 8.65433 176 1.133031 768 10 07265 8.861243 173 373 9.09885 374 8.86474 174 1.133031 .768 1.133031 .768 1.133031 .768 1.133031 .768 1.133031 .778 .779 9.09882 373 8.86763 1.77 1.13303 .677 1.13303 .779 .56933 1.13303 .779 .779 .909882 373 8.86763 1.77 1.13303 .677 1.13303 .677 1.13303 .677 1.13303 .13304 .677 1.13303 .766 .133047 .13305 .13304 .677 .13304 <	7		8.85005			0.00888	197	8.85717		1.14283	.894	53
9 237 8.89055 7.3 9.99850 255 8.80029 7.4 1.13297 7.3 10 07265 8.80128 173 39735 9.99885 374 8.80291 7.4 1.13297 1.33237 1.13297 1.13297 1.13297 1.13297 1.13297 1.13297 1.13297 1.13297 1.13297 1.13297 5.50 14 352 8.80507 171 1.13297 1.13294 3.05 5.10 15 07411 8.80960 156 772 9.999881 402 8.807447 150 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 1.12384 3.353 8.357745	-		8.85780			0.00887		8.85893			-838	52
10 07260 8.80318 173 99736 0.90984 3748 8.80431 174 1.13373 3.672 13 324 8.80474 174 1.13353 3.672 1.13253 3.672 13 323 8.80684 171 739 9.90983 3.73 8.8073 1.72 1.13237 5.573 14 363 8.80687 171 739 9.90983 373 8.8073 1.12323 4.5653 15 07411 8.80763 171 7.33 9.90970 461 8.87477 170 1.12353 3.533 16 440 8.97155 156 712 9.90975 5078 8.9763 1.66 1.12241 3.24 3.23 3.53 3.55 3.53 3.53 3.55 3.52												51
12 324 8.86474 171 739 0.90883 373 8.869763 174 1.13397 .553 14 382 8.86816 171 779 0.90881 402 8.869763 174 1.13397 .553 15 07411 8.80987 169 723 9.90881 402 8.86973 171 1.12345 .513 16 440 8.87325 169 723 9.90979 450 8.87787 170 1.12345 .333 19 527 8.87020 166 712 9.90976 5778 8.87085 169 1.12344 .303 19 527 8.87020 166 712 9.90976 67578 8.817985 166 1.12344 .304 20 0.556 8.87020 166 712 9.90971 67578 8.81297 165 1.11217 2.404 20 0.7578 8.880763 165 7.11880 .404 1.11217 1.404 1.11217 1.404 1.11217 1.404 1.11217 1.404						9.99885		8.80243		1.13757		50
13 354 0.008479 171 712 9.090830 373 8.80705 172 1.13377 553 14 382 8.80816 171 99725 9.090880 07431 8.87005 171 1.128347 753 3.53 8.80035 171 1.12844 13.457 15 07411 8.89765 169 723 9.09077 548 8.87016 171 1.128347 -553 353 17 469 8.874061 166 717 9.09077 548 8.97051 165 1.12315 .249 13 353 8.87400 166 712 9.09077 556 8.84735 166 1.12317 .249 14 675 8.88906 166 712 9.09077 655 8.88453 165 1.11717 1.2496 23 643 8.88946 165 703 9.09077 753 8.89048 165 1.11717 1.2496 24 673 8.88044 165 775 8.88043 165 1.117263 784						9.99584		8.80417		1.13503	.072	49 48
14 382 8.86810 771 9.99281 402 8.80035 711 1.12894 13455 16 67411 8.86957 169 99725 9.99680 07431 8.87106 171 1.12894 13457 17 460 8.877245 165 723 9.99979 490 8.87477 170 1.12323 .323 19 527 8.87640 166 712 9.99977 548 8.87083 166 1.12215 .248 20 755 8.87905 166 712 9.99973 605 8.88120 165 1.12217 .249 23 643 8.88320 165 712 9.99973 605 8.88078 165 1.11840 .146 24 672 8.88074 165 705 9.99973 605 8.88078 165 1.11247 2.947 26 730 8.88074 165 709 9.99976 6753 8.88078			8.8664¢	171		0.00882		8.86762			.563	47
15 07411 8.8097 171 1.13894 13.457 16 440 8.87136 169 723 9.99979 490 8.87477 170 1.13733 444 17 450 8.87464 169 712 9.99979 490 8.87477 170 1.13733 444 18 498 8.7467 170 1.13253 333 169 716 9.99976 519 8.87467 169 1.13243 303 19 527 8.87905 166 712 9.99976 636 8.89785 166 1.12477 3.197 21 558 8.87905 166 712 9.99974 636 8.88129 167 1.117343 12.947 22 614 8.88400 164 705 9.99971 655 8.88183 165 1.11247 .446 24 672 8.88400 164 705 9.99971 773 8.88783 165 1.11247 .466 27 759 8.88950 162 1.11247		333	8.86816			0.00881	402	8.86035		1.13005	.510	46
16 440 8.87156 109 723 9.99879 451 8.87277 171 1.12723 453 17 450 8.87135 169 721 9.99879 490 8.87447 159 1.12353 333 19 527 8.87061 167 716 9.99977 548 8.87083 169 1.12353 3324 23 643 8.88161 166 712 9.99973 607 8.88120 167 1.113473 .406 23 643 8.88161 166 710 9.99973 605 8.88163 165 1.113473 .406 24 672 8.88161 164 707 9.99971 653 8.88163 165 1.113547 .406 27 759 8.88161 164 707 9.99970 753 8.889783 165 1.111542 .82967 28 775 8.880141 166 694 9.99867 841 8.89783 165 1.11052 .82968 27 759 8.89043						0.00880			-			45
17 405 8.9732 109 721 0.090970 490 8.97447 170 1.13253 .3302 19 527 8.97051 166 710 9.99976 519 8.97051 166 1.13253 .3302 21 537 8.97051 166 9714 9.99976 675 8.89763 166 1.13243 .3302 21 535 8.87055 166 712 9.99976 607 8.88120 167 1.11380 .142047 13.197 22 614 8.88161 165 708 9.99976 605 8.88018 165 1.11347 .0401 24 672 8.88490 164 705 9.99970 753 8.88018 165 1.11347 .11032 .803 25 770 8.88930 162 694 9.999870 753 8.89048 165 1.11023 .803 26 7758 8.89030 162 664 9.99987 841 8.89437 163 1.10240 1.10240 1.0263 754		440		169		0.00870		8.87277			.404	44
18 498 8.97404 107 719 0.90976 519 8.97616 129 1.12315 .248 19 527 8.87061 166 99714 0.90975 607 8.87085 166 1.12315 .248 21 585 8.87095 166 712 9.90975 607 8.88120 167 1.111713 0.9057 21 585 8.87095 166 712 9.90975 607 8.88120 167 1.111713 0.9057 22 614 8.88101 165 710 9.90977 655 8.88020 165 1.11217 12.947 24 672 8.88950 164 705 9.90977 753 8.89043 165 1.11217 12.947 26 7759 8.88950 166 1.00850 812 8.90744 163 1.10240 523 835 28 7758 8.89042 166 1.00850 782 8.89058 161 1.10240 630 1.10240 630 1.10040 1.2706 83		469	8.87325	109	721	9 99879		8.87447	170	1.12553	-352	43
90 07556 8.87820 156 99714 9.99875 677 8.87953 167 1.13047 13.197 21 585 8.8705 166 712 9.99875 607 8.88120 167 1.1180 1.46 23 643 8.88326 165 705 9.99973 605 8.88453 165 1.11342 1.2996 24 672 8.88493 165 705 9.99973 605 8.88453 165 1.11342 1.2996 24 672 8.88981 163 169 99703 9.99977 605 8.88076 165 1.11127 12.996 28 788 8.89142 163 169 99692 9.99868 812 8.89761 161 1.10042 12.706 850 31 8.788 8.8944 166 687 9.99867 689 8.8958 166 1.10042 12.706 1.10240 52.998 8.99705 166 1.10		498	8.87404	167		0.99878	519	8.87010	160	1.12384	.300	42
30 67556 8.87300 166 99714 990975 60778 8.87053 167 1.12047 13.107 21 585 8.87005 166 712 990975 607 8.88120 167 1.11380 1480 <th>-</th> <th></th> <th>41 40</th>	-											41 40
22 614 8.88160 105 710 9.99974 635 8.88247 107 1.11733 1.097 23 643 8.88326 164 705 9.99973 605 8.88245 165 1.11547 46 24 672 8.88976 165 705 9.99971 67724 8.889783 165 1.113247 1.2947 26 730 8.88914 165 695 9.99986 782 8.89111 163 1.10823 8.98 27 759 8.89044 166 696 9.99986 818 8.89171 163 1.10823 8.90 29 817 8.89042 156 689 9.99865 689 8.99470 160 1.10400 12.706 31 875 8.89042 159 685 9.99862 678 8.99590 166 1.10406 612 1.10406 612 1.10406 612 1.10406 612 1.00403 1.2066 </th <th></th> <th>97556</th> <th>8.87820</th> <th>166</th> <th>99714</th> <th>9.99870</th> <th>07578</th> <th>8.87953</th> <th>167</th> <th>1.12047</th> <th></th> <th></th>		97556	8.87820	166	99714	9.99870	07578	8.87953	167	1.12047		
a: 643 8.88326 105 708 9.99972 665 8.88451 105 1.11347		505	8.88161			999975	626		167			39 38
24 672 8.88490 164 705 9.99971 695 8.88078 165 1.11382 12.997 26 730 8.88578 163 697 9.99970 753 8.88978 165 1.11362 12.997 28 783 8.89142 163 699 9.99970 753 8.88978 165 1.11362 12.997 28 788 8.89142 166 694 9.99877 8.88974 163 1.10859 8.80 39 817 8.83042 156 689 9.99867 8.89508 161 1.10840 6.801 31 875 8.80784 159 687 9.99867 689 8.89508 166 1.10840 6.501 33 933 8.89043 159 687 9.99867 680 9.99867 164 1.00240 6.559 34 9628 8.90730 155 676 9.99857 164 8.003977 158		643	8.88320		708	0.00873	665			1.11547	.046	37
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$ \$		672	8.88490		705	9.99872	695			1.11382	12.996	36
a6 730 8.88817 153 701 0.000870 753 8.88044 153 1.11052 .803 a7 759 8.88040 156 659 9.00860 782 8.80111 153 1.110823 .803 a9 817 8.8044 156 696 9.00860 812 8.80437 163 1.10623 .803 31 875 8.8044 156 696 9.00866 812 8.80437 163 1.10420 1.2706 32 904 8.89043 159 685 9.00864 929 8.89050 160 1.00800 612 33 933 8.90420 158 683 9.00860 987 8.90400 159 1.00803 1.20070 .506 34 962 8.00731 156 673 9.09850 6617 8.00370 159 1.00803 1.2474 37 4.90885 155 671 9.09855 164 <td< th=""><th></th><th>07701</th><th>8.88654</th><th></th><th>99703</th><th>0.00871</th><th>07724</th><th>8.88783</th><th></th><th>1.11217</th><th>12.947</th><th>85</th></td<>		07701	8.88654		99703	0.00871	07724	8.88783		1.11217	12.947	85
28 788 8.80742 162 696 999867 812 8.80274 163 1.10776 .801 29 817 8.83304 164 694 9.99867 841 8.80274 163 1.10776 .801 30 07846 8.89464 161 99692 9.99867 841 8.89478 163 1.10726 .801 31 973 8.89784 159 687 9.99863 929 8.89708 162 1.10240 .659 33 933 8.89784 159 687 9.99863 929 8.89708 160 1.0020 .550 34 952 & 8.90170 157 678 9.99863 68017 8.9039 159 1.00240 .493 36 0.78 8.90730 155 671 9.99850 673 9.99850 675 9.90851 164 8.00571 150 1.00240 .325 40 8.91932 155 671 9.99855 <th></th> <th>730</th> <th>8.88817</th> <th>103</th> <th>701</th> <th>0.00870</th> <th>753</th> <th>8.88948</th> <th>162</th> <th>1.11052</th> <th></th> <th>34</th>		730	8.88817	103	701	0.00870	753	8.88948	162	1.11052		34
ap 817 8.83304 100 694 9.99867 841 8.89437 101 1.10563 7.54 30 67846 8.89464 160 99692 9.99866 67870 8.89580 162 1.10402 12.706 31 875 8.89043 159 687 9.99865 899 8.89760 160 1.10424 6.54 33 933 8.89043 159 685 9.99862 958 8.90400 166 1.00920 566 34 962 8.9074 157 676 9.99860 987 8.90400 159 1.00901 12.474 36 67901 8.90737 156 777 648 9.99860 6817 8.90470 159 1.00901 12.474 37 0.49 8.90774 157 677 9.99857 134 8.90737 158 1.00901 12.474 37 4.90837 155 677 9.99857 134		759		162	699	0.00800	782	8.89111		1.10880	.850	33 32
80 07846 8.8946 101 99592 9.99865 07870 8.8958 162 1.10403 12.705 31 875 8.89045 159 687 9.99864 992 8.89760 160 1.10403 659 33 933 8.89043 159 687 9.99864 928 8.90070 160 1.10400 659 34 952 8.90103 159 685 9.99864 927 8.90240 160 1.00901 12.474 36 07991 8.90270 155 675 9.99850 046 4 8.0973 158 1.09043 4.493 37 0.49 8.90770 155 675 9.99850 075 8.0718 157 1.09128 .339 39 107 8.90857 155 666 9.99853 124 8.01495 155 1.08897 2.251 1.08897 2.251 1.08043 12.0314 .325 1.08071 2.251 1			8.80204	162		0.00867	841	8.80427		1.10563		32 31
31 875 8.80025 159 689 9.90885 899 8.80700 160 1.10240 .559 32 904 8.80784 159 687 9.90865 999 8.80700 160 1.10080 .513 33 933 8.80243 159 687 9.90863 958 8.90200 160 1.0080 .513 34 952 8.90103 159 685 9.90860 968 9.00390 156 1.00201 12.474 36 68208 8.90730 155 676 9.90850 164 8.00737 158 1.00248 .349 37 0.49 8.90730 155 671 9.90857 134 8.00731 157 1.00248 .343 38 078 8.90732 155 666 9.90853 152 1.00805 157 1.08807 152 41 155 6666 9.90853 152 8.01950 153 1.0			8 80464			0.00966						80
32 904 8.89784 159 687 9.09864 929 8.89080 150 33 933 8.89043 159 685 9.09863 958 8.00460 160 1.00800 .563 34 952 8.9043 159 683 9.99863 958 8.0040 150 1.00920 .566 36 0.6802.890100 158 99680 9.09850 075 8.00571 158 1.0043 .493 37 0.49 8.00574 155 676 9.99850 075 8.00571 158 1.00138 .339 39 107 8.00857 155 677 9.99857 1134 8.00572 157 1.00238 .334 41 165 8.01905 155 666 9.99857 124 8.01405 155 1.08806 .207 43 223 8.91950 153 666 9.99853 251 8.01405 155 1.08806 <		875	8.80025		680	0.00868	800	8.80760			.659	29
33 933 830043 159 685 0.09803 955 8.00040 159 1.00976 .500 34 962 8.00102 159 683 0.09863 987 8.0020 159 36 07901 8.00260 158 6968 0.09850 087 8.0020 159 37 049 8.00774 157 676 0.09858 107 8.00102 152 .384 38 078 8.00713 155 671 0.09857 134 8.00577 158 1.00243 .384 39 107 8.00856 155 671 0.09857 134 8.00125 156 1.00813 1224 1.00343 .384 41 165 8.01105 155 666 9.09857 134 8.01265 155 1.08807 1205 43 223 8.01555 153 655 9.09854 221 8.01265 155 1.08003 12035 <th></th> <th></th> <th>8.89784</th> <th></th> <th>687</th> <th>0.00864</th> <th>929</th> <th>8.89920</th> <th></th> <th></th> <th>.612</th> <th>28</th>			8.89784		687	0.00864	929	8.89920			.612	28
34 902 8.90103 158 063 0.90807 907 0.90421 159 1.00011 2.474 36 07991 8.90200 157 678 9.99850 0.6617 8.00399 158 1.09043 4.474 37 049 8.90574 157 676 9.99850 0.46 8.00571 158 1.09043 4.493 38 078 8.90574 155 673 9.99856 104 8.00771 157 1.09128 .339 39 107 8.90885 155 671 9.99877 134 8.01797 152 1.088971 2.32 41 155 8.91195 155 666 9.99853 128 8.01495 155 1.08607 2.025 1.088071 2.251 1.08603 120 1.08803 120 1.08803 1.20 1.08803 120 1.08803 120 1.08803 120 1.08803 120 1.08303 1.20333 1.08103		933	8.89943		685	0.00803		8.90080		1.09920	.566	27
ab 07991 absolute 157 678 999850 corr absolute 158 1.09043 4474 36 08208 8.90730 155 676 9.99850 corr 8.90737 158 1.09243 .434 38 078 8.90730 155 676 9.99850 corr 8.90715 158 1.09243 .434 39 107 8.90857 155 671 9.99857 134 8.00730 155 1.088971 .232 40 08136 8.91105 155 6666 9.99857 192 8.01185 155 1.08600 .207 43 233 8.91302 153 655 9.99853 251 8.01803 153 1.08107 .207 44 252 8.91702 152 655 9.99853 251 8.01803 153 1.08003 12.035 45 30848 8.91807 152 654 9.99853 251						9.99862				1.00700		26
37 00020 8.90417 157 676 9.99800 77 8.90730 158 1.09128 .339 39 107 8.90845 155 675 9.99850 134 8.90730 157 1.09128 .339 30 107 8.90845 155 675 9.99857 134 8.90730 157 1.09128 .339 40 08136 8.91495 155 675 9.99857 134 8.91030 157 1.08815 1.2251 41 165 8.91195 153 666 9.99853 221 8.91495 155 1.08815 1.2251 43 223 8.91397 153 657 9.99853 236 8.91693 153 1.088197 .09134 12035 1.08397 .99057 9.90857 339 8.92401 151 1.08043 12.035 44 2523 8.91697 152 654 9.90847 397 8.92411 150 1.0						0.00801		8.90399		1.00001		85
38 078 8.90730 155 073 0.909858 114 8.90730 155 1.08126 .339 39 107 8.90885 155 671 9.90857 134 8.90730 155 1.08126 .339 40 08136 8.91105 155 666 9.90857 134 8.9105 156 1.08266 .207 41 155 8.91105 155 666 9.90853 221 8.91495 155 1.08050 .207 42 134 8.91349 153 661 9.909831 221 8.91495 153 1.08030 .207 43 232 8.91055 153 659 9.90843 368 8.91057 153 1.08040 120 1.08043 12.035 46 310 8.91050 151 652 9.90848 368 8.9261 152 1.07738 9950 1.997 8.92116 151 1.07738 1.07738 9950				157		0.00850		8.0071	158	T.00285	.284	24 23
39 107 8.50885 155 671 5.50857 134 8.01020 157 1.08071 .295 40 0.8136 8.01040 155 55668 9.09856 0.8138 8.01240 155 1.08815 12.221 1.08605 1.08815 12.221 1.08605 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08805 1.08305 1.08305 1.08305 1.08305 1.08305 1.08107 0.77 44 232 8.91050 151 652 9.90852 280 8.91807 153 1.08107 0.77 45 08281 8.91050 151 652 9.909821 363 8.91207 153 1.08107 0.77 46 310 8.91050 151 652 9.909847 397 8.92417 153 1.07786 9.950 1	38	078	8.00730	156	673	0.00858		8.00872		1.00128	.339	22
40 c8136 8.91040 155 c666 9.99856 c8163 8.91185 150 1.08815 12.251 41 155 8.91195 155 666 9.99856 c8163 8.91185 155 1.08800 .207 42 194 8.91395 153 664 9.99853 251 8.91395 155 1.08050 .207 43 233 8.91392 153 661 9.99853 251 8.91695 155 1.08350 .120 44 253 8.91697 152 655 9.99853 251 8.91695 153 1.08197 .077 45 308 8.91701 151 652 9.99853 339 8.92170 153 1.08197 .077 46 310 8.92170 151 654 9.99840 368 8.92471 152 1.07738 .995 48 368 8.92471 150 647 9.99840 368 <t< th=""><th></th><th></th><th>8.90885</th><th></th><th>671</th><th>9-99857</th><th>134</th><th></th><th></th><th>1.08971</th><th>.295</th><th>21</th></t<>			8.90885		671	9-99857	134			1.08971	.295	21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	08136			99668	9.99856	08163	8.01185	-	1.08815	12.251	20
43 233 8.03 (34) 153 654 9.995 (34) 251 8.01 (55) 1.05 (55) 1.06 (31) 1.06 (31) 1.06 (31) 1.02 (55) 1.06 (31) 1.00 (31) 1					666	9-99855		8.01340			.207	12
44 253 8.91655 153 659 9.99851 280 8.01803 153 1.08197 .077 45 08201 8.91807 152 99657 9.99850 339 8.01957 153 1.08197 .077 46 310 8.91807 152 99657 9.99850 339 8.01957 153 1.08093 12.035 46 310 8.9159 151 652 9.99848 368 8.02051 152 1.07738 .950 48 368 8.02261 150 647 9.99845 08456 8.02716 151 1.07786 .950 50 08426 8.92561 150 647 9.99845 08456 8.92716 151 1.07784 1.0784 1.1826 51 455 8.92710 149 642 9.99843 514 8.93016 150 1.07134 .785 53 513 8.93071 149 637 9.99843					004	9-99854		8.01405		1.08505		18 17
44 -53 0.53 999-32 -10894 1094 45 08281 8.01807 152 99657 90981 339 8.0175 153 1.07890 11.924 46 310 8.91950 151 652 9.90981 339 8.92110 151 152 1.07738 .950 48 368 8.02261 150 647 9.90984 368 8.02265 151 1.07738 .950 49 397 8.02411 150 647 9.909847 397 8.02456 151 1.07738 .950 50 08426 8.02501 150 647 9.909845 08456 8.02476 151 1.07134 .785 51 455 8.03057 149 639 9.909845 544 8.03165 150 1.07134 .785 53 513 8.930174 147 635 9.909842 544 8.03165 149 1.06635 .70538			0.91502 8 0165#					8.01802		1.08107		16
46 310 8.91950 152 .654 9.99850 330 8.92110 151 47 339 8.92110 151 652 9.99846 368 8.92261 152 1.07786 .990 48 368 8.92261 151 652 9.99847 397 8.92411 150 647 9.99846 427 8.92565 151 1.07786 .990 50 08426 8.92561 150 647 9.99846 427 8.92565 150 1.07435 .867 51 455 8.92710 149 642 9.99843 514 8.92866 150 1.07134 .785 52 484 8.93959 148 637 9.99842 544 8.93165 149 1.06835 .705 53 513 8.93071 147 635 9.99842 544 8.93165 149 1.06538 1.6625 54 542 8.93174 147 630							-					15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.00850	339				11.992	14
48 368 8.02261 151 640 9.09847 397 8.02414 152 1.07586 .900 49 307 8.02411 150 647 9.09847 397 8.02414 152 1.07586 .900 50 08426 8.02561 150 647 9.09846 68256 8.02766 151 1.07435 .867 51 455 8.02561 149 642 9.09845 68456 8.02866 150 1.07134 .785 52 484 8.02850 149 639 9.09843 514 8.03066 159 1.06084 .745 53 513 8.03070 148 637 9.09843 514 8.03165 149 1.06535 .705 54 54 542 8.03301 147 635 9.09840 8662 8.03462 149 1.06538 1.06538 1.06538 1.06538 1.06538 1.06538 1.06538 1.06531	47	339	8.02110		652	0.00848	368	8.92262		1.07738	.950	13
450 357 6.94411 150 944 9.99845 68456 8.93716 157 117433 117433 50 08426 8.93501 149 642 9.99845 68456 8.93716 150 1.07234 1183 51 455 8.93710 149 639 9.99843 514 8.932061 150 1.07134 .785 52 484 8.93850 149 639 9.99843 514 8.93016 159 1.06984 .745 53 533 533 8.93097 148 637 9.909843 514 8.93016 149 1.06835 .705 54 542 8.93154 147 635 9.90840 68602 8.93450 146 1.06538 1.06638 1.06538 1.664 55 08571 8.93301 147 639 9.90836 661 8.93750 147 1.06538 1.06538 1.06538 1.06538 1.06538 1.06244	48	368			649	0.00847		8.92414		1.07586	.909	12
au costato s.g.g.str g.g.str g.g.str <thg.str< th=""> g.str <thg.str< <="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>11</th></thg.str<></thg.str<>												11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•		-		9.99845		8.02710	-	1.07284		10
53 53 53 53 53 53 53 53 53 53 53 53 54 8.03105 149 1.06835 .705 54 542 8.03154 147 637 9.99841 573 8.03165 149 1.06635 .705 54 542 8.03154 147 635 9.99841 573 8.03131 149 1.06697 .664 55 608 8.03301 147 99632 9.99836 6802 8.03040 147 1.06538 11.652 56 608 8.93344 146 637 9.99836 661 8.03750 147 1.06244 .540 57 639 8.93740 146 627 9.99838 661 8.03705 147 1.06244 .540 58 638 8.93740 146 622 9.99837 690 8.03903 147 1.06024 .540 59 678 8.937840<		455		149		0.00842			150	1.00084		8
54 542 8.03154 147 635 9.99841 573 8.03313 148 1.06687 .664 55 68571 8.03301 147 69532 9.99840 68602 8.93462 149 1.06587 .664 56 600 8.93448 147 630 9.99830 632 8.93602 147 1.06391 .585 56 600 8.93594 146 627 9.99830 632 8.93600 147 1.06097 .595 57 639 8.93594 146 627 9.99837 690 8.93973 147 1.06244 .545 58 638 8.93740 146 622 9.99837 690 8.93903 147 1.06297 .507 58 638 8.93740 146 622 9.998367 700 8.903903 146 1.06297 .507 59 658 8.93740 145 622 9.908367 700 <t< th=""><th></th><th></th><th></th><th>148</th><th>637</th><th>0.00842</th><th></th><th></th><th></th><th>1.06835</th><th>.705</th><th></th></t<>				148	637	0.00842				1.06835	.705	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					635	0.99841					.664	7 6
56 500 8.93448 147 630 9.99830 632 8.93600 147 1.06391 -585 57 639 8.03594 146 627 9.99838 661 8.03756 147 1.060391 -585 58 658 8.03594 146 627 9.99838 661 8.03756 147 1.06097 -597 58 658 8.03740 146 625 9.99837 690 8.93903 147 1.06097 597 58 678 8.7888 145 622 0.99837 690 8.93903 146 1.05951 .407		0857I			99632	9.99840				1.00538	11.625	5
58 658 8.03740 146 625 9.90837 690 8.03903 147 1.06097 .507 50 687 8.03882 145 622 0.00830 720 8.04040 146 1.05051 .468	56	600	8.93448	147	630	9.99839		8.93009		1.00301	.585	4
$[c_0] (687 \times 0.02885)^{-7.5} (022 \times 0.00830) (720 \times 0.04040)^{-7.5} (1.05051 - 400)$	57		8.93594	146	627	9.99838					.540	3
4A 216 804000 145 610 000824 740 804105 146 1.05808 430	50		0.93740 8.029₽₽	145	622	0.00826			146		.30/	I
	60	716	8.94030	145	619	9.99834	749	8.94195		1.05805	430	Ô
				<u> </u>	<u> </u>							7
Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. c.d. Log. Tan Nat		Nat. C	OS Log.	d.	Nat. S	In Log.	Nat. C	OT Log.	c.d.	Log. I a	ITI Nat.	<u>'</u>

85°

					ف	, 	-				_
<u>'</u>	Nat. S	in Log.	d.	Nat. C	OS Log.	Nat. T	an Log.	c.d.	Log. C	ot Nat.	
0	08716	8.94030	144	99619	9.99834	08749	8.94195	145	1.05805	11.430	60
I	745	8.94174	143	617	9.99833	778	8.94340	145	1.05660	•39 2	59
2	774 803	8.94317 8.94461	144	614 612	9.99832 9.99831	807 837	8.94485 8.94630	145	1.05515	-354	58
3 4	831	8.94603	142	609	9.99830	866	8.94773	143	1.05370	.316 .279	57 56
5	08860	8.94746	143	99607	9.99829	08895	8.94017	144			55
6	889	8.04887	141	604	9.99828	925	8.95060	143	1.05083 1.04040	11.242 .205	54
. i	918	8.95029	142	602	9.99827	954	8.95202	142	1.04798	.168	53
7 8	947	8.95170	141 140	599	9.99825	983	8.95344	142 142	1.04656	.132	52
9	976	8.95310	140	596	9.99824	09013	8.95344 8.95486	142 141	1.04514	.095	51
10	09005	8.95430	139	99594	9.99823	09042	8.95627	140	1.04373	11.059	50
11	034	8.95589	139	591	9.99822	071	8.95767	141	1.04233	.024	49
12	003	8.95728	139	588 586	9.99821 9.99820	101	8.95908	139	1.04002	10.988	48
13 14	092 121	8.95867 8.96005	138	583	9.99819 9.99819	130 159	8.96047 8.96187	140	1.03953	-953 .918	47 46
15	09150		138		9.99817	09189		138		10.883	45
16	179	8.90143 8.90280	137	99580 578	9.99810	218	8.96325	139	1.03675	.848	44
17	208	8.96417	137	575	0.00815	247	8.96464 8.96602	138	1.03398	814	44 43
18	237	8.90553	136	572	9.99814	277	8.90739	137	1.03201	.780	42
19	266	8.96553 8.96689	136	570	9.99813	306	8.90739 8.96877	138	1.03123	.746	41
20	09295	8.96825	136	99567	9.99812	09335	8.07013	136	1.02087	10.712	40
21	324	8.96960	135 135	564	0.00810	365	8.97150	137 135	1.02850	.678	39
22	353	8.97095	-35 I34	562	9.99809	394	8.97285	•35 136	1.02715	.645	38
23 24	382 411	8.07220	134	559	9.99808	423	8.97421	135	1.02579	.612	37
24		8.97363	133	556	9.99807	453	8.97556	135	1.02444	.579	36
26	09440 469	8.97496 8.97629	133	99553	9.99806 9.99804	09482 511	8.97691	134	1.02300	10.546	35
27	498	8.07762	133	551 548	9.99803	541	8.97825	134	1.02175	.514 .481	34
28	527	8.97762 8.97894	132	545	0.00802	570	8.97959 8.98092	133	1.01008	-449	33 32
29	556	8.98020	132	542	9.99801	600	8.98225	133	1.01775	-417	31
80	09585	8.98157 8.98288	131	99540	9.99800	09629	8.98358	133	1.01642	10.385	30
31	614	8.98288	13I 13I	537	9.99798	658	8.98400	132 132	1.01510	.354	29
32	642	8.98419	130	534	9-99797	688	8.98022	131	1.01378	.322	28
33	671 700	8.98549 8.98679	130	531 528	9-99796	717	8.98753 8.98884	131	1.01247	.291	27
34 85		8.98808	129		9-99795	746		131	1.01116	.260	26
36	09729 75 ⁸	8.98937	129	99526 523	9-99793 9-99792	0 9776 805	8.99015 8.99145	130	1.00985 1.00855	10.229	25
37	787	8.99000	129	520	9.9979I	834	8.00275	130	1.00725	.199 .168	24 23
38	816	8.99194	128 128	517	0.00700	864	8.00405	130	1.00505	.138	22
39	845	8.99322	120	514	9.99788	893	8.99534	129	1.00595 1.00400	.108	21
40	09874	8.99450	120	99511	9.99787	09923	8.00662	128	1.00338	10.078	20
4I	903	8.99577	127	508	9.99786	952	8.99791	129 128	1.00200	.048	19
42	932	8.99704	126	506	9-99785	981	8.99919	127	1.00081	.019	18
43 44	961 990	8.99830 8.99956	126	503 500	9.99783 9.99782	10011 040	9.00046 9.00174	128	0.99954	9.9893 601	17 16
44		0.00082	126			10069		127	0.00820		
46	10019 048	0.00207	125	99497 494	9.99781 9.99780	10009	9.00301 9.00427	126	0.99699	9.9310 021	15 14
47	077	9.00332	125	491	9.99778	128		126	0.99573 0.99447	9.8734	14
48	106	9.00456	124	488	9-99777	158	9.00553 9.00079	126	0.99321	448	12
49	135	9.00581	125 123	485	9.99770	187	9.00805	126	0.99195	164	11
50	10164	9.00704	123	99482	9.99775	10216	9.00930	125	0.99070	9.7882	10
51	192	9.00828	124	479	9.99773	246	9.01055	125 124	0.98945	601	2
52	221	9.00951	123	476	9.99772	275	9.01179	124	0.98821	322	8
53 54	250 279	9.01074 9.01190	122	473 470	9.99771 9.99769	305 334	9.01303 9.01427	124	0.98097 0.98573	9.6768	7 6
55	10308	9.01318	122	99467	0.00769	<u> </u>		123	0.98450	and the second se	5
56	337	9.01310	122	464	9.99768 9.99767	393	9.01550 9.01673	123	0.98327	9.6493 220	4
57	366	9.01561	121	461	9.99705	422	9.01790	123	0.08204	9.5949	3
58	395	9.01682	12I 12I	458	9-99704	452	9.01918	122 122	0.98082	679	2
59 60	424	0.01803	121	455	9.99703	481	9.02040	122	0.97960	411	I
00	453	9.01923		452	9.99761	510	9.02162		0.97838	144	0
	Nat. C	OS Log.	d.	Nat. S	in Log.	Nat. C	ot Log	c.d.	Log. Ta	n Nat	1
		5'					5'				

84°

Digitized by Google

				6)°					
1	Nat. Sin Log.	đ.	Nat.C	OS Log.	Nat. T	an Log.	c.d.	Log. C	ot Nat.	
0 1	10453 9.01923 482 9.02043	120	99452 . 449	9.99761 9.99760	10510 540	9.02162 0.02283	121	0.97838	9.5144 9.4878	60 59
2	511 9.02103	120 120	446	9-99759	569	9.02404	121 121	0.97596	6L	58
3	540 9.02283	119	443	9-99757	599 628	9.02525 9.02045	120	0.97475	352	57 56
4	569 9.02402 10597 9.02520	118	<u>440</u> 99437	9-99756 9-99755	10657	9.02766	121	0.97234	9.3831	55
6	626 0.02030	119 118	434	9-99753	687	9.0288 <u>5</u>	119 120	0.97115	57*	54
7 8	655 9.02757 684 9.02874	117	43I 428	9-99752 9-99751	716 746	9.03005 9.03124	119	0.96995	315	53 52
9	713 9.02992	118	424	9.99749	775	9.03242	118	0.96758	9.2806	51
10	10742 9.03109	117 117	99421	9-99748	10805	9.03361	119 118	0.96639	9.2553	50
11 12	771 0.03220 800 0.03342	116	418 415	9-99747 9-99745	834 863	9-03479 9-03597	118	0.96521	301	49 48
13	829 9.03458	116 116	412	9-99744	893	9.03714	117 118	0.96286	9.1803	47
14	858 9.03574	116	409	9.99742	922	9.03832	116	0.96168	555	46
15 16	10887 9.03690 916 9.03805	115	99406	9-99741 9-99740	10952 981	9.03948 9.04005	117	0.96052	9.1309	45 44
17	945 9.03920	115 114	399	9.99738	11011	9.04181	116 116	0.95819	9.0821	43
18 19	973 9.04034 11002 9.04149	115	396 393	9-99737 9-99730	040 070	9.04297 9.04413	116	0.95703	579 338	42 41
20	11031 9.04262	113	99390	9-99734	11000	9.04528	115	0.95472	9,0008	40
21	060 0.04376	114 114	386	9.99733	128	0.04043	115 115	0.95357	8.9860	39
22	089 9.04490 118 9.04603	113	383 380	9.99731	158 187	9.04758	115	0.95242 0.95127	623 387	38 37
23 24	147 9.04715	112	377	9.99730 9.99728	217	9.04758 9.04873 9.04987	114	0.95013	152	36
25	11176 9.04828	113 112	99374	9.99727	11246	9.05101	114 113	0.94899	8,8919	85
26 27	205 9.04940	112	370	9.99726	276	9.05214 9.05328	114	0.94786	686	34
27 28	234 9.05052 263 9.05104	112	367 364	9-99724 9-99723	305 335	9.05441	113	0.94559	455	33 32
29	291 9.05275	111 111		9.99721		9.05553	112	0.94447	8.7996	31
80	11320 9.05386	111	99357	9.99720	11394	9.05666	112	0.94334	8.7769 542	30 20
31 32	349 9.05 497 378 9.05607	110	354 351	9.99718 9.99717	423 452	9.05778 9.05890	112	0.94110	317	28
·33	407 9-05717	110 110	347	9.99716	482	9.06002	112 111	0.93998	093	27 26
34 85		110	<u>344</u> 99341	9-99714 9-99713	511 11541	9.06113 9.06224	111	0.93887	8.6870 8.6648	25
36	11465 9.05937 494 9.00040	109 109	337	9.99711	570	0.00335	111 110	0.93065	427	24
37	523 0.06155	109	334	9.99710	600 629	9.06445	111	0.93555	208	23
38 39	552 9.06264 580 9.06372	108	331 327	9.99708 9.99707	659	9.06445 9.06556 9.06666	110	0.93444	8.5989 772	22 21
40	11609 9.06481	109 108	99324	9.99705	11688	9.00775 9.06885	109 110	0.93225	8.5555	20
4I	638 9.06589 667 9.06096	107	320	9.99704	718	9.06885 9.06994	109	0.93115	340 120	19 18
42 43	667 9.06090 696 9.06804	108	317 314	9.99702 9.99701	747 777	9.00994 9.07103	109	0.93000	8.4913	17
44	725 9.06911	107 107	310	9-99699	806	9.07211	108 109	0.92709	701	16
45 46	11754 9.07018 783 0.07124	106	99307 303	9.99698 9.99696	11836 865	9.07320 9.07428	108	0.92680	8.4490 280	15 14
47	783 9.07124 812 9.0723 1	107	300	9.99693	895	9.07530	108	0.02464	071	13
48	840 9.07337	106 105	297	9.99693	924	9.07043	107 108	0.02357	8.3863	12
49_ 50	869 9.07442 11898 9.07548	106	_ 293_ 99290	9.99692 9.99690	<u>954</u> 11983	9.07751 9.07858	107	0.92249	656 8.3450	11 10
51	927 0.07053	105	286	9.99689	12013	9.07964 9.08071	106	0.92036	245	9
52	956 9.07758	105 105	283	0.00687	042	9.08071	107 106	0.91929	041 8.2838	8
53 54	985 9.07803 12014 9.07968	105	279 276	9.99686 9.99684	072 101	9.08177 9.08283	106	0.91823	636	7 6
55	12043 9.08072	104	99272	0.00683	12131	9.08389	106 106	0.91611	8.2434	5
56	071 0.08170	1C4 104	269	0.00681	160	9.08495 9.08600	105	0.91505	234	4
57 58	100 9.08280 129 9.08383	103	265 262	9.99680 9.99678	190 219	9.08705	105	0.91400 0.91295	035 8.1837	3
59 60	158 9.08480	103 103	258	9.99677	249	9.08810	105 104	0.01100	640	I
60	187 9.08589		255	9.99675	278	9.08914		0.91086	443	0
	Nat. Cos Log.	d.	Nat. S	in Log.	Nat. C	ot Log.	c.d.	Log. Ta	I N Nat.	1

٠

83°

70
(

		•								-	
'		in Log.	d.	Nat, C	OS Log.	Nat. I	an Log.	c.d.	Log. Co		-
0	12187 216	9.08589	103	99255	9.99675	12278	9.08914	105	0.91086	8.1443 248	60
1 2	245	9.08692 0.0870₹	103	251 248	9-99074	308 338	9.09019 9.09123	104	0.90981	240	59 58
3	274	0.08795 0.08897	102	244	0.00070	367	0.00227	104	0.90773	054 8.0860	57
4		9.08000	102 102	240	9.99669		0.09330	103 104	0.90070	667	56
5	12331	9.09101	101	99237	9.99667	12426	9-09434	103	0.90566	8.0476	55
6	360 389	9.09202	102	233	9.99666 9.99664	456	9-09537	103	0.00403	285	54
78	418	9-09304 0-00405	IOI	230 226	0.00003	485 515	0.00742	102	0.00360	095 7.9906	53 52
9	447	9.0940 3 9.09500	101 100	222	9.99661	544	9.09742 9.09843	103	0.90155	718	51
10	12476	0.00000	100	99219	9.99659	12574	9.09947	102 102	0.90053	7.9530	50
II	504	9.09707 9.09807	100	215	9.99658	603	9.10049	IOI	0.80051	344	49
12 13	533 562	9.09807 9.09907	100	211 208	9.99656 9-99653	633 662	9.10150 9.10252	102	0.89850	158 7.8973	48 47
14	591	0.10000	99	204	9-99653	692	9.10353	101	0.80047	789	46
15	12620	9.10106	100	99200	9.99651	12722	9.10454	101	0.89546	7.8606	45
16	649	0.10203	99 99	197	9.99650	751	9.10555 9.10050	IOI IOI	0.89445	. 424	44
17	678	9.10304	98	193	9.99648	781	9.10656	100	0.80344	243	43
18 19	706 735	9.10402 9.10501	99	189 186	9-99647 9-99645	810 840	9.10750 9.10850	100	0.89244 0.89144	062 7.7882	42 41
20	12764	0.10500	98	99182	9.00643	12860		100	0.89044	7.7704	40
21	793	9.10097	98	178	0.00042	899	9.10956 9.11056	100	0.88044	7.7704 525	39
22	822	0.10705	98 98	175	9.99640	929	0.11155	99 99	0.888.2	348	38
23	851	9.10893	97	171	9.99638	958	9.11254	99	0.88740	171	37
24 25	880	9.10990	97	167	9.99637	988	9.11353	9 9	0.88647	7.6996	<u>36</u> 35
20	12908 937	9.11087 9.11184	97	99163 160	9-99635 9-99633	13017 047	9.11452	99	0.88548 0.88449	7.6821 647	30
27	95/	0.11281	97 96	156	9.99632	076	9.11551 9.11649	98	0.88261	473	33
28	995	9.11377	90 97	152	0.00630	106	9.11747 9.11845	98 98	0.88253	301	32
29	13024	9.11474	96	148	9.99629	136	9.11845	98	0.88155	129	31
80	13053	9.11570 9.11666	96	99144	9.99627	13165	9.11943	97	0.88057	7.5958	30
31 32	081	9.11000 9.11761	95 96	141 137	9.99625 9.99624	195 224	9.12040 9.12138	- 98	0.87900 0.87802	787 618	29 28
33	139	9.11857		133	0.00022	254	0.12235	97	0.87705	449	27
34	168	9.11952	95 95	129	9.99620	284	9.12332	.97 96	0.87705 0.87668	281	26
85	13197	9.12047	95 95	99125	9.99618	13313	9.12428	97	0.87572	7.5113	25
36	226	0.12142	94	122 118	9.99617	343	9.12525 9.12021	96	0.87475	7 -4947 781	24
37 38	254 283	9.12230 9.12331	95	110	9.99615 9.99613	372 402	9.12717	96	0.87379 0.87283	615	23 22
39	312	9.12425	94	110	9.99612	432	9.12813	96	0.87187	451	21
40	13341	0.12519	94	99106	0.00610	13461	9.12909	96	0.87001	7.4287	20
41	370	9.12012	93 94	102	9.99608	49I	9.13004	95 95	0.86006	124	19
42	399	9.12700	93	098	9.99607	521 550	9.13099	95	0.86001 0.86806	7.3962 800	18 17
43 44	427 456	9.12799 9.12892	93	094 091	9.9960 3 9.99603	580	9.13194 9.13289	95	0.86711	639	16
45	13485	0.12085	93	99087	9.99601	13609	9.13384	95	0.86616	7.3479	15
46	514	9.13078	93 93	083	9.99600	639	9.13478	94 95	0.86522	319	14
47	543	9.13171	93	079	9.99598	669	9.13573 9.13007	95	0.86427	160	13
48 49	572 600	9.13203 9.13355	92	075 071	9.99596	698 728	9.13007 9.13761	94	0.86333	002 7.2844	12 11
49 50	13629		92	99067	9.99595	13758	9.13854	93	0.80140	7.2687	10
51	658	9.13447 0.13530	92	00007	9-99593 9-99591	787	9.13054	94	0.86052	7.2007 53I	
52	687	9.13539 9.13630	91 92	059	0.00580	817	9.14041	93 93	0.85050	375	8
53	716	9.13722 9.13813	91	055	0.00588	846	9.14134	93	0.85866	220 066	76
54	744		91	051	9.99580	876	9.14227	93	0.85773		5
55 56	13773 802	9.13904 9.13994	90	99047	9.99584 9.99582	13906 935	9.14320 9.14412	92	0.85680	7.1912 759	4
57	831	9.13994 9.14085	91	039	9.99581	955	9.14504	92	0.85496	607	3
58	860	9.14175	90 91	0 35	9-99579	995	0.14507	93 91	0.85403	455	2
59 60	889	9.14266	90	031	9-99577	14024	9.14088	92	0.85312	304	I 0
	917	9.14350		027	9-99575	054	9.14780		0.05440	154	
	Nat. C	OS Log.	d.	Nat. S	in Log.	Nat. C	ot Log.	c.d.	Log. Ta	IN Nat.	1
			_	L						_	

82°

Digitized by Google

:

				8	}°					
'	Nat. Sin Log.	d.	Nat. C	OS Log.	Nat. T	an Log.	c.d.	Log. C	o t Nat.	
0 1	13917 9.14350	89	99027 023	9-99575	14054 084	9.14780 9.14872	92	0.85220	7.1154 004	60 59
2	946 9.14445 975 9.14535 14004 9.14024	90 89	019	9-99574 9-99572	113	9.14963	91 91	0.85037	7.0855	58 58
3		90	015	0.00570	I43	9.15054	91	0.84040	706	57
4	033 9.14714 14061 9.14803	89	011	9.99568 9.99566	173 14202	9.15145 9.15236	91	0.84764	558 7.0410	56 55
6	090 9.14891	88 89	002	9-99565	232	9.15327	91 90	0.84673	264	54
78	119 9.14980 148 9.15069	89	98998	9.99503	262 291	9.15417 9.15508	91 91	0.84583	117 6.9972	53 52
9	148 9.15069 177 9.15157	88 88	994 990	9.99561 9.99559	321	9.15598	90	0.84402	827	51
10	14205 9.15245	88.	98986	0.00557	14351	9.15688	90 89	0.84312	6.9682	50
11 12	234 9-15333 263 9-15421	88	982 978	9-99550 9-99554	381 410	9.15777 9.15807	90	0.84223	538 395	49 48
13	292 9.15508	87 88	973	0.00552	440	9.15956	89 90	0.84044	393 252	47
14	320 9.15596	87	969	9.99550	470	9.10046	89	0.83954	110	46
15 16	14349 9.15683 378 9.15770	87	98965	9.99548 9.99546	14499 529	9.16135 9.16224	89	0.83865	6.8969 828	45 44
17	407 9.15857	87 87	957	9-99545	559 588	9.16312	88 80	0.83770 0.83688	687	43
18 10	436 9.15944 464 9.16030	86	953	9-99543	588 618	9.16401 9.16489	88	0.83599	548 408	42 41
20	464 9.16030 14493 9.16116	86	948 98944	9-99541 9-99539	14648		88	0.83511	6.8269	40
21	522 0.16203	87 86	940	9.99537	678	9.16577 9.16665	88 88	0.83335	131	39
22	551 0.16280 580 0.16374	85	936 931	9.99535	707	9.16753 9.16841	88	0.83247	6.7994 856	38
23 24	580 9.16374 608 9.16460	8ő	927	9-99533 9-99532	737 707	9.16928	87 88	0.83072	720	37 36
85	14637 9.16545	85 86	98923	9.99530	14796	9.17016	87	0.82084	6.7584	85
26 27	666 9.16631 695 9.16716	85	919 914	9.99528 9.99526	826 856	9.17103 9.17190	87	0.82897	448 313	34 33
28	723 9.16801	85 85	910	9.99524	886	0.17277	87 86	0.82723	179	32
29	752 9.16886	84	906	9-99522	915	9.17303	87	0.82637	045	31
30 31	14781 9.16970 810 9.17055	85	98902	9.99520 9.99518	14945 975	9.174 <u>3</u> 0 0.17530	86	0.82550	6.6912 779	80 29
32	838 9.17139	84 84	893	0.00517	15005	9.17530 9.17022	86 86	0.82378	646	28
33 34	867 9.17223 896 9.17307	84	889 884	9-99515 9-99513	034	9.17708 9.17794	86	0.82202	514 383	27 20
85	14925 9.17391	84	98880	9.99511	15094	9.17880	86	0.82120	6.6252	85
36	954 9-17474	83 84	876	9.99509	124	9.17965 9.18051	85 86	0.82035	122	24
37 38	982 9.17558 15011 9.17641	83	871 867	9-99507 9-99505	153 183	9.18051 9.18130	85	0.81949	6.5992 863	23 22
39	040 9.17724	83	863	9-99503	213	9.18221	85 85	0.81779	734	21
40	15069 9.17807	83 83	98858	9.99501	15243	9.18306	°5 85	0.81694	6.5606	20
41 42	097 9.17890 126 9.17973	83	854 849	9-99499 9-99497	272 302	9.18391 0.18475	84	0.81600	478 350	19 18
43	155 9.18055	82 82	845	9-99495	332	9.18475 9.18500	85 84	0.81440	223	17
44 45	184 9.18137	83	841	9-99494	362	9.18644	84	0.81350	097	16 15
4 5 46	15212 9.18220 241 9.18302	82	98836 832	9.99492 9.99490	15391	9.18728 9.18812	84	0.81272 0.81188	6.4971 846	10 14
47 48	270 9.18383	81 82	827	0.00488	45I	9.18896	84 83	0.81104	721	13
48 49	299 9.18465 327 9.18547	82	823 818	9.99486 9.99484	481 511	9.18979 9.19063	84	0.81021	596 472	12 11
50	15356 9.18628	81	98814	0.00482	15540	9.19146	83	0.80854	6.4348	10
51	385 9.18709	81 81	800	9.99480	570	9.19229	83 83	0.80771 0.80688	225	9 8
52 53	414 9.18790 442 9.18871	81	805 800	9.99478 9.99476	600 630	9.19312 9.19395	83	0.80088	103 6.3 980	
54	471 9.18952	81 81	796	9-99474	660	9.19478	83 83	0.80522	859	76
55	15500 9.19033	80	98791	9.99472	15689	9.19561	82	0.80439	6.3737 617	-5
56 57	529 9.19113 557 9.19193	80	787 782	9-99470 9-99468	719 749	9.19643 9.19725	82	0.80357	496	4 3
58	586 9.19273	80 80	778	9.99466	779	9.19807	82 82	0.80193	376	2
58 60	615 9.19353 643 9.19433	80	773	9-99404 9-99462	809 838	9.19889 9.19971	82	0.80111	257 138	I 0
	Nat. Cos Log.	d.				ot Log.	c.d.			,
								1 <u></u>		

81°

O	0
61	

	Nat. Sin Log. d. Nat. Cos Log. Nat. Tan Log. c.d. Log. Cot Nat.												
'	Nat. S	in Log.	d.	Nat. C	OS Log.	Nat. T	an Log.	c.d.	Log. Co	ot Nat.			
0	15643	9.19433	80	98769	9.99462	15838	9.19971	82	0.80029	6.3138	60		
12	672 701	9.19513	79	764 760	9.99460 9.99458	868 898	9.20053 9.20134	81	0.79947 0.79866	019 6.2901	59 58		
3	730	9.19592 9.19072	80	755	9.99456	928	0.20210	82	0.79784	783	57		
4	758	9.19751	79	751	9-99454	958	9.20297	81 81	0.79703	666	56		
5	15787	9.19830	79 79	98746	9-99452	15988	9.20378	81	0.79622	6.2549	55		
6	816	9.19909	79	741	9-99450	16017	9.20459	81	0.79541	432	54		
7 8	845 873	9.19988 9.20007	79	737	9.99448 9.99446	047 077	9.20540 9.20021	81	0.79460	316	53 52		
9	902	9.20145	78 - 9	728	9-99444	107	9.20701	80	0.79299	085	51		
10	15931	9.20223	78 70	98723	9.99442	16137	9.20782 9.20862	81 80	0.70218	6,1970	50		
11 12	959	9.20302	79 78	718	9-99440	167	9.20862	80	0.79138	856	49		
13	988 16017	9.20380 9.20458	78	714	9-99438 9-99436	196 226	9.20942 9.21022	80	0.79058	742 628	48 47		
-3 I4	046	9.20535	77	704	9-99434	256	0.21102	80	0.78898	515	46		
15	16074	9.20613	78 - 8	98700	9.99432	16286	0.21182	80	0.78818	6.1402	45		
16	103	9.20691	78 77	695	9.99429	316	9.21261	79 80	0.78739	290	44		
17 18	132 160	9.20768 9.20845	77	690 686	9.99427	346	9.21341	79	0.78659	178	43		
10	180	9.20045	77	681	9.99425 9.99423	376 405	9.21420 9.21499	79	0.78580 0.78501	066 6.0955	42 41		
80	16218	9.20000	77	98676	0.00421	16435	9.21578	79	0.78422	6.0844	40		
2 I	246	9.21070	77	671	9.99419	465	0.21057	79	0.78343	734	39		
22	275	9.21153	77 76	667	9.99417	495	9.21730	79 78	0.76204	624	38		
23 24	304 333	9.21229 9.21306	77	662	9.99415	525	9.21814 9.21893	79	0.78180	514 405	37 36		
25	<u> </u>	9.21382	76	657 98652	9.99413	<u>555</u> 16585	9.21971	78	0.78020	6.0296	35		
26	390	9.21458	76	648	9.99411 9.99409	615	9.22049	78	0.77951	188	34		
27	419	0.21534	76 76	643	9-99407	645	9.22127	78 78	0.77873	080	33		
28	447	9.21010	75	638	9.99404	674	0.22205	78	0.77795	5.9972	32		
29 80	476	9.21685	76	633	9.99402	704	9.22283	78	0.77717	865	31 30		
31	16505 533	9.21761 9.21836	75 70	98629 624	9-99400 9-99398	16734 764	9.22361 9.22438	77	0.77639 0.77502	5.9758 651	29		
32	562	9.21912		619	9.99396	794	9.22516	78	0.77484	545	28		
33	591	9.21987	75 75	614	9-99394	824	9.22593	77 77	0.77407	439	27		
34 85	620	9.22062	75	609	9.99392	854	9.22070	77	0.77330	333	26 25		
36 36	16648 677	9.22137 9.22211	74	98604	9-99390 9-99388	16884 914	9.22747 0.22824	77	0.77253 0.77170	5.9228 124	260 24		
37	706	9.22286	75	595	9.99385	944	0.22001	77	0.77000	019	23		
38	734	9.22361	75 74	590	0.00383	974	9.22977	76 77	0.77023	5.8915	22		
39	763	9-22435	74	585	9.99381	17004	9-23054	76	0.70940	811	21		
40 41	16792 820	9.22509 9.22583	74	98580	9-99379	17033 063	9.23130 9.23206	76	0.76870	5.8708 605	20 19		
42	849	9.22057	74	575 570	9-99377 9-99375	093	9.23283	77	0.76794	502	18		
43	878	9.22731 9.22803	74 74	565	9-99372	123	9-23359	76 76	0.76641	400	17		
44	906		73	561	9.99370	153	9-23435	75	0.70505	298	16		
45 46	16935	9.22878	74	98556	9-99368	17183	9.23510	76	0.76490	5.8197	15		
40 47	964 992	9.22952 9.23025	73	551 546	9.99366 9.99364	213 243	9.23586 9.23661	75 70	0.76414	095 5-7994	14 13		
48	17021	9.23098	73	541	0.00362	273	9-23737 9-23812		0.76263	894	12		
49	050	9.23171	73 73	536	9.99359	303		75 75	0.76188	794	11		
50	17078	9.23244	73	9853I	9-99357	17333	9.23887	75	0.76113	5.7694	10		
51 52	107 136	9.23317	73	526 521	9-99355 9-99353	363 393	9.23962 9.24037	75	0.76038	594 495	8		
53	164	9.23402	72	516	9.99353 9.99351	423	9.24112	75	0.75888	495 396	76		
54	193	9-23535	73 72		9.99348	453	9.24186	74	0.75014	297			
55	17222	9.23607	72	98506	9-99346	17483	9.24261	75 74	0.75739 0.75665	5.7199	5		
56 57	250 279	9.23679	73	501 496	9-99344	513 543	9-24335 9-24410	75	0.75665	101 004	43		
57 58	308	9.23752 9.23823	7I	401	9.99342 9.99340	573	0.24484	74	0.75590	5.6906	3		
59 60	336	9.23895	72 72	486	9-99337	603	9.24558	74	0.75442	809	I		
60	365	9.23967	/*	481	9-99335	633	9.24632	74	0.75442	713	0		
	Nat. C	OS Log.	d.	Nat. S	in Log	Nat. C	ot	c.d.	Log. Ta	In Nat.	1		
						_		1 0.01					
					~	n o							

80°

-	\mathbf{n}	
	ľ	
	U	

.

			-			_			_			-
'	Nat. S	in Log.	d.	Nat. C	OS Log.	d.	Nat. T	anLog.	c.d.	Log. Co	t Nat.	
0	17365	9.23967		98481	9-99335		17633	9.24632		0.75368	5.6713	60
I	393	9.24039	72 71	476	9-99333	2	663	0.24706	74 73	0.75294	617	59
2	422	9.24110	71	471	9-99331	3	693	9.24779 9.24853	74	0.75221	521	58
3	451	9.24181	72	466	9.99328	2	723	9.24853	73	0.75147	425	57 56
4	479	9.24253	71	461	9.99326	2	753	9.24926	74	0.75074	329	
6	17508	9.24324	71	98455	9-99324	2	17783	9.25000	73	0.75000		55
	537 565	9-24395 9-24466 0-24526	71	450	9.99322 9.99319	3	813 843	9.25073 9.25140	73	0.74927 0.74854	140 045	54 53
78	594	9.24530	70	445	9-99317	2	873	9.25219	73		5.5951	52
9	623	0.24007	71	435	9.99315	2	903	9.25292	73	0.74708	857	51
10	17651	9.24677 9.24748 9.24818	70	98430	9-99313	2.	17933	9.25365	73	0.74635		50
II	680	0.24748	71	425	0.00310	3	963	9-25437	72	0.74503	671	49
12	708	9.24818	70 70	420	9.99308	2	993	9.25510	73 72	0.74490	578	48
13	737	9.24000	70	414	9.99306	2	18023	9.25582	73	0.74418	485	47
14	766	9.24958	70	409	9.99304	3	o53	9.25653	72	0.74345	393	46
15	17794	9.25028	70	98404	9.99301	2	18083	9.25727	72	0.74273		45
16	823	9.25098	70	399	9-99299	2	113	9-25799 9-25871	72	0.74201	209 118	44
17 18	852 880	9.25168	69	394 389	9-99297	3	. 143	0.25071	72	0.74129	026	43 42
10	909	9.25237 9.25307	70	383	9.99294 9.99292	2	173 203	9-25943 9-20015	72	0.74057 0.73985	5.4936	41
20	17937	0.25376	69	98378	0.00200	2	18233	9.26086	71		5.4845	40
21	966	9-25445	69	373	9.99288	2	203	9.20158	72	0.73842	755	39
22	995	9.25514	69	368	0.00285	3	293	0.20220	71	0.73771	665	38
23	18023	0.25583	69	362	0.00283	2	323	9.2630í	72	0.73000	575 486	37
24	052	9.25052	69 60	357	9.99281	-	353	9.26372	71	0.73628	486	36
85	18081	9.25721	60	98352	9.99278	3	18384	9.26443	71		5-4397	85
26	IOQ	9.25790 9.25858	68	347	9.99276	2	414	9.26514	71 71	0.73557 0.73480	308	34
27 28	138		69	341	9-99274	3	444	9.26585 9.26655	70	0.73415	219	33
20 20	166	9.25927	68	336	0.00271	2	474	9-20055 9-26726	71	0.73345	131	32 31
30		9-25995	68	331	9.99269	2	504		71	0.73274	043	80
31 31	18224 252	9.26063 9.26131	68	98325 320	9.99267 9.99264	3	18534 564	9.20797	70	0.73203	5-3955 868	29
32	281	9.20131	68	315	9.99262	2	594	9.26937	70	0.73063	781	28
33	309	9.26267	68	310	9.99260	3	624	9.27008	71	0.72002	694	27
34	338	9.26335	68 68	304	9.99257	3	654	9.27078	70	0.72022	607	26
85	18367	9.26403	67	98299	9.99255	2	18684	9.27148	70	0.72852	5.3521	25
36	395	0.26470	68	204 288	0.00252	3	714	9.27218	70 70	0.72782	435	24
37	424	9.26538 9.26605	67	288	9.99250	2	745	9.27288	69	0.72712	349 263	23
38	452	9.20005	67	283	9.99248	3	775	9-27357	70	0.72643	203 178	22 21
<u>39</u> 40	481	9.26672	67	277	9.99245	2	805	9.27427	69	0.72573		80
4U 4I	18509 538	9.26739 9.26806	67	98272	9-99243 9-99241	2	18835 865	9-27496 9-27566	70	0.72504	5-3093	19
42	530	9.26873	67	261	0.00238	3	895	9.27035	69	0.7220	5.2924	18
43	595	9.26940	07	256	9.99230	2	925	9.27704	69	0.72434 0.72305 0.72290	839	17
44	624	9.27007	67	250	9-99233	3	955	9-27773	69	0.72227	755	ıć
45	18652	9.27073	66	98245	9.9923I	2	18986	9.27842	69	0.72158	5.2672	15
46	681	9.27140	67 66	240	9.99229	2	19016	0.27011	69 69	0.72080	588	14
47	710	9.27206	67	234	9.99220	3	046	9.27980	66	0.72020	505	13
48	738	9.27273	66	229	9.99224	3	076	9.28049'	68	0.71051 0.71883	422	12 11
49	767	9-27339	66	223	9.99221	2	106	9.28117	69		339	
50	18795	9.27405	66	98218	0.00210	2	19136	9.28186	68	0.71814		10
51 52	824 852	9-27471	66	212 207	9.99217 9.99214	3	166 197	9.28254 0.28323	69	0.71746	174 092	8
53	881	9-27537 9-27002	65	201	0.00212	2	227	0.28301	68 68	0.71600	011	
54	910	9.27668	66	196	9.99209	3	257	9.28459	68	0.71541		7 6
55	18938	9.27734	66	98190	0.00207	8	19287	0.28527	68		5.1848	5
56	967	9.27799	65	185	9.99204	3	317	9.28595 9.28662	08 67		767	4
57 58	995	9.27804	65 66	179	9.99202	2	347	9.28062	68	0.71405 0.71338	686	3
58	19024	0.27030	65	174	9.99200	3	378	9.28730	68	0.71270	606	8
59 60	052 081	9.27995 9.28060	65	168 163	9.99197	2	408	9.28708 9.28865	67	0.71202	596 446	Ĩ
50	1001	y.20000		103	9.99195		438	9-0000		0.71135		_
	Nat. C	OS Log	. d.	Nat. S	in Log.	d.	Nat. C	ot Log.	c.d.	Log. Ta	n Nat.	1

79°

-	-	~	۰.
		r.	,
			-

-

•

	Nat. S	ian Log.	ĉ.	Nac. C	OS Ly	. <u>i</u>	Nat.T	anly	c.d.	1. g. Co	1 \ M	
		9.20060	ś ę		9-99-195		<u></u>	79716		A.11.6		*
1	109 135		ъ <u>з</u>	157	9.99292	3	400		2	W. 110-	111	55
3	107	9.38254	34	152 140	9.99190	3	ندي دهن	0.30007	5	4.71900 4.719288	A	12
L	1.5	9.28319	2.2	140	9.99185	.≱ 3	_3.70	9-39134	07	a mino	100	32
5	19224	9.28384 9.26448	04	95135 130	28100.0		13750 010	2020201		00.120	S Iver .	33
7	261	0.26512	04 05	124	0.00177	3	040	22202.0	с- С-	a.717.23	- N	1
8	309	9.28577	o4	118	9-99175	3	030 710	0.39403	~	1. 1999	\$14	10
10	338 19366		64	98107	9.99172	2		9.39408 9.39535	67	a 70406	N	30
11	395	0.28760	64 64	101	9.99107	3		0.20001	33	0.70300	ch1	43
12 13	423 452	9.28833 0.28800	63	096	9.99163 9.99163	3	801 831		00	0.70333	44	48
4	481	9.28960	- 64 i	084	9.99160	8	801	9-39734 9-39800	00	0.70300	in'	40
15	19509	9.29024	64 63	98079	9-99157	3	19891	9.29866	00 00		5.00-3	48
16	538	0.20087	63	973	9-99153	3	921		00	0.70068	10-	44
17 18	506 595	9.29214	-64 -	067 061	9.99152	8	082	9.29998 9.30004	00	0.70002	NAS.	44
19	623	9.29277	63 63	6	9-99147	3	20012	9.30130	00 05	0.60070	4.0000	41
20 21	19652	9.20340	63	98050	9-99145	3	90049	930105	66		4.0504	40
21 22	680 709	9-29403 9-29466	63	044 039	9.99142 9.99140	ă.	073 103	9.30201 9.30320	05	0.00730	810 744	42 18
23	737	9-29529	63 62	033	9-99137	3	133	9.30391	05	0.00000	000	37
24 2 5	766	9.29591	63	027	9-99135	3	_ 164	9-30457	05	0.00543	504	38 38
26	19794 823	9.29654 9.29716	62	98021 016	9.99132 9.99130	2	20104 224	9-30522 9-30587	65	0.00478	4.0580	30
27	851		63 62	010	9.99127	3	254	9.30052	65 65	0.00248	374	33
28 29	880 908	9.29841 9.29903	62	004 97998	9.99124 9.99122	2	282	9-30717	05	0.00283	208 225	्रम
30	19937	9.29966	63	97992	9.99119	3	315 20345	0.30782 0.30846	64		4.0153	30 80
31	-995	9.30028	62 62	987	9.99117	2	376	9.30011	65 64	0.00080	078	80 80
32	994 20022	9.30090	61	981	9.99114	3	406	9-30975	65	0.60025	000 4.8033	
33 34	051	9.30151 9.30213	62	975 969	9.99112 9.99109	3	436 466	9.31040 9.31104	64	0.68800	4.0011 8(x)	117 120
85	20079	9.30275	62 61	97963	9.99106	3	20497	9.31168	64	0.68832	4.8788	85
36	108	9.30330	62	958	9.99104	3	527	9.31233	65 64	0.08707	710	84
37 38	136 165	9-30398 9-30459	61	952 946	9.99101	2	557 588	9.31297 9.31301	64	0.68703	044 573	43
39	193	9.30521	62 61	940	9.99090	3	618	9.31425	64 64	0.68575	501	41
40	20222	9.30582	61	97934	9-99093	3	20648	9.31489	63	0.68511		80
41 42	250 279	9.30043	61	928 922	9.99091 9.99088	3	679 709	9.31552 9.31010	64	0.68448	359 988	10
43	307	0.30705	61 61	916	9.99080	23	739	9.31679	63 64	0.68321	818	17
44	336	9.30820	61	910	9.99083	3		9.31743	63	0.68257	147	30
45 46	20364 393	9.30887 9.30947	60	979°5 899	9.99080 9.99 0 78	2	20800 830	9-31800 9-31870	64	0.08194	4.8077 (X)7	15
47	421	0.31008	61 60	893	9.99075	3	8Ğ1	9.31933	63 63	0.08007	4.7937	13
48 49	450 478	9.31068 9.31129	61	887 881	9.99072	2	891 921	9.31990	03	0.68004 0.67941	817 748	18
49 50	20507	9.31189	60	97875	9.99070 9.99007	3	20952	9.32059	63	0.07941		10
51	535	9.31250	61 60	869	0.00064	3	982	0.32185	63 63	0.07815	659	8
52	563	0.31310	60	863 857	0.00002	3	21013	9.32248	63	0.07752	591	-
53 54	592 620	9.31370 9.31430	60	851	9.99059 9.99050	3	043	9.32311 9.32373	62	0.07000	522 453	70
55	20649	0.31400	60 50	97845	0.00054	2	21104	0.32430	63 62	0.07504		5
56	677	9.31549 9.31009	59 60	839	9.99051	3	134	0.32498	63	0.07502	317	4
57 58	706 734	9.31009	60	833 827	9-99048 9-99046	2	164 195	9.32501 9.32023	62	0.67439	24/) 181	3
58	763	0.31728	59 60	821	9.99043	3	225	9.32685	62 62	0.07315	114	1
	791	9.31788		815	9.99040		256	9.32747		0.07253	04/2	0
	Nat.C	OS Log.	d.	Nat. S	in Log.	d.	Nat. C	ot log.	c.d.	Log.Ta	n Nat.	1

78°

_	60
	1

7	Nat. S	in Log	d.	Nat. C	OS Log	d.	Nat.T	an Log.	c. d.	Log. Co	t Nat.	
0	20791	9.31788	50	97815	9.99040		21256	9.32747	63	0.67253	4.7046	60
12	820	9.31847	59 60	809	9.99038	23	286	9.32810	62	0.07190	4.6979	58
3	848 877	9.31907 9.31966	59	803 797	9.99035 9.99032	3	316 347	9.32872 9.32933	61	0.67128 0.67067	912 845	58 57
4	905	9.32025	59 59	791	9.99030	2 3	377	9-32995	62 62	0.67005	779	56
5	20933	9.32084	59	97784	9.99027	3	21408	9-33057	62	0.66943	4.6712	55
67	962 990	9.32143 9.32202	59	77 ⁸ 772	9.99024 9.99022	2	438	9.33119 9.33180	61	0.66881	646 580	54 53
7 8	21019	9.32261	59 58	766	9.99019	3 3	499	9.33242	62 61	0.66758	514	52
9 10	047	9.32319	59		9.99016	3	529	9.33393	62	0.66607	448	51
10	21076	9-32378 9-32437	59	97754 748	9.99013 9.99011	2	21560 590	9-33305	61	0.66635 0.66574	4.0382	50 49
12	132	9.32495	58 58	742	9.99008	3	621	9.33487	61 61	0.66513	252	48
13 14	161 189	9.32553 9.32012	59	735	9.9900Š	3	651 682	9.33548	61	0.66452 0.66301	187 122	47
15	21218	9.32070	58	<u>729</u> 97723	<u>9.99002</u> 9.99000	2	21712	9.33609	61	0.66330		46 45
16	246	9.32728	58	717	9.98997	3	743	9-3373I	61 61	0.66269	4-5993	44
17 18	275	0.32786	58 58	711	0.08004	3 3	773	9-33792 9-33853	61	0.66208	928 864	43
10 19	303 331	9.32844 9.32902	58	705 698	9.98991 9.98989	2	804 834	9-33853 9-33913	60	0.66147 0.66087	800 800	42 41
20	21360	9.32960	58	97692	9.98986	3	21864	9-33974	61		4.5736	40
21	388	9.33018	58 57	686	0.98983	3	895	9-34934	60 61	0.05000	673	39
22 23	417 445	9-33075 9-33133	58	680 673	9.98980 9.98978	2	925 956	9.34095 9.34155	60	0.65905	609 546	38 37
24	474	9-33-35	57	667	9.98975	3	986	9.34215	60 61	0.65785	483	36
85	21502	9.33248	58	97661	9.98972	3	22017	9.34276	60	0.65724	4.5420	35
26 27	530	9-33305	57 57	655 648	9.98969 9.98967	2	047	9.34330	60	0.65664	357	34
28	559 587	9-33362 9-33420	57 58	642	0.08004	3	078	9.34390	60	0.65604	294 232	33 32
29	616	9-33477	57	636	0.98961	3	139	9.34516	60 60	0.05544 0.65484	169	31
30	21644	9-33534	57 57	97630	9-98958	3	22169	9-34570	59	0.65424	4.5107	80
31 32	672 701	9-33591 9-33047	56	623 617	9.98955	2	200 23I	9-34035 9-34695	60	0.65365	045 4-4983	29 28
33	729	9.33704	57 57	611	9-98953 9-98950	3	261	0.34755	60 59	0.65245 0.65180	922	27
34		9-33761	57	604	9-98947	3	292	9.34814	60		860	26
35 36	21786 814	9-33818 9-33874	56	97598 592	9.98944 9.98941	3	22322 353	9-34874 9-34933	59	0.65126	4-4799 737	85 24
37	843	9-33931	57 56	585	9.98938	3	383	9.34992	59	0.05008	070	23
38	871	9-33987	56	579	9.98930	3	414	9.3505I	59 60	0.64949 0.64889	615	22
<u>39</u> 40	899 21928	9-34043 9-34100	57	573	9.98933	3	444	9.35111	59	0.04009	555	21 20
41	956	9.34150	56	97566 560	9.98930	3	22475 505	9-35170 9-35229	59	0.64771	4-4494 434	19
42	985	0.34212	56 56	553	0.08024	3	536	9.35288	59 59	0.04712	373	18
4 3 44	22013 041	9.34268 9.34324	56	547 541	9.98921 9.98919	2	567 597	9-35347 9-35405	58	0.64653	313 253	17 16
45	22070	9.34380	56	97534	0.08010	3	22628	9-35464	59	0.64536		15
46	800	9-34430	56 55	528	9.98913	3	658	0.35523	59 58	0.64477	134	14
47 48	126 155	9-34491 0-24547	56	521 515	9.98910 9.98907	3	689 719	9.35581 9.35040	59	0.64419	075 015	13 12
40 49	183	9-34547 9-34002	55	508	9.98904	3	750	9.35040	58	0.64302		11
50	22212	9.34658	56	97502	9.98901	3	22781		59 58	0.64243	4.3897	10
51	240 268	9-34713	55 56	496	9.98898	3	811	9-35757 9-35815	58	0.64185	83B	8
52 53	200	9-34769 9-34824	55	489 483	9.98896 9.98893	3	842 872	9-35873 9-35931	58	0.64127	779	
54	325	9.34879	55 55	476	9.98890	3 3	903	9-35989	58 58	0.64011	662	7 6
55	22353	9-34934	55 55	97470	9.98887	3	22934	9.36047	58		4.3604	5
56 57	382 410	9.34989 9.35044	55	463 457	9.98884 9.98881	3	964 995	9.36105 9.36163	58	0.63895	546 488	4
58	438	9-35099	55 55	450	0.08878	3 3	23026	9.36221	58 58	0.63779	430	2
59 60	467 495	9-35154 9-35209	55 55	444 437	9.98875 9.98872	3	056 087	9.36279 9.36336	57	0.63721	372	I 0
		OS Log.	d.		in Log.	d.			c.d.	Log.Ta		1
أحصحك										_		

°

					10						
1	Nat. Sin Log.	d.	Nat. C	OS Log.	d.	Nat. T	an Log.	c.d.	Log. Co	o t Nat.	
0	22495 9.35209	54	97437	9.98872	3	23087	9.36336	58	0.63664		60
12	523 9.35203	55	430	9.98869	2	117	9-36394	58	0.63606	257 200	59
3	552 9.35318 580 9.35373	55	424 417	9.98867 9.98864	3	148 179	9.36452 9.36509	57	0.63548	143	58 57
4	608 9.35427	54	411	9.98861	3	209	9.36566	57	0.03434	080	56
5	22637 9.35481	54	97404	9.98858	3	23240	0.36624	58	0.63376	4.3029	55
6	665 9.35530	55 54	398	0.08855	3 3	271	0.36681	57 57	0.03310	4.2972	54
7	693 9.35590 722 9.35044	54	391	9.98852 9.98849	3	301	9.30738	57	0.63262	916	53
9	722 9-35044 750 9-35098	54	384 378	9.98840	3	332 363	9.36795 9.36852	57	0.63205 0.63148	859 803	52 51
10	22778 9-35752	54	97371	9.98843	3	23393	9.36909	57	0.63091		50
11	807 0.25800	54	365	0.08840	3	424	9.36966	57	0.03034	691	49
12	835 0.35860	54 54	358	9.98837	3 3	455	0.37023	57 57	0.62077	635	48
13	803 0.35014	54	351	9.98834 9.98831	3	485	9.37080	57	0.62020	580 524	47 46
14 15	892 9.35968 22920 9.36022	54	345	9.98828	3	516	9-37137	56	0.62807	4.2468	45
16	948 9.36075	53	97338 331	0.08825	3	23547 578	9-37193 9-37250	57	0.62750	4.2408	44
17	977 0.30120	54	325	0.08822	3	608	9.37300	56	0.62604	358	43
18	23005 9.36182	53 54	318	0.08810	3 3	639	9.37303	57 56	0.62637	303	48
19 20	033 9.36236	53	311	9.98816	3	670	9.37419	57	0.62581	248	41
20	23062 9.36289 090 9.36342	53	97304 298	9.98813 9.98810	3	23700 73I	9-37476	56	0.62524	4.2193 139	40
22	118 9.30395	53	201	9.98807	3	762	0.37588	56	0.02412	084	39 38
23	146 0.36440	54	284	0.08804	3	793	9-37532 9-37588 9-37644	56 56	0.62356	030	37
24	175 9.30502	53	278	9.98801	3	823	9-37700	56	0.62300		36
25	23203 9.36555	53	97271	9.98798	3	23854	9-37750 9-37812	56	0.62244 0.62188	4.1922	35
26 27	231 9.30008 200 9.30000	52	204 257	9-98795 9-98792	ž	885 916	9.37812 9.37868	56	0.02188	868 814	34 33
28		53	251	9.98789	3	946	0.37024	56	0.62076	760	32
29	288 9.30713 316 9.30700	53	244	9.98786	3	977	9.37980	56	0.62020	706	31
80	23345 0.36810	53 52	97237	9.98783	3 3	24008	0.38035	55 56	0.61965	4.1653	80
31	373 9.36871	53	230	0.08780	3	039	9.38091	56	0.01000	600	29
32 33	401 9.36924 429 9.36976	52	223 217	9-98777 9-98774	3	069	9.38147 9.38202	55	0.61853 0.61798	547 493	28 27
34	458 9.37028	52	210	9.98771	3	131	9.38257	55	0.01743	441	26
35	23486 9.37081	53	97203	9.98768	3	24162	0.38313	56	0.61687		25
36	514 9.37133	52 52	196	0.08765	3 3	193	9-38313 9-38368	55 55	0.61632	335	24
37	542 9.37185	52	189	9.98762	3	223	9.38423	56	0.61577	282	23
38 39	571 9.37237 599 9.37289	52	176	9.98759 9.98756	3	254 285	9-38479 9-38534	55	0.61521 0.61466	230 178	21
40	23627 9.37341	52	97169	0.08753	3	24316	9.38589	55	0.61411		20
41	656 0.37303	52 52	162	9-98753 9-98750	3	347	9.38644	55	0.61356	074	19
42	684 9.37445	52	155	9.98746	4 3	377	9.38699	55 55	0.61301	022	18
43 44	712 9.37497 740 9.37549	52	148 141	9.98743 9.98740	3	408 439	9-38754 9-38808	54	0.61246	4.0970 918	17 16
45	740 9-37549 23769 9-37600	51	97134	9-98737	3	24470	0.38863	55	0.61137		15
46	797 0.37052	52	127	9-98734	3	501	0.38018	55	0.61082	815	14
47	825 0.37703	51 52	120	9.98731	3 3	532	9.38972	54 55	0.61028	764	13
48 49	853 9.37755 882 9.37800	51	113 106	9.98728 9.98725	3	562	9.39027 9.39082	55	0.60973	713 662	12 11
49 50	23910 9.37858	52	97100		3	593 24624		54	0.60864		$\frac{11}{10}$
51	038 0.37000	51	09/100	9.98722 9.98719	3	655	9.39136 9.39190	54	0.60810	560	
52	966 9.37960	51 51	086	9.98715	4	686	9.39245	55 54	0.60755	509	9 8
53	995 9.38011	51	079	9.98712	3	717	9.39299	54 54	0.60701	459	7 6
54	24023 9.38062	51	072	9.98709	3	747	9-39353	54	0.60647	408	
55 56	24051 9.38113 079 9.38164	51	97065 058	9.98706 9.98703	3	24778 809	9.39407 9.39461	54	0.60593 0.60539	4.0358 308	5 4
57	108 0.38215	51	051	9.98700	3	840	9.39515	54	0.00485	257	3
58	136 0.38266	51 51	044	0.08607	3 3	871	9.39569	54 54	0.60431	207	2
59 164 9.38317 = 037 9.98094 3 902 9.39023 4 0.00377 158 1											
						933	9.39677		_		,
	Nat. Cos Log.	а.	Ivat. 3	III Log.	а.	Nat. C	ot Log.	c.a.	Log. I a	TINAt.	<i>′</i>
76 °											
					U					\overline{C}	

13°

Digitized by Google

14°

1 2200 933466 3 3054 93731 54 503026 53 </th <th>_</th> <th></th> <th>_</th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th>_</th> <th></th> <th>_</th> <th>-</th>	_		_			_			_		_	-
1 2200 933466 3 3054 93731 54 503020 53 53 2 240 933466 50 003 903684 3 2905 933731 54 503020 53 53 4 305 933508 50 0050873 3 2905 933828 53 0.00018 2005 53 53 0.00018 2005 53 53 0.00018 2005 53 53 0.00018 2005 53 53 0.00018 2005 53 55 0.00018 2005 53 55 0.00018 2005 53 55 0.00018 2005 53 55 0.00018 2005 53 55 0.00018 2005 33 25242 0.400105 54 0.00018 33 25242 0.40025 53 0.00018 2005 53 0.00018 2005 0.00016 33 25307 0.440476 53 0.00018 2007 50 0.00018 2007 50 0.00018 20018 20018 20018 20	'	Nat. Sin Log.	d.	Nat. C	OS Log.	. d.	Nat. T	anLog.	c.d.	Log. Co	t Nat.	
1 220 0.38460 3 0.0607 3 0.0607 0.0509 0.05 0.0509 <td>0</td> <td>24192 9.38368</td> <td>50</td> <td>97030</td> <td>9.98690</td> <td></td> <td>24933</td> <td>9.39677</td> <td>6</td> <td></td> <td></td> <td>60</td>	0	24192 9.38368	50	97030	9.98690		24933	9.39677	6			60
3 377 9.38570 50 0.06078 3 35026 9.39838 25 0.06078 39838 25 0.06078 39838 25 0.06078 398398 55 0.06078 398398 55 0.06078 398399 55 0.06078 398399 55 0.06078 398399 55 0.06078 398398 56 0.06078 398398 76 0.06078 398399 55 0.06008 3115 56 9.09868 3 118 9.33999 55 0.05084 774 55 0.550864 774 55 0.550864 774 55 0.550864 776 56 9.99869 3 32524 0.40135 50 0.550864 778 50 555 0.997 9.996640 3 325 9.40717 50 0.550864 774 424 44 9.40717 50 9.55 9.55083 9.40843 3 2555 9.404745 53 0.550584 774 424 44 9.40475 53 0.550584 774 424 44 9.405175 50		220 9.38410			9.98687			0.30731			058	59
4 305 0.936500 50 0501 0.93078 3 0500 0.93078 3 0.00108 910 55 6 3330 0.93670 50 9599 0.90678 3 118 0.30000 54 0.60018 9118 53 0.60018 913 9 7 300 0.38711 51 97 0.90668 3 118 0.30000 54 0.60018 812 55 0.50841 741 55 0.50841 741 55 0.50841 743 30 0.50788 3.9071 50 955 0.90659 3 325 0.40165 54 0.50788 3.9071 50 957 0.90646 3 325 0.40178 53 0.50788 3.9071 50 957 0.90646 3 325 0.40178 53 0.50788 3.9071 50 957 0.90646 3 325 0.40176 53 0.50572 4.937 4.44 4.94051 53 0.50574 2.9377 4.44 4.940511 53 0.50574 2.9	_	249 9.38409	50	015	0.08681			9-39705				50
6 4:333 0.3807 5 0509 0.9807 4 18 0.3007 5 0.5008 0.5008 18 0.5008 18 0.5008 18 0.5008 18 0.5008 18 0.5008 18 0.5008 18 0.5008 73 0.98065 3 148 0.5008 73 0.98065 3 211 0.5008 73 0.98065 3 211 0.5008 73 0.98065 3 211 0.5008 73 0.98065 3 211 0.5078 3.65078 3.65081 50 6508 4.71 3.5 0.50788 3.65071 665 51 0.50788 3.65071 6508 3.77 9.40613 3 2509 0.98051 3 3.73 9.40613 3 25037 9.40413 33 0.50575 4.83 4.44 33 0.50575 4.83 4.44 33 0.50575 4.83 4.44 33 0.50575 4.83 4.44 34 0.40516 33 0.50575 4.83 4.44 33 0.50575 4.83			-		0.08078			0.30802		0.60108		56
5 362 9387 9.987 9.98668 3 118 9.39909 57 0.00001 812 58 7 300 9.38871 50 965 9.96668 3 110 9.497 9.5948 7.955 3.59948 7.755 59 9.59948 7.755 9.59948 7.755 59 3.50 9.59948 7.95 3.50 9.59948 7.95 3.50 9.59948 7.95 3.50 9.59948 7.95 3.50 9.59948 7.95 3.50 9.59948 7.95 5.30 9.59948 7.95 5.30 9.59948 7.95 5.30 9.59948 7.95 5.30 9.59948 7.95 5.30 9.59948 7.97 4.30 9.59975 4.31 9.53 0.59975 4.31 9.55 9.59975 4.31 9.55 9.59975 4.33 9.59975 4.33 9.59975 4.33 9.59975 4.33 9.59975 4.33 9.59975 4.33 9.59975 4.33 9.59975 4.33 9.59975 4.33 9.59975 4.33 9.59975 4.33 <		24333 0.38620		96994	0.08675	-	25087			0.60055		55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		362 0.38070		987	0.08671		118	9.39999		0.60001	812	54
9 440 9,38621 50 9,09053 31 100 24474 9,38621 50 950 9,08563 3 251 9,09073 568 4 573 9,59783 506 9,552 9,08563 3 2524 0,40115 53 0,59783 506 4 373 0,40015 53 0,59783 506 4 373 0,40015 53 0,59783 506 3 2524 0,40175 53 0,59073 506 9,3071 50 937 0,90640 3 335 0,40175 53 0,59075 423 44 440 0,40175 53 0,59075 423 44 440 0,40175 53 0,59075 423 447 440 440 0,40175 53 0,59075 423 445 0,40175 53 0,59075 423 445 0,40175 53 0,59075 423 445 0,40175 53 0,59075 423 453 0,59075 433 0,59075 433 0,59075 433 0,59075 433 0,59075 <td< td=""><td></td><td>390 9.38721</td><td></td><td></td><td>9.98008</td><td></td><td></td><td></td><td></td><td>0.59948</td><td></td><td>53</td></td<>		390 9.38721			9.98008					0.59948		53
10 24474 9,38071 50 9559 9,0859 3 25242 0,40112 53 0,59784 568 44 13 559 9,38971 50 955 9,98697 3 373 9,440310 53 0,59081 520 46 44 13 559 9,39071 50 937 9,08640 3 335 0,59075 433 0,59075 433 0,59075 433 0,59075 433 0,59075 433 0,59075 433 0,59075 433 0,59075 434 0,59075 433 0,59075 434 459 4459 4459 4459 452 0,59075 434 0,59075 434 459 459 0,59075 434 459 0,49076 53 0,59087 450 0,59075 434 459 0,49077 53 0,59087 450 0,59075 436 459 0,49077 53 0,59087 450 0,59087 440 0,40077 53 0,59087 450 0,59087 450 0,59087 450 0,5		446 0.38821			0.08662				53	0.50841		51 51
11 50 50 932 6,08052 3 273 6,40050 54 6,50781 568 4 13 550 933 0,28071 50 935 0,28071 53 0,50681 520 43 344 0,40372 53 0,50628 471 43 44 0,40372 53 0,50628 471 43 44 0,40478 53 0,50628 471 43 44 0,40478 53 0,50724 43 44 0,40478 53 0,50724 43 44 0,40478 53 0,50724 273 43 445 0,4074 53 0,50734 273 43 445 0,40734 53 0,50734 273 43 445 0,40734 53 0,50734 273 44 0,40734 53 0,50734 273 44 0,40734 53 0,50734 273 44 0,40734 53 0,50734 36 0,50734 36 0,50734 36 0,50734 36 0,50734 36 0,50734 36 0,50734 <td< td=""><td></td><td></td><td></td><td></td><td>0.08650</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td></td<>					0.08650							50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		503 0.3802I			0.08656					0.59734	568	49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		531 0.3807I			9.98652					0.59681		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		559 9.39021	50		9.98049			9-40372				47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						3			53			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					0.08640		428			0.50400		44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		672 9.39220	50	909	9.98636			9-40584		0.59410	279	43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								9.40030				42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			49		0.08622	4		0.40702	53	0.50250	3.9130	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		813 0.30407			9.98620		614	0.40847		0.59153		38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		841 9.39517		866	9.98617		645	9.40900		0.59100		37
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-			-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										0.58995		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		925 9.39004		827		3			52	0.58801	°54 807	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		082 0.30762		829	0.08601					0.58830	760	32
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29	25010 9.39811		822	9.98597		831	941214		0.58780	714	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	25038 9.39860			0.08504					0.58734		30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		066 0.30000			9.98591					0.58682	-	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		122 0.40000	48		9.90500	4			52	0.50030	575	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				786	0.08581		986			0.58520	482	26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.08578		26017		1 -			85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		207 9.40152		771	0.08574		048	941578		0.58422	391	24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	235 9.40200			9.98571			9.41629				23
					0.08508					0.58207		22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									-			20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			48		0.08558			041830		0.58164		19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	376 940442	40	727	9.98555		235			0.58113		18
41 43 43 44 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 44 45 94 95705 909545 3 26338 94 94 51 0.57050 3.7983 14 46 488 9400534 48 697 909536 3 390 942144 51 0.57050 3.9785 893 13 47 516 940053 48 690 998533 4 412 941055 51 0.577856 848 13 50 3573 940778 48 675 998533 4 412 941055 51 0.57754 804 11 51 625 940873 48 675 998533 3 2648 944345 51 0.57750 0.57750 670 0.57750 670 970 0.57750 670 0.57750 677 65 943947 51 0.577			48		9.98551					0.58001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		43- 9-40330	48									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		488 0.40634	⊿8	607				0.42003		0.57007	938	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47	516 9.40682	48	690	0.08538			942144		0.57850	893	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		545 9-40730	48		9.98535		421	942195		0.57805	848	12
10 25001 0.40025 48 90007 0.90528 20483 0.42297 0.57703 0.57703 3.7700 4.57703 5.57703 0.57703 3.7700 4.57703 5.5750 5.5750 5.57550 5.57550 5.57550 5.57550 5.57550 5.5754 5.5754 5.57549 5.575448 5.57539 4 2.26539 9.42353 51 0.577448 3.5739 4 2.575448 3.57397445 4.57339 4 3.57397448 3.57397 4.953 3 6.577447 51 5.57397 4.953 3 6.577497 51 5.57347 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	-								-			
52 657 940913 48 653 99323 4 513 94240 51 0.57601 671 8 53 685 940908 47 645 9.98518 3 577 944350 51 0.57601 671 8 54 713 9.440063 47 645 9.98518 3 577 9.44350 51 0.57750 677 6 54 713 9.41016 48 638 9.98518 3 668 9.42301 51 0.57750 677 6 55 25741 9.41053 47 6560 9.94508 3 670 9.42033 51 0.57749 583 6 577 9.94118 3.7599 4 3659 9.42353 50 0.57749 51 0.577497 451 55 574458 3.75797 495 5 57397 495 5 0.57745 51 0.57746 51 0.57746 51 <td></td> <td>620 0 40825</td> <td>48</td> <td></td> <td>9.98528</td> <td></td> <td></td> <td></td> <td></td> <td>0.57703</td> <td></td> <td></td>		620 0 40825	48		9.98528					0.57703		
53 685 9.40968 47 645 9.98518 3 577 9.42450 51 0.57550 627 7 54 713 9.41016 47 638 9.98515 4 568 9.42450 51 0.57750 627 7 54 713 9.41016 47 96630 9.98515 4 26639 9.42553 51 0.57499 583 6 56 709 9.41111 48 623 9.98505 3 670 9.42033 50 0.57347 495 451 57 798 9.41126 47 608 9.98505 3 700 9.42653 51 0.57347 451 55 0.57347 451 55 0.57347 451 55 0.57347 451 55 0.57347 451 55 0.57206 408 2 57 0.57205 364 1 0.57245 51 0.57245 51 0.57245 5		657 0.40021	48			4	546					8
54 713 9.41010 47 638 9.98515 5 608 9.42501 51 0.57499 583 6 55 257,41 9.41003 47 96630 9.98511 4 26639 9.42553 51 0.57499 583 6 56 769 9.41111 48 623 9.98508 3 670 9.42553 51 0.57347 495 4 57 798 9.41265 47 608 9.98505 3 700 9.42653 50 0.57397 495 4 58 826 9.41265 47 608 9.98501 4 733 9.427633 51 0.577397 408 2 59 854 9.412652 47 600 9.98498 3 764 9.42755 51 0.57745 364 1 60 882 9.41300 48 593 9.98494 795 9.42805 0.57195 321<	53	685 9.40968	47 ⊿8	645	9.98518		577	942450	51	0.57550	627	
56 750 9.4103 48 6030 9.0511 20039 9.4252 51 0.5744 9.539 67 56 769 9.41103 48 623 9.98508 3 670 9.42003 51 0.57397 495 4 57 798 9.41125 47 615 9.98505 3 701 9.4203 50 0.57347 495 4 58 826 9.41205 47 608 9.98501 4 733 9.42704 51 0.57347 408 5 59 854 9.41252 47 600 9.98498 3 764 9.42755 51 0.577245 364 1 60 882 9.41300 48 593 9.98494 795 9.42805 50 0.57745 321 0.57715 321 0.57715 321 0.57715 321 0.57715 321 0.57715 0.57715 321 0.57715 321		713 9.41010					608	942501		0.57499		
57 798 941125 47 615 908505 3 701 942633 50 0.57347 495 57 798 941205 47 608 908505 3 701 942633 50 0.57347 451 5 58 826 941205 47 608 9.98501 4 733 9.42703 51 0.57347 451 5 59 854 9.41253 47 600 9.98498 3 764 9.42755 51 0.577205 408 2 60 882 9.41300 48 593 9.98494 795 9.42805 50 0.57145 321 0 57125 321 0 0.57135 321 0												5
58 826 0.41205 47 608 0.98501 7 733 0.42704 51 0.57206 408 2 59 854 0.41253 47 600 0.98498 3 764 0.42755 51 0.57245 364 1 60 882 0.41300 48 593 0.98494 795 0.42805 50 0.57195 321		709 941111 708 041158	47		9.90500 0.08≤0≅			0.42652	50			4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	826 9.41205		608	9.98501			9.42704			408	2
	52	854 941252	47 48		9.98498		764	942755		0.57245	364	I
Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log. Tan Nat.	60	882 9.41300		593	9.98494		795	9.42805	1.0	0.57195	321	0
		Nat. Cos Log.	d.	Nat. S	in Log.	d.	Nat. C	ot Log.	c.d.	Log.Ta	n Nat.	1
		8	_			-	-					

75°

°

-	_	_		_				_				-
1	Nat. S	in Log.	d.	Nat. C	OS Log.	d.	Nat. T	'anLog.	c.d.	Log. Co	ot Nat.	
0	25882	9.41300		96593	9-98494		26795	9.42805		0.57195	3.7321	60
I	910	941347	47 47	585	0.08401	3 3	826	9.42850	51 50	0.57144	277	59
2	938	941394	47	578	9.98488	4	857 888	9.42906	51	0.57094	234	58
3	966 994	941441 941488	47	570 562	9.98484 9.98481	3	920	9-42957 9-43007	50	0.57043 0.56993	191 148	57 56
5			47	96555	9-98477	4			50			55
6	050	941535 941582	47	547	9-98474	3	26951 982	943057 943108	51	0.56943 0.56892	3.7105 062	54
7 8	079	941028	46	540	0.08471	3	27013	0.43158	50	0.56842	019	53
8	107	941075	47 47	532	9.98407	4	044	9.43208	50 50	0.50792		52
9	135	941722	46	524	9.98464	4	076	9-43258	50	0.50742	933	51
10		941768	47	96517	9.98460	3	27107	9-43308	50	0.56692		50
11 12	191	941815	46	509	9.98457	4	138	9-43358	50	0.56642	848	49 48
12 13	219 247	941861 941908	47	502	9-98453 9-98450	3	169 201	9-43408	50	0.50502	806 764	
14 14	275	941954	46	494 486	9.98447	3	232	9-43458 9-43508	50	0.56492	722	47 46
15		9.4200I	47	96479	0.08443	4	27263	9-43558	50	0.56442		45
16	331	0.42047	46	471	0.08440	3	294	943007	49	0.50393	638	44
17	359	0.42003	46	463	9.98436	4	326	943657	50	0.50343	596	43
18	387	9.42140	47 46	456	9.98433	3	357	9-43707	50 49	0.56293	554	42
19	415	9.42186	46	448	9.98429	3	388	9-43756	50	0.56244	512	4 I
20	26443	9.42232	46	96440	9.98426	4	27419	9-43800	49	0.56194	3.6470	40
21 22	471 500	9.42278	46	433	9.98422 9.98419	3	451 482	9-43855	50	0.50145	429	39
23	528	942324 942370	46	445	9.98415	4	513	9-43905 9-43954	49	0.56095	387 346	38
24	556	942410	46	410	9.98412	3	545	9-44004	50	0.55996	305	37 36
25	26584	942401	45	96402	9.98409	3	27576		49		3.6264	85
26	612	942507	46		0.08405	4	607	9.44102	49	0.55947 0.55898	222	34
27	640	0.42553	46 46	394 386	0.08402	3	638	944151	49	0.55849	181	33
28	668	9.42599 9.42044	45	379	9.98398	3	670		50 49	0.55799	140	32
29		9.42044	46		9-98395	4	701	_9.44250	49	0.55750	100	31
80	26724	9.42690	45	96363	9.98391	3	27732		49	0.55701 0.55052	3.6059	80
31	752 780	9-42735	46	355	9.98388 9.98384	4	764	9-44348	49	0.55052	018	29
32 33	808	9.42781 9.42826	45	347 340	9.9838I	3	795 826	9-44397 9-44440	49	0.55003	3.5978 937	28 27
34	836	9.42872	46	332	9-98377	4	858	944495	49	0.55554 0.55505	897	26
85	26864	042017	45	96324	9-98373	4	27889	9-44544	49	0.55450	3.5856	25
36	892	9.42962	45	316	9.98370	3	921	0.44502	48	0.55408	816	24
37	920	943008	46 45	308	9.98366	4	952	9.4464I	49	0.55359	776	23
38	948	9-43053	45	301	9-98363	4	983	9-44090	49 48	0.55310	736	22
39	. 976_	943098	45	293	9-98359	3	28015	9-44738	49	0.55262	090	21
40	27004	943143 943188	45	96285	9.98356	4	28046	9-44787	40	0.55213	3.5656	20
41 42	032	943100	45	277 269	9.98352 9.98349	3	077	9.44830 9.44884	48	0.55104	616	19
42 43	088	943278	45	261	0.08345	4	109 140	9-44933	49	0.55110	576 536	18 17
44	116	943323	45	253	9.98342	3	172	944981	48	0.55019	497	16
45	27144	9-43307	44	96246	9.98338	4	28203		48	0.54971		15
46	172	943412	45	238	0.08334	4	234 266	9.45078	49 48	0.54922	418	14
47	200	9-43457	45 45	230	9.98331	3		9.45120	40	0.54874	379	13
48	228	9.43502	44	222	9.98327	3	297	945174	48	0.54820	339	12
49	256	9-43540	45	214	9.98324	4	329	9.45222	49	0.54778	300	11
50	27284 312	9-43591 9-43035	44	96206 198	9.98320	3	28360	945271	48	0.54720	3.5261	10
51 52	340	943035 943680	45	196	9.98317 9.98313	4	391 423	945319	48	0.54081 0.54033	222 183	8
53	368	9-43724	44	182	9.98309	4	454	945307 945415	48	0.54585	103	7
54	396	9-43709	45	174	9.98300	3	454 486	9-45463	48	0.54537	105	6
55		9.43813	44	96166	9.98302	4	28517	945511	48		3.5067	5
56	452	0.43857	44	158	9.98299	3 4	549	9-45559 9-45000	48	0.54441	028	4
57	480	9.43901	44	150	9.98295	4	580	945000	47 48	0.54394	3.4989	3
58	508	9-43940	44	142	9.98291	3	612	945654	48	0.54346	951	2
59 60	536 564	9-43990 9-44034	44	134 126	9.98288 9.98284	4	643 675	945702 945750	48	0.54208	912 874	I 0
<u> </u>	<u> </u>	5 TT '31					1 9/5	ym3/30	1	0.04-00	5/4	
	Nat. C	OS Log.	d.	Nat. S	in Log.	d.	Nat. C	ot Log.	c.d.	Log.Ta	I n Nat.	1
-						-		3	-			

°

Digitized by Google

1	Nat. S	Si	n Log.	d.	Nat. C	0	B Log	. d.	Nat. T	a	nLog.	c.d.	Log. C	ot Nat.	
0	27564	5	-44034	44	96126			2	28675	\$	9-45750	47	0.54250	3.4874	60
I			.44078	44 44			8281	3	706	9	9-45797 9-45845	47 48	0.54203	836	59
2			44122	44			8277	4	738	2	9-45845	47	0.54155	798	58
3).44166).44210	44)8273)8270	3			9.45892 9.45940	48	0.54108 0.54060	760 722	57
4 5		-		43		_		4				47			50
6			-44253	44	96086		8200	4			45987	48	0.54013		55
			0-44297 0-44341	44	070	22	8259	3	805	2	0.46035 0.46082	47	0.53965 0.53918	646 608	54 53
7 8	787	č	44385	44	062	0.0	8255	4			46130	48	0.53070	570	52
9	815	ģ	.44428	43			8251	4			46177	47	0.53823	533	51
10		-	-44472	44	96046	_		3		_	.46224	47	0.53770		50
II			44510	44			8244	4			46271	47	0.53729	458	49
12	899	S	-44559	43	029	9.9	8240	43			46319	48	0.53081	420	48
13			.44002	43 44			8237	4			0.46366	47 47	0.53034	383	47
<u>14</u>			-44646	43			8233	4		_	040413	47	0.53587		46
15			44689	44	96005			3			.46460	47	0.53540		45
16			44733	43	95997			4			0.40507	47	0.53493	271	44
17 18	039	2	144776 144819	43			8222	4	242	Ş	40554 40001	47	0.53440 0.53399	234 197	43
19	00×	č	44862	43			8213	3	274	5	46648	47	0.53352	160	42 41
20		_		43	95964			4				46	0.53300		40
21			-44905 -44948	43	33304	33	8207	4	337	2	0.46694 0.4674I	47	0.53259	087	39
22			44992	44			8204	3	368	ç	46788	47	0.53212	050	38
23			45035	43 42			8200	4	400	S).46835	47	0.53165	014	37
24			45077		931		8196	4	432	Ś	.4688 1	40	0.53119	3.3977	36
35	28262	9	45120	43	95923	9.9	8192	4	29463	ç	46928	47	0.53072	3.3941	85
26	290	S	45163	43 ∡2		9.9	8189	3			46973	47 46	0.53025	904	34
27	318	\$	45206	43 43	907	9.9	8185	4	526	\$	47021	47	0.52979	868	33
28			45249	43			8181	4			.47068	46	0.52032	832	32
29		-	45292	42	_	_	8177	3			-47114	46	0.52886		31
80			45334	43	95882			4			047160	47	0.52840		80
31			45377	42			8170	4			47207	46	0.52793	723 687	29
32 33			145419 145462	43			8166 8162	4			0-47253 0-47299	46	0.52747 0.52701	652	20
33 34			45504	42			8159	3	748	č	47340	47	0.52054	616	26
85		_	45547	43	95841		_	4			047392	46	0.52608		85
36			45589	42			8151	4	811	2	47438	46	0.52562	544	24
37	597	ģ	45032	43			8147	4			47484	40	0.52510	509	23
38			45074	42		9.9	8144	3			47530	46	0.52470	473	22
39_	652	9	45710	42	807	9.9	8140	4			947576	46 46	0.52424	438	21
40	28680	5	45758	42	95799	9.9	8130	4			47622	40	0.52378	3.3402	20
41	708	S	45801	43 42	791	9.9	8132	43	970	Ś	47668	46	0.52332	367	19
42	736	S	45843	42			8120	4			-47714	46	0.52286	332	18
43	704	Ş	45885	42	774		8125	4	033	Ş	0.47760	46	0.52240	297 261	17 16
44 A K		_	45927	42		-	8121	4			0.47806	46	0.52194		15
45			-45969	42	95757		8117	4	30097		9-47852	45	0.52148	3.3220 191	
46 47).46011).46053	42	749	2.6	8113	3			9-47943	46	0.52103 0.52057	156	14 13
48			46095	42	732	2.5	8100	4			0.47989	46	0.52011	122	12
49			46130	41	724	9.0	8102	4			0.48035	46	0.51965	087	11
50			46178	42			8008	4	and the second s	_	0.48080	45	0.51020		10
51			46220	42	707		8004	4			0.48116	46	0.51874	017	0
52	29015	\$.46262	42 41	698	9.9	8000	4	319	5	0.48171	45	0.51829	3.2983	8
53	042	5	0.46303	41 42	690	9.9	8087	3	351	S	48217	40 45	0.51783	948	7 6
54_			0.46345	41 41	681	9.9	8083				48262		0.51738	914	
55	19098	5	.46386		95673	9.9	8079	4	30414	S	.48307	45 ∡6	0.51693	3.2879	5
56	126	5	3.46428	42 41	664	9.0	8075	4	446	S	48353	40 45	0.51647	845	4
57			40409	42	656	0.0	8071	4	478	- 0	0.48308	45 45	0.51602	811	3
58	182	S	40511	41	047	9.9	8007	4	509	Ş	0.48443 0.48489	46	0.51557	777	2
59 BO	209	Ş	46552	42	039	9.9)8063)8060	3	541	2	9.48439 9.48534	45	0.51511 0.51466	743	I I
		-								-				709	
	Nat. C	10)S Log.	d.	Nat. S	>In	Log	. d.	Nat. C) ز	DT Log.	c.d.	Log. Ta	i n Nat.	'

°

-	
	50

Nat. Sin Log. d. Nat. Cos Log. d. Nat. Tan Log. cd. Log. Cot Nat. 0 2037 24534 4 3573 24534 5573 2573 24534 5573 5573 5573 5573 5573 5573 5573 555 24607 4 3533 24607 4 3533 24607 4 3533 24607 4 3533 24607 4 3558 96804 4 3733 948734 4 34537 556 35333 5573 556 3533 94804 4 3733 948734 4 35337 505 3573 556 356 94804 4 35337 505 3573 355 948034 4 35337 505 3573 355 948034 4 35337 505 3573 353 949034 4 35337 505 948337 4 3533 949034 4 35337 505 9573 94837 943377 949377 33337	,	Nat. S	in Log.	d.	Nat. Č	OS Log.	d.	Nat.T	anior	c.d	Log Co	t Nat	
1 ************************************													
3 31 0.40775 42 555 0.908048 4 700 0.48759 45 0.51241 3.2539 0.65 6 20376 0.46824 41 575 0.908036 4 704 0.48864 45 0.51241 3.2539 0.65 54 7 433 0.46624 41 575 0.908036 4 704 0.48564 45 0.51105 3.05 54 9 447 0.46504 41 554 0.90802 4 806 0.48504 45 0.51010 3.033 485 0.51010 3.033 45 0.51010 3.035 0.48504 45 0.52101 3.035 0.44504 45 0.52101 3.035 0.44504 45 0.52104 3.035 0.45007 3.38 40 5.05106 3.035 0.44507 45 0.52073 3.38 40 5.05077 3.036 40707 0.57733 3.036 40707 0.57733 3.036 407077 41 5.050777 5.047777 4.177 4.177 4.04776 4.1	I	205	940035		622	<u>9.98056</u>		605	948579			675	
3 3.13 3.41 3.			9.46676		613	9.98052		637	9.48624			641	
6 ay376 0.4680.0 4 9558 0.9804.0 4 30738 0.48750 45 0.51151 4738 33 7 433 0.4683.1 41 5579 0.9803.3 885 0.4884.9 45 0.51151 4733 33 9 447 0.4693.4 41 556 0.9803.3 885 0.4884.9 45 0.51161 493 33 33 33 9 447 0.4693.4 41 556 0.9803.4 4 30691 0.4894.4 45 0.51161 4953 33 33 33 9 0.5116 323.5 0.4703.4 49 555 0.9803.4 4 30691 0.4907.4 45 0.5007.7 338.4 46 16 555 0.4773.4 41 519 0.9007.4 31015 0.4007.4 45 0.5070.3 3282.5 45 0.5077.0 338.4 46 0.5077.0 3282.6 45 0.5070.6 338.4 46 0.5077.0 3282.6 0.5070.6 338.9 0.5077.0 338.4 0.5077.0 <td></td> <td>321</td> <td>0.40717</td> <td>4I</td> <td></td> <td>0.08048</td> <td>4</td> <td></td> <td>9-48009 0-48714</td> <td></td> <td>0.51331</td> <td></td> <td>57</td>		321	0.40717	4 I		0.08048	4		9-48009 0-48714		0.51331		57
6 iaid jaid jaid <t< td=""><td>_</td><td></td><td>0.46800</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_		0.46800										
8 420 9470 9470 41 5554 998021 4 860 948094 45 0,5120 4,38 33 860 948094 45 0,5120 4,38 33 860 948094 45 0,5120 4,38 33 860 9449039 45 0,51205 33 860 9449039 45 0,50017 338 89 995 940029 45 0,50027 338 89 995 940029 45 0,50087 338 89 995 9400137 44 0,500877 338 84 955 940023 45 0,500877 338 84 0,500877 338 84 0,500877 338 84 0,500877 328 40 172 44 172 44 172 44 172 44 172 44 172 44 172 44 0,50070 328 172 44 0,50070 328 172 44 0,50076 338 172 44 0,50076 338 172 44 0,50079 328 14 <td></td> <td>404</td> <td>0 4684T</td> <td>41 41</td> <td>579</td> <td>0.08036</td> <td></td> <td>764</td> <td>9.48804</td> <td></td> <td>0.51100</td> <td>506</td> <td></td>		404	0 4684T	41 41	579	0.08036		764	9.48804		0.51100	506	
9 487 94604 41 554 96803 4 860 94803 45 0.5105 327 100 10 93515 947065 41 555 998037 493 949044 45 0.50071 338 49 11 543 947045 41 536 998007 493 949043 45 0.50071 338 40 12 555 947047 41 555 998007 430 947047 44 0.50077 32654 95704 172 44 0.50773 32654 95703 32654 95703 32654 95703 32654 95703 32654 95703 32654 95703 32654 95703 32654 95703 3264 9555 95703 3264 95703 3264 95703 3264 95703 326 95703 326 95703 326 95703 326 95703 326 95703 326 95703	7	432	9.40882	41		0.08032		790 898					
10 29515 0.47025 44 90534 90801 45 0.5007 3.2371 60 11 543 9.47035 41 536 9.98007 4923 9.49029 44 0.50077 335 49 13 579 9.47036 41 536 9.98005 4 31059 9.49027 44 0.50077 332 47 14 526 9.47024 41 531 9.98005 4 31059 9.49027 44 0.50703 3.2205 45 0.50748 172 44 0.507704 139 43 0.507704 139 43 0.507704 139 43 0.50770 3.2205 45 0.50770 3.2205 45 0.50770 3.2205 45 0.50770 3.2205 45 0.50770 3.2205 45 0.50770 3.2205 45 0.50770 3.22041 44 0.50770 3.22041 44 0.50345 0.50770 3.22041 44 0.50345 0.5078 42 0.50457 0.50457 0.50457 0.50457 0.5						9.98025			948939		0.51001		
11 573 947088 41 535 949073 44 955 949073 45 955 949073 45 950805 48 997 949118 45 950807 328 372 372 372 372 372 373 940738 45 950805 44 31059 9490763 45 95073 328 372 34 45 95073 328 46 95773 947337 40 435 99797 403 947405 45 950748 45 950757 46 950757 46 950757 46 950757 46 950757		29515	9-47005	41	95545	9.98021		30891	9.48984			3.237I	
13 559 0.908005 4 3105 0.90905 45 0.50837 238 40 16 29654 0.47708 41 515 0.90805 4 3105 0.40007 45 0.50703 3.2205 48 16 682 0.47709 41 493 0.97993 4115 0.40007 45 0.50703 3.2205 48 17 710 0.47390 44 470 0.97986 4 31200 0.40030 45 0.50703 3.2205 48 18 737 0.47330 41 470 0.97986 4 31210 0.40930 44 0.50057 73 41 20 29773 40 4450 9.97976 4 31210 0.409510 54 0.50387 0.338 3133 0.50077 34 0.50383 310 30 9.5038 310 30 9.5038 310 30 9.5038 310 30 9.5038 313 33 33 33 33 33 33 33 9.503			9-47045	41	536	9-98017			9.49029			338	49
14 Caso 0.47108 1 311 0.908005 1 31051 0.490707 44 0.55773 3.282 45 16 0852 0.47740 40 95552 0.998001 4 31051 0.490207 44 0.55773 3.2825 45 17 0.47730 40 455 0.97986 3 178 0.490241 45 0.50752 0.5073 41 19 755 0.47371 41 475 0.97986 3 178 0.490474 44 0.50753 0.5055 0.5073 3.2241 40 21 841 0.47753 40 443 0.97976 4 3120 0.490474 44 0.50505 0.50437 31.375 38 24 0.47753 40 424 0.49050 44 0.504976 44 0.50308 31.375 38 26 0.47753 40 325 0.97956 4 31320 0.490574 44 0.50308 31.33 333 333 333 333 333	1	599	0.47127			0.08000		955	0.40118	45	0.50882		
15 20564 0.47209 40 95502 0.98001 4 3051 0.49007 40 0.507748 177 0.507748 177 0.47730 44 435 0.97993 4 115 0.507748 173 0.47730 44 0.50774 130 43 0.50774 130 43 0.50550 1073 44 0.50505 1073 44 0.50505 1073 44 0.50515 0.773 41 40 0.50515 0.773 41 40 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50515 0.773 41 0.50526 0.68 313 313 0.50507 45 0.50526 68 313 313 0.50502 44 0.50502 44 0.50502 44 0.50502 44 0.50504	14	626	9.47168		511	9.98005			9-49163	-	0.50837		46
10 0013 0.47200 11 493 0.97903 4 115 0.50704 139 43 18 77 0.47330 11 470 0.97906 4 115 0.50704 139 43 0.50704 139 43 19 705 0.47330 11 470 0.97906 4 115 0.4038 45 0.50015 0.73 11 40 20 0.47733 40 95459 470 0.97976 4 212 0.49430 44 0.50437 943 37 21 821 0.47453 41 450 0.97976 4 236 0.49453 44 0.50437 943 37 23 876 0.47733 40 95415 0.97956 4 236 0.49553 44 0.5033 2178 84 0.5033 2178 0.49553 44 0.50333 2178 0.49056 44 0.5036 786 237 0.4768 44 0.5036 786 250 0.49764 4 0.5036			947209	•							0.50793		
18 737 0.47330 41 476 0.97986 4 147 0.49038 45 0.50075 0.73 41 19 705 9.47371 40 95459 907986 4 3120 0.49430 44 0.50075 0.73 41 21 811 0.47451 41 95459 907976 4 3120 0.49430 44 0.50576 3.2011 40 21 813 0.47451 41 450 907976 4 31270 0.49430 44 0.50487 31377 943 337 24 9.47551 40 424 9.97956 4 31370 9.49551 44 0.50304 845 34 27 947 9.47594 40 396 9.97956 4 434 9.49052 44 0.50304 845 34 38 30015 947654 40 396 9.97956 4 434 9.49036 44 0.50016 76 32.016 77.6 32.016 77.6 32.016 77.6			947249	4 I	493		4		9.49252		0.50748		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				40	476	0.07080		147	9-4934I		0.50050		
av av <th< td=""><td></td><td></td><td>9-47371</td><td></td><td>467</td><td>9-97980</td><td>-</td><td></td><td>9-49385</td><td></td><td>0.50615</td><td>073</td><td></td></th<>			9-47371		467	9-97980	-		9-49385		0.50615	07 3	
22 840 947492 40 41 947974 4 974 949513 45 0.50481 3.1975 38 23 876 947533 40 433 947974 4 326 94953 44 0.50383 37 24 904 947533 40 433 947974 4 3370 94953 44 0.50384 3.1876 85 26 907 947654 40 396 947954 443 949794 4 31370 949057 44 0.50384 3.1878 85 38 30071 94784 40 3539 947934 4 31530 949974 44 0.5028 3.1716 80 30 30771 94784 40 335 947934 4 31530 949950 44 0.50046 652 32 31 154 947934 40 335 947934 4 31650 950093				4 I		9.97982							
33 876 9-47533 40 433 9-07970 4 336 9-49553 44 0.50333 910 35 24 9-04 9-47753 40 424 9.97906 4 338 9-49077 45 0.50333 910 35 26 9-047054 40 398 9-477554 44 0.50326 444 0.50326 845 34 27 987 947054 40 398 9-077558 4432 9-49076 44 0.50326 845 34 38 30071 947774 40 380 9-077958 444 40-50326 845 34 0.50326 813 33 30 947944 40 380 9-077936 4 408 9-49676 44 0.50328 31716 80 31 136 9-47974 40 335 9-07936 4 554 9-499050 44 0.50048 44 0.49006 42 33 155 9-50136 44 0.49008 317555 85 <td< td=""><td></td><td></td><td></td><td>40</td><td></td><td></td><td>4</td><td></td><td>0.40510</td><td>45</td><td>0.50520</td><td></td><td>39</td></td<>				40			4		0.40510	45	0.50520		39
14 944 944 97930 1330 949007 15 0.50333 910 30 15 99932 947054 141 95415 9.97952 4 31370 949052 44 0.50344 815 85 29 947054 10 389 9.97956 4 430 9.49744 4 0.50344 845 34 29 947 9.47734 40 389 9.97956 4 436 9.49744 4 0.50344 813 33 30 30015 9.47734 40 380 9.97944 4 31530 9.49784 4 0.50128 3.1716 80 31 0.98 9.47754 40 353 9.97936 4 552 9.49076 44 0.50046 664 9.5028 3.1716 80 31 154 9.47934 40 345 9.97936 4 552 9.49096 562 27 34 0.49054 3.1556 85 33 9.490777 460 9.49096 40 </td <td></td> <td>876</td> <td>9-47533</td> <td></td> <td>433</td> <td>9.97970</td> <td>•</td> <td>306</td> <td>0.40503</td> <td></td> <td>0.50437</td> <td>943</td> <td>37</td>		876	9-47533		433	9.97970	•	306	0.40503		0.50437	943	37
ab 3933 9934 9541 9572 94704 44 95034 44 95036 94774 40 95036 947755 44 405 949764 44 95036 813 33 30 9047734 40 353 9577936 4 456 949916 44 95008 44 95008 44 95008 44 95008 44 95008 44 95008 44 949070 44 95328 947924 4562 949916 44 95008 44 95008 44 949080 44 949080 44 949080 44 949080 44 9490908 31556 \$542						9.97900	-		949007				
27 987 947 9537 947944 40 3554 9479344 95328 9479344 95328 949936 44 0.50040 658 950044 44 0.490906 652 28 26 258 26 24 24 0.490906 652 28 26 250948 44 0.490908 315.55 58 26 950092 44 0.490908 31.55.5 58 26 950092 44 0.490908 31.55.5 58 26 26 95016 44 0.490824 23 21			947013 047054			9-97902 0.070€8	4		9-49052				
a8 30015 947734 40 389 9.97950 4 406 9.49784 44 0.50172 748 31 380 30071 947854 40 95372 9.47944 40 95372 9.47944 40 0.50172 748 31 31 008 9.47854 40 353 9.97938 4 554 9.49916 44 0.50084 684 20 32 126 9.47894 40 335 9.97936 4 658 9.50046 44 0.49006 652 28 26 9.50046 44 0.490052 588 267 27 31556 85 350 9.57046 4 0.49052 588 267 27 2.55048 44 0.49052 588 267 27 2.55048 44 0.49052 588 267 27 2.55048 44 0.49052 588 267 27 2.55048 47 24 0.49052 588 260 265 9.5023 43 0.490528 288 267 2.57<	27		947694		398	9-97954			9-49740		0.50260	813	
80 90071 947814 40 95372 907942 4 31530 949872 44 0.50128 31716 80 31 006 947854 40 353 907938 4 552 949906 44 0.50084 664 39 32 136 947834 40 335 997938 4 552 9490916 44 0.50084 664 39 33 154 947934 40 335 997936 4 658 950004 44 0.49096 522 27 34 182 947974 40 335 997924 4 722 9,50002 44 0.49096 524 42 37 255 948094 310 997914 754 950180 44 0.49080 3159 92 39 320 94854 997902 4 786 9,50321 43 0.490733 429 21 41 376 948323 39 275 997806 4 914 9,50398 <td></td> <td></td> <td>9-47734</td> <td></td> <td>389</td> <td>9-97950</td> <td></td> <td></td> <td>9.49784</td> <td></td> <td></td> <td>780</td> <td>32</td>			9-47734		389	9-97950			9.49784			780	32
31 098 9.47854 40 353 9.97938 4 55a 9.49956 44 0.50084 684 20 32 126 9.477894 40 334 9.97938 4 554 9.49906 44 0.50040 652 28 34 182 9.47794 40 337 9.97926 4 658 9.50048 44 0.49006 622 258 26 9.50048 44 0.49008 3.1556 856 9.50048 44 0.49052 588 254 9.48034 40 95338 9.97926 4 732 9.50136 44 0.49050a 422 33 0.490777 450 224 4 722 9.50136 44 0.49080a 4192 33 0.490733 429 233 3320 9.48073 40 923 9.97906 4 31850 9.50311 44 0.490693 3.1377 80 334 184 9.490505325 41	_												
32 126 0.478964 40 354 0.9079364 4 594 0.409060 44 0.50040 652 28 33 154 0.47934 40 355 9.97936 4 658 9.50040 44 0.499050 652 28 34 182 9.47934 40 337 9.979364 4 658 9.50048 44 0.499051 588 a6 35 237 9.48054 40 310 9.97918 722 9.50136 44 0.49050 422 42 37 25 9.48054 40 310 9.97914 756 9.50136 44 0.49050 492 23 39 320 9.48173 40 95284 9.97904 818 9.50311 44 0.490503 313 9.49777 450 242 0.490773 429 23 318 257 9.57804 914 9.495308 43 0.490513 333 133 9.497874 4 940 950398 43 0.490513 271			0.47854		363						0.50084		
34 182 947974 40 337 9.97926 4 658 9.50048 44 0.499523 588 ac 35 9.237 9.48014 40 95338 9.97926 4 658 9.50048 44 0.499523 588 ac 36 237 9.48054 40 319 9.97938 4 722 9.50136 44 0.499804 232 9.48034 39 301 9.97918 4 722 9.50136 44 0.499804 492 233 9.301 9.97916 4 786 9.50233 43 0.490733 429 233 39 320 9.48173 40 952.84 9.97906 4 818 9.50377 44 0.49063 3.1377 80 40 30348 9.483323 39 257 9.97896 4 946 9.50421 43 0.49053 334 18 9.4950926 393 37 76 9.49	32	126	9-47894		354	9-97934		5 94	9.49960		0.50040		
85 902009 948014 40 95328 9.079022 4 31690 9.50092 44 0.499064 524 94 37 265 948054 40 310 9.079028 4 722 9.50130 44 0.499064 524 94 37 265 948034 39 301 9.07916 4 756 9.50130 44 0.499063 3.1556 926 39 320 9.48133 301 9.97900 4 818 9.50307 44 0.490733 492 21 40 30348 9.48232 40 257 9.97804 818 9.50307 44 0.490643 3.1377 80 41 375 9.48332 302 257 9.97804 944 914 9.50398 43 0.490545 3.03177 16 443 431 9.48332 302 257 9.97864 944 946 9.50529 43 0.490545 3.0317 16 0.490543 3.04777 45 0.490543 1.16		154 182		40		9-97930			9.50004				27
36 237 9.48054 40 319 9.97918 4 722 9.50136 44 0.49564 524 24 37 265 9.48094 30 310 9.97918 4 754 9.50136 44 0.49564 524 24 24 38 275 9.48133 39 300 9.97906 4 818 9.50267 44 0.49580 422 33 39 320 9.48173 40 95284 9.97906 4 818 9.50355 43 0.490733 429 21 41 376 9.48322 40 257 9.97898 4 946 9.50355 43 0.496502 33.1397 20 42 433 9.483371 40 95240 9.97886 978 950485 44 0.496515 271 16 44 59 9.48371 40 9240 9.97886 402 9.50572 43 0.490515 271 16 45 50485 39 231 9.97878 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							-						
37 205 9.48133 30 9.97924 4 7.94 9.50160 43 0.490737 450 232 33 9.300 9.49133 40 203 9.97906 4 818 9.50267 44 0.490733 429 213 39 320 9.48173 40 95284 9.97906 4 818 9.50357 44 0.490733 429 21 41 376 9.48323 39 275 9.97864 4 914 9.50352 43 0.49052 336 19 42 433 9.48323 39 275 9.97864 4 914 9.50352 43 0.49053 36 19 18 0.49054 336 19 18 14 459 9.48371 40 257 9.97864 4946 9.50485 43 0.490545 363 17 17 16 445 9.488371 40 9240 9.97886 4946 9.49517 43 0.49054 37.1 16 45 51 65485 <td></td> <td>237</td> <td>9.48054</td> <td>40 40</td> <td>319</td> <td>9.97918</td> <td></td> <td>723</td> <td>0.50130</td> <td></td> <td>0.40864</td> <td>524</td> <td>24</td>		237	9.48054	40 40	319	9.97918		723	0.50130		0.40864	524	24
39 320 0.48173 40 203 0.07000 4 818 0.50267 44 0.40733 429 21 40 30348 0.48173 40 95284 0.97900 4 31850 9.50317 44 0.40689 3.1377 20 41 376 0.48252 40 255 9.07804 4 914 9.50358 43 0.49068 3.1377 20 42 403 0.48322 40 255 9.07804 4 914 9.50358 43 0.49058 303 17 43 431 9.48371 40 257 9.07884 914 9.50358 43 0.490515 271 16 44 59.485 40 222 9.07884 4042 9.50572 43 0.490513 271 16 45 50.4856 39 231 9.07874 4 042 9.50572 43 0.490241 14 0.490241		-	9.48094					754			0.49820	492	
40 30348 9.48213 39 95284 9.07902 4 31850 9.50311 44 0.49680 3.1397 90 41 376 9.48252 39 275 9.07808 4 882 9.50355 44 0.49645 366 19 42 403 9.48302 40 266 9.07808 4 946 9.50355 44 0.49645 366 19 44 403 9.48371 39 257 9.07860 4 946 9.50442 43 0.49653 303 17 44 459 9.48371 40 95240 9.07882 4 332010 9.50529 41 0.496538 207 14 45 514 9.48530 39 213 9.07874 0.42 9.50572 43 0.49041 124 124 124 146 124 9.50703 43 0.49048 178 13 0.49048 124 124 129 9.50703 43 0.49048 124 124 9.50703 43 <			0.48173	•		0.07000		818	0.50207		0.40733		
41 376 0.48352 40 275 0.07808 4 882 0.50355 43 0.49045 306 10 42 403 0.48302 40 266 0.07804 4 914 0.50398 44 0.49053 334 18 43 431 0.48371 39 257 0.97804 4 914 0.50398 44 0.490538 303 17 44 459 0.48371 40 95240 0.97882 4 33010 9.50529 44 0.490538 30 49438 49438 3010 9.50572 43 0.490471 3.1240 18 44 554 9.48506 39 231 9.97784 4 0.42 9.50572 43 0.49428 178 13 44 550 9.48508 39 213 9.978764 106 9.50559 43 0.49428 178 13 45 507 9.48508 39 223 9.97874 105 9.50733 43 0.490241 146 <			9.48213	•	95284	9.97902			9.50311	1	0.49689	3.1397	20
42 403 943 943 943 943 943 943 943 943 943 943 954 95395 44 0.49958 933 954 10 978 95395 44 0.49958 933 17 978 9549 13 0.49558 933 17 978 9549 13 0.49958 933 17 978 9549 14 0.49958 933 17 978 9.50485 43 0.49958 303 17 13 0.49958 303 17 978 9.50572 44 0.49958 302 14 149 150 0.499438 203 14 0.49958 302 14 0.49924 178 13 0.499438 203 14 0.49924 178 13 0.49924 178 13 0.49924 150 14 0.49926 178 13 0.49926 115 11 13 0.49924 14 0.49924 13 0.49924 130 0.49924 150 15 15 15 0.50796 43 0.499		376	9.48252		275	9.97898					0.49645		
44 459 9.48371 49 224 9.97802 976 9.50485 44 0.49515 271 10 45 30486 9.48411 39 95240 9.97882 4 32010 9.50529 43 0.49971 3.1240 15 46 514 9.48410 39 3231 9.977874 4 0.49 9.50505 43 0.499471 3.1240 16 47 542 9.48490 39 222 9.97874 4 0.49 9.50505 43 0.490471 3.1240 15 49 597 9.48558 39 232 9.97874 4 0.49364 178 13 507 9.48568 39 232 9.97874 4 106 9.50703 43 0.490241 1.46 13 51 653 9.48647 39 186 9.97857 4 233 9.50789 43 0.49024 3.0917 7 3.4911 0.49024 3.0917 7 3.259769 43 0.49024 3.0917 7				40		0.07800	4		0.50398	44	0.40002		
45 30486 948411 39 95240 9.07883 4 32010 9.050520 43 049471 3.1240 15 46 514 948450 40 321 9.07878 40 042 9.50572 43 049471 3.1240 15 47 542 948450 40 222 9.07874 40 04928 202 14 049484 17 13 0.49428 202 14 0.49428 202 14 0.49284 178 13 0.49284 178 13 0.49284 178 13 0.49284 140 0.49284 140 0.49284 140 0.49284 140 0.49284 140 0.49284 140 0.49284 140 0.49284 150 0.49284 157 156 0.5759 43 0.49284 140 0.49284 140 0.49284 140 0.49284 140 0.49284 3.084 10 0.49024 310 0.49024 310 0.49024 310 0.49024 310 0.49024 3.0864 30 0.		459	9.48371			9.97880		978	0.50485		0.49515		16
46 514 948450 23 907978 4 042 950572 4 049028 200 14 47 542 948509 39 232 907974 4 074 950572 4 049028 200 14 140828 200 14 140828 200 14 140828 200 14 140828 13 049284 176 13 049284 176 13 049284 176 13 049284 146 12 15 15 053 049284 13 049284 13 049284 13 049284 13 049284 13 049234 31.064 10 51 653 948607 39 177 9.97853 4 235 9.50870 43 049024 3.04911 053 049024 30 049024 3.09017 049028 3.09017 049028 3.09017 049028 3.09017 049028 3.09017 049028 3.09017 049028 3.09017 049028 3.09017 049028 3.049014 3.049014			9.48411	•		9.97882		32010	9.50529		0.49471		
48 570 9.48520 39 213 9.077870 105 9.50050 73 0.40241 146 12 49 597 9.48558 39 204 9.97856 4 139 9.50703 44 0.40241 146 12 507 50763 9.48568 39 95105 9.07856 5 33171 9.50703 44 0.40254 3.1084 10 51 653 9.48647 39 126 9.07857 4 233 9.50769 43 0.40254 3.1084 10 52 680 9.48725 39 177 9.07853 4 235 9.50876 43 0.49024 3.0917 7 235 9.50876 43 0.49024 3.0917 7 52 68 9.49724 39 159 9.97845 4 209 9.50916 43 0.49028 3.0916 6 6 6 6 6 6 6.994803 39 159 9.97844 363 9.51005 43 0.49028 3.0930 6			9-48450	40		9-97878 0-07874	4		0.50572	44	0.40428	209 178	
49 597 9.48568 39 204 9.97866 5 139 9.50703 43 0.40207 115 111 50 30625 9.48607 30 95105 9.97867 4 32171 9.50703 43 0.40207 115 11 51 653 9.48647 39 177 9.97857 4 203 9.50853 44 0.49024 3.1084 10 52 680 9.48680 39 177 9.97853 4 203 9.50790 43 0.49024 3.00211 0.53 9 53 708 9.48764 39 159 9.97845 4 207 9.50910 43 0.49028 3.0901 67 54 736 9.48764 39 159 9.97814 33331 9.50050 43 0.49038 3.0901 67 56 791 9.48841 39 142 9.97832 4 305 9.51048	48		9.48529		213	0.07870			9.50059		0.49341	146	12
300 25 9.48047 40 195 105 9.17701 4 32171 9.50740 43 0.49024 3.1004 10 51 653 9.48647 39 177 9.97853 4 235 9.50833 44 0.49024 3.1004 10 52 680 9.48646 39 177 9.97853 4 235 9.50870 43 0.49024 3.0001 023 8 53 708 9.48724 39 159 9.97845 4 207 9.50870 43 0.49024 3.0901 7 6 9.979745 43 0.49028 3.0901 6 6 7 6 9.9750974 43 0.49028 3.0901 6 6 6 7 6 9.9550974 43 0.49028 3.0930 6 6 6 6 9.5150 0.97845 4 363 9.510054 43 0.49028 3.0930 6 6 6 8 8 2 9.51090 43 0.480953 8698 4 3 9.595148	49	597	9.48568			9.97866							
51 053 048047 39 100 047057 4 203 050763 44 049111 053 9 52 680 048056 39 177 947853 4 235 950763 43 049170 023 8 53 708 948725 39 156 9.97845 4 237 9.50870 43 049070 022 8 54 736 94803 39 159 9.97845 4 299 9.50919 43 0.49081 961 6 56 791 948842 39 112 9.97837 4 363 9.51005 43 0.48005 899 4 0.48055 899 4 363 9.51005 43 0.48055 899 4 363 9.51005 43 0.48055 899 4 0.48055 899 4 363 9.51005 43 0.48055 803 3 358 846 9.48050 39 124 9.07837 4 363 9.51005 43 <td< td=""><td></td><td></td><td>9.48607</td><td></td><td>95195</td><td>9.97861</td><td></td><td></td><td>9.50740</td><td></td><td></td><td></td><td></td></td<>			9.48607		95195	9.97861			9.50740				
53 708 9.48725 39 158 9.07845 4 267 9.50876 73 0.49124 3.0991 7 54 736 9.48764 39 159 9.07845 4 299 9.50910 43 0.49081 961 6 56 797 9.48842 39 159 9.07845 4 363 9.50050 43 0.49081 961 6 56 791 9.48842 39 142 9.97837 4 363 9.51005 43 0.48095 899 4 57 819 9.48881 39 133 9.97832 4 396 9.51042 40.48058 83 2 58 846 9.48059 39 115 9.97835 4 460 9.51135 43 0.48068 838 2 50 874 9.48096 39 115 9.97835 4 460 9.51135 43 0.48068 83 2 50 874 9.48098 39 115 9.97835 </td <td></td> <td>680</td> <td>9.48686</td> <td></td> <td></td> <td>9.97853</td> <td>4</td> <td></td> <td>0.50833</td> <td>44</td> <td>0.40167</td> <td></td> <td>8</td>		680	9.48686			9.97853	4		0.50833	44	0.40167		8
57 37053 9.48803 39 95150 0.97831 4 3331 9.50061 43 0.49038 3.0930 5 56 791 9.48841 39 142 9.97837 4 363 9.5106 43 0.48058 899 4 57 819 9.48881 39 133 9.07833 4 305 9.51048 43 0.48055 869 4 58 846 9.48881 39 133 9.07833 4 428 9.51092 43 0.48053 868 33 2 5 846 9.48058 838 2 858 845 9.48058 838 2 428 9.51092 43 0.48058 838 2 5 874 9.48058 807 1 1 9.48868 807 1 1 9.48868 807 1 1 9.48868 807 1 1 9.48868 807 1 1 0.48802<	53		9.48725		168	9.97849		267	9.50870		0.40124	3.0991	7
80 30703 9.48803 39 95150 9.9741 4 3331 9.50902 43 0.48038 3.0930 9 56 791 9.48842 39 142 9.97837 4 363 9.51005 43 0.48095 899 4 57 819 9.48842 39 133 9.97837 4 369 9.51005 43 0.48955 899 4 58 846 9.48920 39 124 9.97830 4 428 9.51092 44 0.48953 838 2 59 874 9.48950 39 124 9.97832 4 428 9.51092 44 0.48958 838 2 59 874 9.48959 39 115 9.97832 4 460 9.51178 43 0.48805 807 1 60 902 9.48998 39 106 9.97831 4 492 9.51178 43													
57 819 9.48881 59 133 9.07833 4 396 9.51048 43 0.48953 868 3 58 846 9.48930 39 133 9.07833 4 428 9.51048 43 0.48953 868 3 58 846 9.48930 39 124 9.07835 4 428 9.51092 44 0.48908 838 2 50 874 9.48959 39 115 0.07835 4 460 9.51135 43 0.48863 807 1 60 902 9.48998 39 106 9.07831 4 492 9.51178 43 0.48823 777 0			0.48842			0.07837				43	0.48007	3.0930	
58 846 9.48920 39 124 9.07835 4 428 9.51092 10.48908 838 2 59 874 9.48959 39 115 9.07835 4 460 9.51135 43 0.48965 807 I 60 902 9.48998 39 106 9.07831 4 492 9.51178 43 0.48823 777 0	57	819	9.48881		133	9.97833		396	9.51048		0.48052	868	3
60 902 948998 39 106 907831 4 402 951135 43 048823 777 0	58		9.48920			9.97829	•••	428	0.51002		0.48008		2
	60					9.97821			0.51178				
Nat. UOS Log. d. Nat. SIN Log. d. Nat. COT Log. c.d. Log. I an Nat.	l i												
		Nat. C	OS Log.	d.	Nat. S	In Log.	. d.	Nat. C	OT Log.	c.d.	Log. I 8	ı n Nat.	Ľ

72°

.

Digitized by Google

	18 °												
'	Nat. Sin Log.	d.	Nat. Cos Log	. d.	Nat.TanLog	c.d.	Log. Cot N	lat.					
0	30902 9.48998 929 9.49037	39	95106 9.97821 097 9.97817	4	32492 9.51178 524 9.51221	43	0.48822 3.07	77 46	60				
2	957 9-49070	39 39	088 9.97812	5 4	556 9.51264	43 42	0.48730 7	16	59 58				
3	985 949115 31012 949153	38	079 9-97808 070 9-97804	4	588 9.51300 621 9.51349	43	0.48094 0	86 55	57 56				
5	31040 9.49192	39 39	95061 9.97800	4 4	32653 9.51392	43	0.48608 3.06		55				
6	068 9.49231 095 9.49209	38	052 9.97796 043 9.97792	4	685 9.51435 717 9.51478	43		95 65	54 53				
8	123 9.49308	39 39	033 9.97788	4 4	749 9.51520	42	0.48480 5	335	52				
9 10	151 9-49347 31178 9-49385	38	024 9.97784	5	782 9.51503 32814 9.51606	43		<u>505</u>	51 50				
11	206 0.40424	39 38	95015 9.97779 006 9.97775	4	846 9.51648	42	0.48394 3.04 0.48352 4	45 145	49				
12 13	233 9.49462 261 9.49500	30 38	94997 9.97771	4 4	878 9.51691	43	0.48309 4	15	48				
14 14	289 9-49539	39	988 9.97707 979 9-97703	4	911 9.51734 943 9.51770	42		385 356	47 46				
15	31316 9.49577	38 38	94970 9-97759	4 5	32975 9.51819	43	0.48181 3.03	326	45				
16 17	344 9-49015 372 9-49054	39	961 9.97754 952 9.97750	4	33007 9.51861 040 9.51903	42	0.48139 2	896 167	44 43				
18	399 9-49692	38 38	943 9-97746	4	072 9.51946	43 42	0.48054 2	37	42				
19 20	427 9-49730	38	933 9-97742	4		43		808	41 40				
21	31454 9-49768 482 9-49806	38 38	94924 9 -97738 915 9-97734	4	33136 9.52031 169 9.52073	42	0.47969 3.01	149					
22 23	510 949844 537 949882	38	900 9.97729	5 4	169 9.52073 201 9.52115	42	0.47885 1	120 200	39 38				
-5 24	537 9.49882 565 9.49920	38	897 9.97725 888 9.977 21	4	233 9.52157 266 9.52200	43		61	37 36				
25	31593 9-49958	38 38	94878 9.97717	4	33298 9.52242	42	0.47758 3.00		35				
26 27	620 9-49996 648 9-50034	38	869 9.97713 860 9.97708	5	330 9.52284 363 9.52320	42	0.47710 0	203 274	34 33				
28	675 9.50072	38 38	851 9.97704	4	395 9.52368	42	0.47632 9	45	32				
29 80	703 9.50110 31730 9.50148	38	842 9.97700 94832 9.97696	4	427 9.52410	42		16	31 80				
31	31730 9.50148 758 9.50185 786 9.50223	37	823 0.07001	5	33460 9.52452 492 9.52494	42	0.47500 8	358	29				
32 33	786 9.50223 813 9.50261	38 38	814 9.97087	4	524 9.52530	42	0.47464 8	329 300	28				
33 34	841 9.50298	37	805 9.97683 795 9-97679	4	557 9 .52578 589 9 .52620	42		72	27 26				
85	31868 9.50336	38 38	94786 9.97674	5 4	33621 9.52661	41	0.47339 2.97		25				
36 37	896 9.50374 923 9.50411	37	777 9-97070 768 9-97066	4	654 9.52703 686 9.52745	42	0.47297 0.47255	714 586	24 23				
38	951 9.50449	38 37	758 9.97062	4 5	718 9.52787	42	0.47213	57	22				
39_ 40	979 9.50480 32006 9.50523	37	749 9-97057	4	751 9.52829 33783 9.52870	41		29	21 20				
41	034 9.50561	38 37	94740 9.97653 730 9.97649	4	816 9.52912	42 41		572	19				
42 43	061 9.50598 089 9.50035	37	721 9.97045 712 9.97040	4 5	848 9.52953 881 9.52995	42	0.47047 5	44	18				
44	116 9.50673	38	702 9.97636	4	913 9.53037	42		87 187	17 16				
45	32144 9.50710	37 37	94693 9.97632	4	33945 9.53078	41	0.46022 2.94		15				
46 47	171 9.50747 199 9.50784	37	684 9.97628 674 9.97623	5	978 9.53120 34010 9.53161	41		31 103	14 13				
48	227 9.50821	37 37	665 9.97619	4	043 9.53202	41 42	0.40798 3	75	12				
<u>49</u> 50	254 9.50858 32282 9.50896	38	656 9.97613 94646 9.97610	5	075 9.53244 34108 9.53285	41	0.46756 3	47 10	11 10				
51	309 9.50933	37 37	637 0.07606	4 4	140 0.53327	42 41	0.46673 2	91	9				
52 53	337 9.50970 364 9.51007	37	627 9.97602 618 9.97597	5	173 9-53368 205 9-53409	41		163 135	8				
54	392 9.51043	36 27	609 9.97593	4	238 9.53450	41	0.46550 2	108	7 6				
55 56	32419 9.51080	37 37	94599 0.07580	4 5	34270 9.53492	42	0.46508 2.91		5				
57	447 9.51117 474 9.51154	37	590 9.97584 580 9.97580	4	3°3 9.53533 335 9.53574	41	0.46426	52 25	4				
58	502 9.51191 529 9.51227	37 36	571 9.97570	4 5	368 9.53015	41 41	0.46385 C	97	2				
59 60	557 9.51264	37	561 9.97571 552 9.97567	4	400 9.53656 433 9-53697	41		70 42	1 0				
	Nat. Cos Log.	d.	Nat. Sin Log.	d.	Nat. Cot Log	c.d.	Log. Tan N	lat.	•				

71°

Digitized by Google

10 0	
19.	

			_	_		10			-			
'	Nat. Si	n Log.	d.	Nat. C	OS Log	. d.	Nat. T	anLog.	c.d.	Log. Co	o t Nat.	
0	32557 9	-51264	37		9-97507	4	34433	9-53697	4 I	0.46303		60
12		51301	37	542 533	9-97563 9-97558	5	465 498	9-53738	41	0.46262	015 2.8087	59 58
3	639 ý	-5I374	30	523	9.97554	4	530	9-53779 9-53820	41 41	0.46180	960	57
4	667 9	51411	37 36	514	9-97550	4 5	563	9.53861	41	0.46139	933	56
5 6	32694 9	51447	37	94504	9-97545	4	34596	9.53902	41	0.46098 0.46057	2.8905 878	55
	722 9	.51484 .51520	36	495 485	9-97541 9-97530	5	661	9-53943 9-53984	4 I	0.46016	851	54 53
7 8	777 9	-51557	37 36	476	9-97532	4	693	0.54025	41 40	0.45075	824	52
<u>9</u> 10		-51593	36	466	9.97528	5	720	9.54005	41	0.45935	797	51 50
11	32832 9 850 0	51020	37	94457 447	9-97523 9-97519	4	3475 ⁸ 791	9.54100 9.54147	4I	0.45894 0.45853	743	49
12	887 9	51702	36 36	438	997515	45	824	0.54187	40 41	0.45813	716	48
13	9149	-51738	36	428 418	9.97510	4	850	9.54228	41	0.45772	689 662	47
14	942 9 32969 9	-51774	37	94409	9.97500	5	889	9.54269	40	0.4573I 0.4569I		45
16		51847	36	399	9-97501 9-97497	4	34922	9-54309 9-54350	41	0.45050	600	44
17	33024 9	51883	36 36	390	9-97492	5 4	987	9-54390	40 41	0.45610	582	43
18		0.51919 0.51955	36	380 370	9.97488 9.97484	4	35020	9-54431 9-54471	40	0.45569	556 529	42 41
20		51991	36	94361	9-97479	5	35085	9.54512	41	0.45488		40
. 21	134 9	.52027	88	351	9-97475	45	118	0.54552	40 41	0.45448	476	39
22	161 g	.52063 .52099	36	342		4	150 183	9-54593	40	0.45407	449	38
23 24	216 0	0.52135	36	332	9.97466 9.97461	5	216	9.54633 9.54673	40	0.45307	423 397	37 36
25		.52171	36	94313	9-97457	4	35248	9-54714	41	0.45286		85
26	271 9	52207	36 35	303	9-97453	45	281	0.54754	40 40	0.45246	344	34
27 28		.52242 .52278	36	293 284	9.97448 9-97444	4	314 346	9-54794 9-54835	4 I	0.45200	318 291	33 32
29	353 9	.52314	36	274	9-97439	5	379	9-54875	40	0.45125	265	31
80	33381 9	252350	36 35	94264	9-97435	4	35412	9.54913	40 40	0.45085		80
31 32	408 9	0.52385 0.52421	36	254 245	9-97430	4	445	9-54955	40	0.45045	213 187	29 28
33		52450	35 30	235	9-97420 9-97421	5	477 510	9-54995 9-55°35	40	0.44965	161	27
34	490 9	.52492	35	225	9-97417	45	543	9-55075	40 40	0.44925	135	26
85	33518 9	-52527	36	94215 206	9.97412	4	35576	9.55115	40	0.44885	2.8109 083	85
36 37	545 9 573 9	0.52503	35 36	196	9-97408 9-97403	5	641	9-55155 9-55195	40	0.44805	057	24
38	600 g	52508 52034 52039	30 35	186	9-97399	45	674	0.55235	40 40	0.44705	032	22
39			35 36	176	9-97394	4	707	9-55-75	40	0.44725	006	21
40 41		52703 52740	35	94167 157	9-97390 9-97385	5	35740	9-55315 9-55355	40	0.44685 0.44645 0.44605 0.44566	2.7980 955	20 19
41 42	710 0	LS2775	35 36	147	9-97381	4	805	9-55395	40	0.44605	933 929	18
43	737 9	.52811	35	137	9-97370	5	838	9.55434	39 40	0.44560	903 878	17
44		.52846 .52881	35	127 94118	9-97372	5	871	9-55474	40	0.44526		16 15
46	819 9	52010	35	108	9-97367 9-97363	4	35904 937	9-555 14 9-55554	40	0.44440	827	14
47	846 9).52951	35 35	098	9-9735 ⁸	55	969	9-55593	39 40	0.44407	801	13
48		.52986 .53021	35	088 078	9-97353 9-97349	4	36002	9-55633 9-55673	40	0.44307 0.44327	776 751	12 11
50		.53050	35	94068	9-97344	5	36068	9.55712	39	0.44288		10
51	956 9	.53092	36 34	058	9-97340	4	101	9-55752	40 39	0.44248	700	9
52 53		253126 253161	35	049	9-97335	4	134	9.55791 9.55831	40	0.44209	675 650	
53		0.53100	35	039	9-97331 9-97326	5	107	9-55-31	39	0.44169 0.44130	625	76
55	34065 9	.53231	35	94019	9.97322	4	36232	9.55910	40	0.44090		5
56	093 9	.53266	35 35	009	9.97317	5	265	9-55949	39 40	0.44051	575	4
57 58		0.53301 0.53 33 0	35	93999	9.97312 9.97308	4	298 331	9.55989 9.50028	39	0.44011	550 525	3
59 50	175 9	-53370	34 35	979	9-97303	5	364	9.50007	39 40	0.43033	500	I
60	202 9	-53405	33	969	9-97299	+	397	9.56107	40	0.43893	475	0
	Nat. Co	SSLog.	d.	Nat. S	Sin Log	d.	Nat. C	ot Log.	c.d.	Log.Ta	I n Nat.	1
						_						

70°

Digitized by Google

-

°

	Not S	in Log.	d	Not C	OG I og	d	Not T	an Log.	c d	Log Co	1 Nat	
0			<u>u.</u>			<u>u.</u>			c.u.			60
ĭ	34202 229	9-53405	35	93969 959	9-97299 9-97294	5	36397 430	9.50107 9.50140	39	0.43803	45°	59
2	257 284	9-53475	35 34	949	0.07280	5 4	463	9.56185	39 39	0.43854 0.43815	425	58
3 4	311	9-53509 9-53544	35	939 929	9-97285 9-97280	5	496 529	9.56224 9.56264	40	0-43770 0-43730	400 376	57 56
5	34339	9-53578	34 35	93919	9-97276	4 5	36562	0.50303	39	0.43607	2.735I	55
6	366 393	0.53013	35 34	909 899	9-97271 9-97266	5	595 628	9.50342 9.50381	39 39	0.43658 0.43619	326 302	54
8	393 421	9-53047 9-53682	35	889	9.97262	4	661	9.50420	39	0.43580	277	53 52
9	448	9.53710	34 35	879	9-97257	5 5	694	9-50459	39 39	0.43541	\$53	51
10 11	34475	9-53751	34	93869	9-97252	4	36727	9.56498	39		2.7228 204	50
12	503 530	9.53785 9.53819	34	859 849	9-97248 9-97243	5	793 826	9-50537	39	0.43403	179	49 48
13	557	9-53854 9-53888	35 34	839	9.97238	5 4		9-50570 9-50015	39 39	0.43424 0.43385	155	47
14	584 34612	9.53000	34	829 93819	9-97234	5	859 36892	9-56654	39	0.43340	130 2.7106	46 45
16	639	9-53957	35	809	9.97229 9.97224	5	925	9.50732	39	0.43307 0.43268	082	44
17	666	9.5399I	34 34	799	9.97220	4 5	958	0.50771	39 39	0.43229	058	43
18 19	694 721	9.54025 9.54059	34	789	9-97215 9-97210	5	991 37024	9.56810 9.56849	39	043190	034 009	42 41
20	34748	9-54093	34	93769	9-97206	4	37057	9.56887	38		2.6985	40
21	775 803	9.54127	34 34	759	9.97201	5 5	090	9.56926	39 39	0.43074	96ĭ	39 38
22 23	803	9.54101	34	748 738	9.97196 9.97192	4	123 157	9-56965 9-57004	39	0.43035 0.42990	937 913	38 37
24	857	9.54229	34	728	9.97187	5	190	9.57042	38	0.42958	889	36
85	34884	9.54263	34 34	93718	9.97182	5 4	37223	9.5708I	39 39	0.42019	2.6865	85
26 27	912 939	9-54297 9-54331	34	708 608	9.97178	5	250 289	9-57120 9-57158	38	0.42880	841 818	34 33
28	966	9-54305	34 34	688	9-97173 9-97168	5	322	9-57197	39 38	0.42803	794	32
29	993	9.54399	34	677	9.97103	3 4	355	9-57235	39	0.42705	770	31
30 31	35021 048	9-54433 9-54400 9-54500	33	93667 657	9-97159 9-97154	5	37388 422	9-57274	38	0.42720 0.42688	2.6746 723	80 20
32	075	9.54500	34	647	9.97149	5	455	9-57312 9-57351	39 38	0.42640	600	28
33	102	9-54534 9-54507	34 33	637 626	9-97145	4 5	488	9-57389	3° 39	0.42611	675	27 26
34 85	130 35157	9-54507 9-54601	34	93616	<u>9-97140</u> 9-97135	5	521 37554	9-57428	38	0.42572	652 2.6628	25
36	184	9.54635 9.54668	34	606	9-97-35	5	5/554 588 621	9-57466 9-57504	38	0.42400	605	24
37 38	211	9.54668	33 34	596	9.97126	4 5	621	9-57543 9-57581	39 38	0.42457	581	9 3
30 39	239 266	9-54702 9-54735	33	585 575	9-97121 9-97116	5	654 687	9.57501	38	0.42419 0.42381	558 534	22 21
40	35293	0 54000	34	93565	9.97111	5	37720	0.57658	39	0.42342	2.6511	80
4I	320	0.54802	33 34	555	9.97107	4 5	754 787	9.57696	38 38	0.42304	488	19 18
42 43	347 375	9.54830 9.54809	33	544 534	9-97102 9-97097	5	767 820	9-57734	38	0.42266 0.42228	464 441	18 17
44	402	9.54903	34 33	524	9.97092	5 5	853	9.57772 9.57810	38 39	0.42190	418	16
45	35429	9-54936	33	93514	9.97087	5 4	37887	9-57849	39 38	0.42151		15
46 47	456 484	9.54969 9.55003	34	503 493	9.97083 9.97078	5	920	9.57887 9.57925	38	0.42113	371 348	14 13
48	511	9.55030	33 33	483	9-97073 9-97068	5 5	953 986	9.57903 9.58001	38 38	0.42037	325	12
<u>49</u> 50	538	9.55009	33	472	9.97008	5	38020		38	0.41999	302	11 10
51	35565 592	9.55102 9.55130	34	93462 452	9-97063 9-97059	4	38053 086	9.58039 9.58077	38	0.41961	2.0279 256	
52	619	9.55109	33	44I	9-97054	5 5	120	9.58115	38 38	0.41023 0.41885	233	8
53 54	647 674	9.55202 9.55235	33	43I 420	9-97049 9-97044	5	153 186	9.58153 9.58191	38	0.41847 0.41809	210 187	7 6
55	36701	9.55268	33	93410	9-97039	5	38220	9.58229	38	0.41771		5
56	728	9.55301	33	400	9-97035	4 5	253	9.58207	38 37	0.41733	142	4
57 58	755 782	9-55334	33	389 379	9.97030	5	286 320	9.58304 9.58342	38	0.41696 0.41658	119 096	3
59 59 60	810	9-55307 9.55400	33	368	9.97025 9.97020	5	353 353 386	9.58380	38 38	0.41620	074	I
60	837	9-55433	33	358	9.97015	5	386	9.58418	30	0.41582	051	0
	Nat. C	OS Log.	. d.	Nat. S	Sin Log.	d.	Nat. C	ot Log.	c.d.	Log.Ta	n Nat.	1

°

Digitized by Google

°

_					<u>71</u>			_			_
	Nat. Sin Log.	d.	Nat. C	OS Log	. d.	Nat.T	anLog.	c.d.	Log. Co	t Nat.	
0	35837 9 .55433 864 9 .55400	33	93358	9.9701 <u>5</u>	5	38386		37	0.41582		60
12	864 9.55400 891 9.55400	33	348	9.97010 9.97005	5	420	9.58455 9.58493	38	0.41545	028 006	59 58
3	918 9.55532	33	337	9.97001	4	453	9.58531	38	0.41507 0.41460		57
4	945 9.55504	32	316	9.96996	5	520	9.58569	38	0.41431	96I	56
5	35973 9-55597	33	93306	9.96991	5	38553	9.58606	37 38	0.41394	2.5938	55
6	36000 9.55030	33	295	9.96986	5 5	587	0.58644	37	0.41350	916	54
7	027 9.55003 054 9.55095	32	285 274	9.96981 9.96976	5	620 654	9.58681 9.58719	38	0.41319 0.41281	893 871	53 52
9	081 9.55728	33	264	9.96971	5	687	9-58757	38	0.41243	848	51
10	36108 9.55761	33	93253	0.06066	5	38721	9-58794	37	0.41200		50
II	135 9-55793	32 33	243	9.96962	4	754 787	0.588322	38 37	0.41168	804	
12	162 0.55826	32	232	9.96957	5 5	787	9.58869	38	0.41131	782	49 48
13 14	190 9.55858 217 9.55891	33	222 211	9.96952 9.96947	5	821 854	9.58907 9.58944	37	0.41003	759	47
15		32	93201	9-96942	5	38888	9.58981	37	0.41056	737	46
16	36244 9.55923 271 9.55950	33	100	9.96937	5	921	9.59019	38	0.41019 0.40981	693	44
17	298 9.55988	32	180	9.96932	5		9.59050	37 38	0.40944	671	43
18	325 9.50021	33 32	169	9.96927	5 5	955 988	9.59094	30	0.40900	649	42
19	352 9.50053	32	159	9.96922	5	39022	9.59131	37	0.40869	627	41
20 21	36379 9.50085 406 9.50118	33	93148	9.96917 9.96912	5	39055	9.59168 9.59205	37	0.40832		40
22	434 9.56150	32	137 127	9-96907	5	122	0.50243	38	0-40795 0-40757	583 561	39 38
23	461 9.56182	32	116	0.00003	4	156	9.59243 9.59280	37	0.40720	539	37
24	488 9.56215	33 32	106	9.96898	5 5	190	9.59317	37 37	0.40083	517	36
25	36515 9.56247	32	93095	9.96803	5	39223	9-59354	37	0.40646		35
26 27	542 9.56279 569 9.56311	32	084	9.96888 9.96883	5	257	9.59391	38	0.40609	473	34
28	596 9.56343	32	074 063	0.00878	5	290 324	9.59429 9.59400	37	0.40571 0.40534	452 430	33
29	623 9.56375	32	052	9.96873	5	357	9.59503	37	0.40497	408	31
80	36650 9.56408	33	93042	9.96868	5	39391	9-59540	37	0.40460		80
31	677 9.56440	32 32	031	9.96863	5 5	425	9.59577	37	0.40423	365	29
32	704 9.50472 731 9.50504	32	020	9.96858 9.96853	5	458	9.59014	37	0.40380	343	28
33 34	758 9.50530	32	92000	0.00848	5	492 526	9.59651 9.59688	37	0.40349	322 300	27
85	36785 9.56568	32	92988	9.96843	5	39559	9-59725	37		2.5279	25
36	812 9.56599	31	978	9.96838	5	593	9.59762	37	0.40238	257	24
37	812 9.56599 839 9.56631 867 9.56663	32 32	967	9.96833	5	626	9-59799 9-59835	37 36	0.40201	236	23
38	867 9.56663 894 9.56695	32	956	9.96828 9.96823	5	660	9-59835	37	0.40165	214	22
<u>39</u> 40		32	945		5	694	9.59872	37	0.40128	193	21 20
4I	36921 9.56727 948 9.56759	32	92935 924	9.96818 9.96813	5	39727 761	9-59909 9-59946	37	0.40091	2.5172 150	80 19
42	0 5 0.50700	31	913	9.96808	5	795	9.59983	37	0.40017	129	18
43	37002 0.50822	32	902	9.96803	5	829	9.59983 9.00019	36 37	0.3998i	108	17
44	029 9.56854	32	892	9.96798	5	862	9.60056	37	0.39944	086	16
45	37056 9.56886 083 9.56917	31	92881	9-96793	5	39896	9.60093	37		2.5065	15
46 47	110 0.50040	32	870 859	9.96788 9.96783	5	930	9.60130	36	0.39870	044 023	14 13
48	137 9.50980	31	849	9.96778	5	997	9.60203	37	0.39797	002	12
49	164 9.57012	32 32	838	9.96772	5	40031	9.60240	37 36	0.39760	2.4981	11
50	37191 9-57044	31	92827	9-96767	5	40065	9.60276	37		2.4960	10
51 52	218 9.57075	32	816	9.96762	5	098	9.60313	36	0.39687	939 918	8
53	245 9.57107 272 9.57138	31	805 794	9-90757 9-90752	5	132 166	9.60349 9.60386	37	0.39651 0.39614	897	
54	299 9.57169	31	784	9-90747	5	200	9.60422	36	0.39578	876	7 6
55	37326 9.57201	32	92773	9.96742	5	40234	9.60459	37		2.4855	5
56	353 9.57232	31	762	9.90737	5	267	9.60495	36 37	0.39505	834	4
57	380 9.57204 407 9.57295	31	751	9.90732	5	301	9.60532 0.60568	36	0.39468	813	3
58 59	407 9-57295 434 9-57320	31	740	9.96727 9.96722	5	335 369	9.00508 9.60605	37	0.39432 0.39395	792 772	2 1
5 8	461 9.57358	32	718	9.96717	5	403	9.60641	36	0.39359	751	Ô
		•		!	•	N. 0					
	Nat.COS Log.	. d.	Nat. S	in Log.	d.	Nat. C	OT Log.	c.d.	Log.Ta	n Nat.	1
								_			

°

Digitized by Google

°

1	Nat. S	in Log.	d.	Nat. C	Cos Log	. d.	Nat.T	anLog.	c.d.	Log. C	ot Nat.	
0	37461	9-57358	1	92718		6		9.60641		0.39359		6
I	488	9.57389	31 31	707	0.0071	5	436	9.60677	36 37	0.39323 0.39280	730	5
2	515	9.57420	31	697	9.96706	5	470	9.60714	36		709 680	5
3	542 569	9.57451 9.57482	31	686 675		5	504 538	9.60750 9.60786	36	0.39250 0.39214	668	5 5
4			32	92664		5		0.60823	37			5
6	37595 622	9-57514 9-57545	31	653		5	40572	9.60859	36	0.39177 0.39141	627	5
7	649	0.57570	31	642		5	640		36	0.30105	606	
8	676	9-57570 9-57007	31	631		5	674	9.60931	36 36	0.39069	586	5
9	703	9-57038	31 31	620	9.96670	5	707	9.60907	-	0.39033	566	5
10	37730	9.57669	31	92609	9.96665	5	40741		37 36	0.38000	24545	5
11	757	9-57700	31	598	9.96660	5	775 809	9.61040	36	0.38960	525	4
12	784 811	9-57731	31	587		55	809	9.61076 9.61112	36	0.38024 0.38888	504 484	
13 14	838	9.57762 9.57793	31	576 565		5	843 877	9.61148	36	0.38852	464	4
15	37865	9.57824	31	92554		5	40911		36	0.38810		Ī
16	892	0.57855	31	543		6	945	9.01220	36	0.28780	423	14
17	919	9-57855 9-57885	30 27	532	9.96629	5	979		36	0.38744	403	4
18	946	9.57910	31 31	521		5	41013		36 36	0.38708	383	4
19	973	9-57947	31	510		5	047	9.61328	36	0.38072	362	4
80	37999	9.57978 9.58008	30	92499		6	41081	9.61364	36	0.38636		4
21 22	38026	9.58008	31	488	9.90008	5	115	9.61400	36	0.38600	322 302	3
23	053 080	9.58039 9.58070	31	477	9.96603	5	149 183	9.61436 9.61472	30	0.38528	282	3
24	107	9.58101	31	455		5	217	9.61508	36	0.38492	262	3
85	38134	0.58131	30	92444		5	41251	9.61544	36	0.38450	2.4242	ž
26	161	9.58162	31	432			285	0.01570	35 30	0.38421	222	3
27	188	9.58192	30 31	421	9.9057	5	319	9.61579 9.61615	30	0.38385	202	3
28	215	9.58223	30	410		5	353	9.61651 9.61687	36	0.38349	182	3
29	241	9.58253	31	399		5			35	0.38313	162	3
80	38268	9.58284	30	92388	9.96563	6	41421		36	0.38278		8
31	295 322	9.58314 9.58345	31	377 366	9.96556 9.96551	5	455 490	0.61758	36	0.38206	122 IO2	2
32 33	349	9-58375	30	355		5	524		36	0.38170	083	2
34	376	0.58400	31	343		5	558	9.61865	35	0.38135	063	2
85	38403	9.58430	30	92332			41592	9.61901	36	0.38099		8
36	430	9.58407	31 30	321	9.96530	5	626	9.61936	35 30	0.38064	02	2
37	456	9.58497	30		9.96525	550	660		36	0.38028	004	2
38	483	9.58527	30	299 287		ð	694 728	9.62008 9.62043	35	0.37092	2.3964 964	22
<u>39</u> 40	510 3 ⁸ 537	9-58557	31	92276		5	41763	9.62079	36	0.37957		2
41	3°537 564	9.58588 9.58018	30	265		5	797	9.62114	35	0.37021 0.37880	3945 925	Ĩ
42	591	0.58648	30	254	9.96498		831	9.62150	36	0.37850	906	ī
43	617	9.58678	30 31	243	9.96493	5	865	9.02185	35 36	0.37815	886	I
44	644	9.58709	30	231		5			35	0.37779	867	1
45	38671	9-58739	30	92220		6	41933	9.62256	30	0.37744 0.37708	2.3847	1
46	698	9.58709	30	209		5	968	9.62292 9.62327	35	0.37708	828 808	I. I
47 48	725 752	9.58799 9.58829	30	198		5	42002	9.62362 9.62362	35	0.37038	789	i
49	778	9.58859	30	175			070	9.62398	36	0.37602	770	I
50	38805	9.58889	30	92164		5	42105		35	0.37567		1
51	832	9.58919	30 30	152		5	139	9.62433 9.62468	35 36	0.37532	73I	
52	859	9.58949	30		9.96445	5	173	9.62504	35	0.37490	712	
53	886	9.58979	30	130		5	207	9.62539	35	0.37401	693 673	
54	912	9.59009	30	119	22.104	6	242	9.62574	35	0.37426	673	-
55	38939 966	9.59039	30	92107		5	42276 310		36	0.37391 0.37355	2.3054	
56 57	900 993	9.59069 9.59098	29	090	0.00410	5	345	0.62680	35	0.37320	616	
57 58	39020	9.59128	30	073			379	0.62715	35	0.37285	597	
59 60	046	0.50158	30 30	062	9.96408	5	413	9.62750 9.62785	35 35	0.37250	578	
60	073	9.59188	30	050	9.9640	13	447	9.62785	33	0.37213	559	
ŀ	Not C	OS Log.	d	Not C	Sin Tea	a	Nat C	ot Log.	c d	I or Te	n Nat	ſ
		ບອມປະ	u.	114 ML. 6				THE LAPP.				

67°

AAA
2.5

7					1	NT T	0 M T		1 C	. NT-4	
	Nat. Sin Log.	a.	Nat. CO	S Log.	a.	Nati	an Log.	c.a.			
0	39073 9.59188	30		96403	6	42447	9.62785 9.62820	35	0.37215		60
12	100 9.59218 127 9.59247	29	039 9. 028 9.	.96397 .96392	5	482 516	9.62855	35	0.37180 0.37143	539 520	59 58
3	153 9-59277	30 30	016 ý.	96387	5	551	9.62890	35 36	0.37110	501	57
4	180 9.59307	29		96381	5	585	9.62926	35	0.37074	483	56
8	39207 9-59336	30		96376	6	42619	9.62961	35	0.37039	2.3464	55
6	234 9.59300 260 9.59390	30		.96370 .96363	5	654 688	9.62996 9.63031	35	0.37004	445 426	54 53
7 8	287 9-59425 314 9-59455	29 30	959 9-	.96360	5	722	9.63066	35 35	0.30034	407	52
9		29	948 9.	90354	5	757	9.03101	33 34	0.36899	388	51
10	39341 9.59484	30		96349	6	4279I 826	9.63135	35	0.36865 0.36830	2.3369 351	50 49
II 12	367 9 .59514 394 9 .5954 3	29	925 9- 914 9-	.96343 .96338	5	860	9.63170 9.63205	35	0.30795	332	48
13	421 9.59573	30 29	902 9.	90333	5	894	9.63240	35 35	0.30700	313	47
14	421 9.59573 448 9.59602	30		.96327	5	929	9.63275	35	0.36725	294	46
15 16	39474 9.59632 501 9.59661	29		96322	6	42963	9.63310	35	0.36690	2.3276	45 44
10	501 9.59001 528 9.59690	29		.96316 .96311	5 6	998 43032	9-63345 9-63379	34	0.30021	257 238	44
18	555 9.59720	30 29	845 9	90305	5	067	9.63414	35 35	0.30580	220	42
19		29		96300	6	101	9.63449	35 35	0.36551	201	41
80	39608 9.59778 635 9.59808	30	91822 9. 810 0.	.96294 .96289	5	43136	9.63484	35	0.36516 0.36481	2.3183 164	40 39
21 22	635 9.59808 661 0.50837	29		06284	5	170 205	9.63519 0.63553	34	0.30447	146	38
23	688 0.50800	29 29	787 9	.96278	5	239	9.63553 9.63588	35 35	0.30412	127	37
24	715 9.59895	20		96273	6	274	9.63623	33 34	0.30377	109	36
25	39741 9-59924	30		.96267 .06262	5	43308	9.63657	35	0.30343	2.3090	35
26 27	768 9.59954 795 9.59983	29		.90256		343 378	9.63692 9.63726	34	0.36308	072 053	34 33
28	822 9.00012	29	729 9.	96251	5	412	9.63761	35 35	0.30239	035	32
29	848 9.60041	29 29		96245	5	447	9.63796	33 34	0.30204	017	31
80	39875 9.60070	29		96240	6	43481	9.63830	35		2.2998 980	80
31 32	902 9.60099 928 9.60128	29		.96234 .96220	5 6	516 550	9.63865 9.63899	34	0.30135	962	29 28
33	955 9.60157	29	671 9.	96223		585	9.03934 9.03968	35	0.30000	944	27
34	982 9.00180	29 29		96218	5 6	620		34 35	0.36032	925	26
85	40008 9.60215	20	91648 9. 636 9.	.96212 .96207	5	43654 689	9.64003	34	0.35997	2.2907 889	25 24
36 37	035 9.60244 062 9.60273	29	625 0	96201		724	9.64037	35	0.35028	871	23
38	088 0.60302	29 29	613 9.	.00100	5	758	0.04100	34 34	0.35028 0.35804	853	22
39	115 9.60331	28		96190	5		9.64140	35	0.35800	835	21
40	40141 9.60359 168 9.60388	29	91590 9.	.9618 <u>3</u>	6	43828 862	9.64173 9.64209	34		2.2817	20 19
41 42	108 9.00388 195 9.60417	29	578 9. 566 0.	96179 96174	56	897	0.64243	34	0.35791	799 781	19
43	221 9.60440	29 28	555 9	.00108	6	932	9.64243 9.64278	35 34	0.35722	763	17
44	248 9.60474	29	<u>543</u> 9-	.96162	5	966	9.64312	34	0.35688	745	16
45	40275 9.60503	29		96157 96151	6	44001 036	9.64346 9.64381	35	0.35654	2.2727 709	15 14
46 47	301 9.60532 328 9.60561	29		.90151	5 6	071	9.64415	34	0.35585	691	14
48	355 9.60589	28 20	4 <u>9</u> 6 9.	96140	6 5	105	9.64449	34 34	0.35551	673	12
49	381 9.00018	28		.96133	6	140	9.64483	34 34	0.35517	655	11
50	40408 9.60646 434 9.60675	29		.96129 .96123	6	44175 210	9.64517 9.64552	35	0.35483 0.35448	2.2637	10
51 52	434 9 .00075 461 9 .60704	29		90113	5 6	244	0.64586	34	0.35414	602	8
53	488 9.60732	28 29	437 9	96112	5	279	9.64620	34 34	0.35380	584	7 6
54	514 9.00701	28		.96107	6	314	9.64654	34	0.35340	566	
55	40541 9.60789 567 0.60818	29		.96101 .96095	6	44349	9.64688 9.64722	34	0.35312 0.35278	2.2549 531	5 4
56 57	567 9.60818 594 9.60846	28		.90095	5	<u> </u>	9.64756	34	0.35244	513	3
58	621 0.00875	29 28	378 9.	.96084		453	0.64700	34 34	0.35210	496	2
59 60	647 9.60903 674 9.60931	28		.96079 .96073	5	488 523	9.64824 9.64858	34	0.35170 0.35142	478 460	I 0
F								1	1		_
	Nat. Cos Log.	d.	Nat. Sil	n Log.	. d.	Nat. C	ot Log.	c.d.	Log. T 8	I n Nat.	1

66°

24°

	Nat. Sin Log.	4	Net C		-	No. T	201		Les C	Not	
Ľ		d.			. a.	Nat. I	anLog.	c.a.			
0 I	40674 9.60931 700 9.60960	29	91355 9 343 9	9.96073 9.96067	6	44523 558	9.64858 9.64892	34	0.35142 0.35108	2.2460 443	60 59
2	727 9.60988	28 28	331 0	0.06062	5	593	9.64926	34	0.35074	425	58
3	753 9.01010	20	319 9	9.96056	6	627	9.64960	34 34	0.35040	408	57
4	780 9.61045	28		0.96050	5	662	9.64994	34	0.35006	390	56
5 6	40806 9.61073 833 9.61101	28		9.96043 9.96039	6	44697	9.65028 9.65062	34	0.34972 0.34938		55 54
-	860 9.61129	28		0.06034	5	732 767	9.65096	34	0.34904	355 338	53
7 8	886 9.61158	29 28	260	0.96028	6	802	9.65130	34 34	0.34870	320	52
9	913 9.61186	28		0.96022	5	837	9.65164	33	0.34830	303	51
10 11	40939 9.61214 966 9.61242	28		9.96017 9.96011	6	44872	9.65197	34	0.34803	2.2280	50 49
12	992 9.61270	28 28		9.96005	6	942	9.65231 9.65265	34	0.34735	251	49
13	41019 9.61298	20	200 0	9.96000	5	977	9.65299	34	0.34701	234	47
14	045 9.61326	28		9-95994	6	45012	9.65333	33	0.34667	210	46
15 16	41072 0.01354 098 0.01382	28	91176 9 164 9	9.95988	6	45047	9.65366	34	0.34634	2.2199 182	45
17	098 0.01382 125 0.01411	29		9.95982 9.95977	5	117	9.65400 9.65434	34	0.34000	165	44 43
18	151 9.61438	27 28	140	9.95971	6	152	9.05407	33	0.34533	148	42
19	178 9.61466	28	128	9-95965	5		9.65501	34 34	0.34499	130	41
20	41204 9.61494	28		9.95960	6	45222	9-05535	33	0.34405		40
2I 22	231 9.01522 257 9.01550	28		9-95954 9.95948	6	257 292	9.65568 9.65602	34	0.34432	096 079	39 38
23	284 9.61578	28		0.05042	6	327	0.65636	34	0.34304	062	37
24	310 9.61006	28 28		9-95937	5	362	9.65669	33	0.34331	045	36
25	41337 9.61634	28		9-9593I	6	45397	9.65703	34 33	0.34207		35
20 27	363 0.61662 390 0.61680	27	044	9-95925	5	432	9.65736	34	0.34264	011	34
28	390 9.01689 416 9.01717	28	032	9.95920 9.95914		467 502	9.65770 9.65803	33	0.34230	977	33 32
29	443 9.61745	28 28	008	0.95908	6 6	538	9.65837	34	0.34103	960	31
80	41469 9.61773	20	90996	0.05002		45573	9.65870	33	0.34130	2.1943	80
31	496 0.01800	28	984	9.95897	5	608	9.65904	34 33	0.34000	926	29
32 33	522 0.61828 549 0.61856	28	972 960	9.95891 9.95885	6	643 678	9.65937 9.65971	34	0.34003	909 892	28 27
33	575 9.01883	27		9-95879	6	713	9.66904	33	0.33990	876	26
85	41602 9.01911	28 28	00036 (0.05873	6	45748	9.66038	34	0.33062	2.1859	25
36	628 9.01939	27	024	0.05868	5 6	784	9.66071	33	0.33020	842	24
37 38	655 9.61900 681 9.61994	28	911 (899 (0.05862	6	819 854	9.66104 0.66138	34	0.33800 0.33862	825 808	23 22
39	707 0.62021	27	887	9.95850 9.95850	6	889	9.00130	33	0.33820	792	21
40	41734 9.62049	28	0087< (0.05844	6	45924	0.66204	33	0.33796	2.1775	20
4I	760 9.62076	27	863	0.95839	5 6	960	9.66238	34	0.33762	758	19
42	787 9.62104	27	85I G	9.95833	6	995	9.66271	33	0.33720	742	18
43 44	813 9.62131 840 9.62159	28	839 826	9.95827 9.95821	6	46030 065	9.66304 9.66337	33	0.33696 0.33663	725 708	17 16
45	41866 9.62186	27		0.95815	6	46101	9.66371	34	0.33029		15
46	892 9.62214	28 27	802 0	0.05810	5	136	9.66404	33	0.33590	075	14
47	919 9.62241 945 9.62268	27	790 9	9.95804	6	171	9.66437	33	0.33563	659	13
48 49	945 9.02208 972 9.62296	28	778 766	9.95798 9.95792	6	206 242	9.66470 9.66503	33	0.33530	642 625	12 11
50	41998 9.62323	27		9.95786	6	46277	9.66537	34	0.33463		10
51	42024 9.62350	27	741	0.95780	6	312	9.00570	33	0.33430	592	9
52	051 9.62377	27 28	729 9	9-95775	5 6	348	9.66603	33	0.33397	576	8
53 54	077 9.62405 IO4 9.62432	27		9.95769 9.95763	6	383 418	9.66636 9.66660	33	0.33364 0.33331	560	76
55	42130 9.62459	27			6	46454	9.66702	33	0.33333	543	5
56	156 9.62486	27		9-95757 9-95751	6	489	9.6673	33	0.33205	510	4
57	183 9.62513	27	668 9	9-95745	6 6	525	9.66735 9.66768	33 33	0.33232	494	3
58 50	209 9.62541 235 9.62568	27	655 9	9-95739	ŏ	560	9.66801 9.66834	33	0.33100	478 461	2 1
59 60	262 9.02505	27	643 0 631 0	9-95733 9.95728	5	595 631	0.00834	33	0.33166	401	Ó
							<u> </u>				
	Nat. Cos Log.	d.	Nat. Si	n Log.	d.	Nat. C	ot Log.	c.d.	Log. I a	I n Nat.	'

65°

°

_	_	-	_							_		
'	Nat. S	in Log.	d.	Nat. C	OS Log	. d.	Nat. T	an Log.	c.d.	Log. Co	ot Nat.	
0	42262	9.62593	27	90631	9.95728	6	46631	9.66867	33	0.33133	2.1445	60
I	288	9.62022	27	618	9.95722	6	666	9.66900	33	0.33100	429	59
2	315	9.62649	27	606	9.95710	6	702	9.66933 9.66966	33	0.33007	413 396	58
3	341 367	9.62676 9.62703	27	594 582	9.95710	6	737	9.66999	33	0.33034 0.33001	390	57 56
6			27		9-95704	6	46808		33	0.32068		55
6	42394 420	9.62730	27	90569	9.95698	6	40000	9.67032 9.67065 9.67098	33	0.32935	348	
	446	9.62757 9.62784 9.62811	27	557 545	9.95692 9.95686	6	879	0.67008	33	0.32902	332	54 53
78	473	0.62811	27	532	9.95680	6	914	9.67131	33	0.32869	315	52
9	499	0.62838	27	520	9.95074	6	950	0.07103	32	0.32837	299	51
10	42525	9.62863	27	90507	9.95668	6	46985	9.67196	33	0.32804		50
11	552	9.62892	27 26	495	9.95003	5	47021	9.67229	33	0.32771	267	49
12	578	9.62918	27	483	9-95057	ŏ	056	9.67262	33	0.32738	251	48
13	604	9.62945	27	470	9.95651	6	092	9.07295	32	0.32705	235	47
14	631	9.62972	27	458	9.95645	6	128	9.67327	33	0.32073	219	46
15	42657	9.62999	27	90446	9-95639	6	47163	9.67360	33	0.32640	2.1203	45
16 17	683	9.63026	26	433	9.95033	6	199	9.07393 9.07420	33	0.32607	187	44
17	709 736	9.63052 9.63079	27	421 408	9.95627 9.95621	6	234 270	9.07458	32	0.32574	171	43 42
19	762	9.63100	27	396	9.95615	6	305	9.67491	33	0.32509	139	41
20	42788	9.63133	27	90383	9.95009	6	47341	0 600234	33	0.32470		40
21	815	9.63159	26	371	9.95003	6	377	9.07550 9.07589 9.07622	32	0.32444	107	39
22	841	9.63180	27	358	9-95597	6	412	0.07580	33	0.32411	092	38
23	867	9.63213	27 20	346	0.05501	6	448 483	9.67622	33 32	0.32378	076	37
24	894	9.63239	27	334	9-95585	6		9.67654	33	0.32340	060	36
85	42920	9.63266	26	90321	9-95579	6	47519	9.67687	32	0.32313	2.1044	85
26	. 946	9.63292	27	309	9-95573 9-95597	6	555	9.07719	33	0.32281	028	34
27	972	9.03319	26	296	9-95507	6	590 626	9.07752	33	0.32248	013	33
28	999	9.63345	27	284	9-95561	6	662	9.67752 9.67785 9.67817	32	0.32215	2.0997 981	32
29	43025	9.63372	26	271	9-95555	6	· · · · · · · · · · · · · · · · · · ·		33	0.32183		31
80	43051	9.63398	27	90259	9-95549	-6	47698	9.67850 9.67882	32	0.32150 0.32118		80
31 32	077 IO4	9.63425 9.63451	26	246 233	9-95543 9-95537	6	733	9.67913	33	0.32085	950 934	29 28
33	130	9.63478	27	221	9.95531	6	805	0.07047	32	0.32053	918	27
34	156	9.63504	26	208	9.95525	6	840	9-67947 9-67980	33	0.32020	903	26
85	43182	9.63531	27	90196	9.95519	6 6	47876	0.68012	32	0.31088		25
36	209	9-03557	26 26	183	9.95513	6	912	0.68044	32	0.31956	872	24
37	235	0.03583	27	171	9-95507	7	948	9.68077	33 32	0.31033	856	23
38	261	9.03010	26	158	9.95500	6	984	9.68109	33	0.31801	840	22
39	287	9.63636	26	146	9-95494	6	48019	9.68142	32	0.31858	825	21
40	43313	9.63662	27	90133	9.95488	6	48055	9.68174	32	0.31826		20
41 42	340 366	9.63689 9.63715	26	120 108	9.95482 9.95476	6	091	9.68200 9.68239	33	0.31794 0.31701	794	19 18
42 43	392	9-03741	26	095	9-95470	6	163	9.68271	32	0.31701	778 763	10
43 44	418	9.63707	26	082	9.95404	6	198	9.68303	32	0.31007	748	16
45	43445	9.63794	27	90070	0.05458	6	48234	9.68336	33		2.0732	15
46	471	9.63820	26	057	0.05452	6	270	9.68368	32	0.31632	717	I4
A7	497	0.63846	26 26	045	9.95440	6 6	306	9.68400	32 32	0.31600	701	13
48	523	9.63872	26	032	9.95440	6	342	0.68432	3≊ 33	0.31568	686	12
49	549	9.63898	26	019	9-95434	7	378	9.68465	32	0.31535	671	II
50	43575	9.63924	26	90007	9.95427	6	48414	9.68497	32		2.0655	10
51	602	9.63950	26	89994	9.95421	6	450	9.68529	32	0.31471	640	8
52	628 654	9.63976	26	981 968	9.95415	6	486 521	9.68501 9.68593	32	0.31439	· 625 609	
53 54	680	9.64002 9.64028	26	956	9-95409 9-95403	6	557	0.68626	33	0.31374	594	7 6
55	43706	9.64054	26	89943	9-95397	6	48593	9.68658	32		2.0579	5
56	733	9.64080	26	930	9.95397 9.95391	6	40593	0.68600	32	0.31310	2.05/9 564	4
57	759	9.64106	26	918	9.95384	7 6	665	0.68722	32	0.31278	549	3
58	785	0.64132	26 26	905	9.95378	6	701	9.68754 9.68780	32 32	0.31240	533 518	2
59 60	811	0.64158	26	892	0.05372	6	737	9.68786	32 32	0.31214		I
90	837	9.64184		879	9.95366		773	9.68818	J -	0.31182	503	0
	Nat C	OSLOG	đ.	Nat. S	in Log.	d.	Nat. C	ot Log.	6.0	Log Ta	n Nat	1
	ITAL, U		-1.		1. g.				J.u.			

°

26°

-			`							-
'	Nat. Sin Log.	d.	Nat. Cos Log	. d.	Nat.T	anLog.	c.d.	Log. Co)t Nat.	
0	43837 9.64184	26.	89879 9.95366	6	48773	9.68818	32	0.31182	2.0503	60
1 2	863 9.64210 869 0.64236	26	867 9.95360	6	809	9.68850 9.68882	32	0.31150	488	58
3	869 9.64236 916 9.64262	26	854 9.95354 841 9.95348	6	845 881	0.00003	32	0.31118 0.31086	473 458	58 57
4	942 9.64288	26	828 9.95341	7	917	9.68914 9.68940	32	0.31054	443	56
5	43968 9.64313	25	89816 9.95335	6	48953	9.68978	32	0.31022		55
6	994 9.04339	26 26	803 0.05320	6	989	0.60010	32 32	0.30000	413 398	54
78	44020 9.64365	26	790 9-95323	6	49026	9.69042	32	0.30958	398	53
9	046 9.64391 072 9.64417	26	777 9-95317 764 0.05310	7	062	9.69074	32	0.30020	383 368	52 51
10		25		6	· · · · · · · · · · · · · · · · · · ·		32	0.30894		50
11	44098 9.64442 124 9.6446 8	26	89752 9.95304 739 9.95298	6	49134 170	9.69138 9.69170	32	0.30802	338	49
12	I5I 0.04404	26	720 0.05202	6	206	9.69202	32	0.30798	323	48
13	177 9.64519	25 26	713 9.95286	7	242	9.69234 9.69266	32 32	0.30766	308	47
14	203 9.04545	26		6	278		32	0.30734	293	46
15	44229 9.64571	25	89687 9.95273	6	49315	9.69298	31	0.30702 0.30071	2.0278	45
16 17	255 9.64596 281 9.64622	зŏ	674 9.95207 662 9.95261	6	351	9.69329 9.69361	32	0.30071	203 248	44 43
18	307 9.64647	25	649 9.95254	7	423	0.60303	32	0.30007	233	43
19	333 9.64073	26 07	636 9.95248	6	459	9.69425	32	0.30575	219	41
20	44359 9-64698	25 26	89623 9.95242	6	49495	9.69457 9.69488	32 31	0.30543	2.0204	40
21	385 9.64724	25	610 9.95236	7	532	9.69488	32	0.30512	189	39
22 23	411 9.64749 437 9.64775	2Õ	597 9.95229 584 0.05223	6	568	9.69520	32	0.30480	174 160	38 37
24	437 9.64775 464 9.64800	25	584 9-95223 571 9-95217	6	640	9.69552 9.69584	32	0.30410	145	36 36
25	44490 9.64826	26	89558 9.95211	6	49677	9.69615	31	0.30385		35
26	516 9.64851	25 20	545 9.95204	76	713	0.60647	32	0.30353	115	34
27	542 9.64877	25	532 9.95198	6	749	9.69679	32 31	0.30321	IOI	33
28 29	568 9.64902 594 9.64927	25	519 9.95192 506 9.95185	7	786	9.69710	32	0.30290	086 072	32 31
30	594 9.04927 44620 9.64953	26		6	49858	9.69742	32	0.30230		80
31	646 9.64978	25	89493 9.95179 480 9.95173	6	894	9.69774 9.69805	31	0.30105	042	20
32	672 9.65003	25 20	467 9.95167	6	931	9.69837 9.69868	32	0.30103	028	28
33	698 9.65029	25	454 9.95160	76	967	9.69868	31 32	0.30132	013	27
34	724 9.05054	25	441 9.95154	6	50004	9.69900	32		1.99999	26
85 36	44750 9. 65079 776 9.65104	25	89428 9.95148 415 9.95141	7	50040 076	9.69932	31	0.30068	1.9984 970	25 24
37	802 9.65130	26	402 0.05135	6	113	0.00005	32	0.30037 0.30005	955	23
38	828 9.65155	25 25	389 9.95129	6	149	9.69995 9.70020	31 32	0.29974	94I	22
39		-5 25	370 9.95122	6	185	9.70058	31	0.20042	926	21
40	44880 9.65205	25	89363 9.95116	6	50222	9.70089	32	0.20011	1.9912	80
41 42	906 9.65230 932 9.65255	25	350 9.95110 337 9.95103	7	258 295	9.70121 9.70152	31	0.20870	897 883	19 18
43	932 9.65255 958 9.65281	26	337 9.95103 324 9.95097	6	331	9.70154	32	0.29816	868	17
44	984 9.65306	25 07	311 9.95090	7	368	9.70215	31	0.20785	854	16
45	45010 9.65331	25 25	89298 9.95084	6	50404	9.70247 9.70278	32	0.29753	1.9840	15
46	030 9.05350	25 25	285 9.95078	7	441	9.70278	31 31	0.20722	825	14
47 48	062 9.65381 088 9.65406	25	272 9.95071 259 9.95065	6	477	9.70309 9.70341	32	0.2000I 0.20050	811 797	13
49	114 9.65431	25	245 9.95059	6	514 550	9.70341	31	0.29628	782	11
50	45140 9.65456	25 07	89232 9.95052	7	50587	0.70404	32	0.29596	1.9768	10
51	166 9.6548 1	25 25	219 9.95046	67	623	9.70435	31 31	0.20505	754	9 8
52	192 9.65506 218 0.65531	-5 25	206 9.95039	6	660	9.70400	32	0.20534	740	
53 54	218 9.65531 243 9.65556	25	193 9.95033 180 9.95027	6	696 733	9.70498 9.70529	31	0.29502	725 711	76
55	45269 9.65580	24	89167 9.95020	7	50769	9.70529	31	0.20440	1.9697	5
56	205 0.05005	25	153 9.95014	6	806	9.70592	32	0.29408	683	4
57	321 9.65630	25 25	140 9.95007	7	843	9.70623	31	0.20377	669	3
58	347 9.05055	25	127 0.05001	6	879	9.70654 9.70685	31 31	0.20340	654	2
59 60	373 9.05080 399 9.05705	25	114 9.94995 101 9.94988	7	916	9.70685	32	0.20315	640 626	I 0
	כיוכייע ידכ		· · · · · · · · · · · · · · · · · · ·	·	953	9.10121	-	0.29203		
	Nat. Cos Log.	d.	Nat. Sin Log.	d.	Nat. C	ot Log.	c.d.	Log.Ta	n Nat.	1
		-	8.							

63°

ł

I

27°

1	Nat. S	in Log.	d.	Nat. C	OS Log	d.	Nat T	an Log.	c.d.	Log C	ot Nat	
0	45399	9.65703		89101	9.94988	1	50953	9.70717		0.20283		60
I	425	9.65729	24 25	087	9.94982	6	989	9.70748	31 31	0.20252	612	
2	451 477	9-05754	25	074 061	9-94975 9-94969	7 6	51026 063		31	0.20221	598	59 58
4	503	9.65779 9.65804	25	048	9.94962	7	003	9.70810 9.70841	31	0.29190 0.29159	584 570	57 56
5	45529	0.65328	24	89035	9.94956	6	51136	9.70873	32	0.20127	1.9556	55
6	554	9.65853	25 25	021	9.94949	76	173	0.70004	31 31	0.20000	542	54
7 8	580 606	9.65878 9.65902	24	008 88995	9-94943 9-94930	7 6	209 246	9.70935 9.70966	31	0.2005	528 514	53 52
9	632	9.65927	25 05	981	9.94930		283	9.70997	31	0.20003	500	51
10	45658	9.65952	25 24	88968	9-94923	7	51319	9.71028	31 31	0.28072		30
II 12	684 710	9.65976 9.66001	25	955	9.94917	6	356		31	0.28041	472	49
13	736	0.66025	24	942 928	9-94911 0-04004	7	393 430	9.71090 9.71121	31	0.28870	458 444	48 47
14	762	9.66050	25 25	915	9-94904 9-94898	6 7	467	9.71153	32	0.28847	430	46
15	45787	9.66073	24	88002	9.94891	6	51503	9.71184	31 31	0.28816		45
16 17	813 839	9.66099 0.66124	25	888 875	9-94885 9-94878	7	540 577	9.71215 9.71240	31	0.28785 0.28754	402 388	44 43
18	865	9.66148	24 25	862	0.04871	76	614	9.71277	31	0.28723	375	42
19	891	9.66173	-5 24	848	9.94865	7	651	9.71308	31 31	0.28692	361	4 I
20 21	45917 942	9.66197 0.66221	24	88835 822	9.94858	6	51688	9.71339	31	0.28661		40
22	968	0.66246	25	808	9.94852 9.94845	7	724 761	9.71370 9.71401	31	0.28630 0.28599	333 319	39 38
23	994	9.66270	24 25	795	0.04830	6 7	798	9.71431	30 31	0.28500	306	37
24 25	46020	9.66295	24	782	9.94832	6	835	9.71462	31	0.28538	292	36
26	46046 072	9.66319 0.66343	24	88768 755	9.94826 9.94819	7	51872	9.71493 9.71524	31	0.28507 0.28476	1.9278 265	35 34
27	097	9.66343 9.66368	25	735	0.04813	6	946	9.71555	31	0.28445	251	33
28	123	9.66392	24 24	728	9.94800	7 7	983	9.71555 9.71580	31 31	0.28414	237	32
<u>29</u> 30	149 46175	9.66416	25	715 88701	9-94799	6	52020		31	0.28383	223	31 80
31	201	9.66441 9.66465	24	688	9-94793 9-94780	7 6	52057 094	9.71 64 8 9.71679	31	0.28352 0.28321	1.9210 196	3U 29
32	226	0.66480	24 24	674	9.94780		131	9.71709	30 31	0.28291	183	28
33 34	252 278	9.66513 9.66537	24	661 647	9-94773	7 6	168	9.71740	31	0.28260	169	27
35	46304	9.66562	25	88634	<u>9-94707</u> 9-94760	7	205 52242	<u>9.71771</u> 9.71802	31	0.28229	155	25
36	330	9.00580	24	620	9-94753	7 6	279	0.71833	31	0.28167	1.9142	24
37	355	0.00010	24 24	607	9-94747	7	316	0.71863	30 31	0.28137	115	23
38 39	381 407	9.66634 9.66658	24	593 580	9-94740 9-94734	6	353 390	9.71894 9.71925	31	0.28100 0.28075	101 088	22 21
40	46433	0.66682	24	88566	9-94727	7	52427		30		1.9074	20
4 I	458 484	9.66706	24 25	553	9.94720	7 6	464	9.71955 9.71986	31	0.28014	061	19
42		9.66731	24	539 526	9-94714	7	501	9.72017	31 31	0.27983	047	18
43 44	510 536	9.66755 9.66779	24	512	9-94707 9-94700	7	538 575	9.72048 9.72078	30	0.27952 0.27922	034 020	17 16
45	46561	0.66803	24 24	88499	9.94694	6	52613	9.72109	31	0.27801	1.9007	15
46	587	9.66827	24	485	0.04687	7 7	650	9.72140	31 30	0.27860	1.8993	14
47 48	613 639	9.66851 9.66875	24	472 458	9.94680 9.94674	6	687 724	9.72170 9.72201	31	0.27830	980 967	13 12
49	664	9.66899	24 02	445	9.94667	7	761	9.72231	30	0.27769	953	II
50	46690	9.66922	23 24	88431	9.94660	76	52798	9.72262	31 31	0.27738	1.8940	10
51 52	716 742	9.66946 9.66970	24	417 404	9-94654 9-94647	7	836	9.72293	30	0.27707	927	8
53	767	9.66994	24	390	9.94640	Ž	873 910	9.72323 9.72354	31	0.27677 0.27646	913 900	
54	793	9.67018	24 24		9.94634	6 7	947	9.72384	30 31	0.27616	887	7 6
55	46819	9.67042	24	88363	9.94627	7	52985	9.72415	30	0.27585	1.8873	5
56 57	844 870	9.67006 9.67090	24	349 336	9.94620 9.94614	6	53022 059	9.72445 9.72470	31	0.27555 0.27524	860 847	43
58	896	9.67113	23 24	322	9.94607	7	039	9.72500	30	0.27524	834	2
58	921	9.67137 9.67161	24	308	9.94600	7 7	134	9.72537	31 30	0.27463	820	I 0
	947	-		295	9-94593		171	9.72567	1	0.27433	807	<u>.</u>
	Nat. C	OS Log.	d.	Nat. S	in Log	d.	Nat. C	ot Log.	c.d.	Log. T a	I n Nat.	1

62°

G	00	
Z	0	

<pre> / 0 1 2 3 4 5 6 7 8 9 10 11 12 13 </pre>	Nat. Sin Log 46947 9.67161 973 9.67185 999 9.67285 47024 9.67233 050 9.67250 47076 9.67280 101 9.67350 127 9.67350 128 9.67350 128 9.67350 129 9.67341 229 9.67441 225 9.67445 229 9.67445 229 9.67445 235 9.67455 235 9.67455 235 9.67455 27755 267455 267455 2775	24 23 24 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 24 23 24 24 23 24 24 23 24 24 24 24 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	Nat. Cos Log 88295 9.94503 281 9.94579 267 9.94580 254 9.94577 88226 9.94577 88226 9.94570 213 9.94570 185 9.94540 172 9.94540 172 9.94540 144 9.94519 130 9.94505	6 776 7776 777777777777777777777777777	Nat. Tan Log 53171 9.72507 208 9.72508 246 9.72628 283 9.72659 320 9.72659 53358 9.72750 395 9.72750 432 9.72780 479 9.72811 507 9.72841 53545 9.72872	31 30 31 30 31 30 30 31 30	0.27433 0.27402 0.27372 0.27372 0.27311 0.27311 0.27250 0.27250 0.27220 0.27189 0.27159	1.8807 794 781 768 755 1.8741 728 715 702	60 59 58 57 55 55 54 53 52
1 2 3 4 5 6 7 8 9 10 11 12	973 9.67188 999 9.67230 999 9.67230 050 9.67230 101 9.67330 101 9.67330 102 9.67330 103 9.67330 103 9.67330 105 9.67330 105 9.67330 107 9.67330 108 9.67330 239 9.67445 281 9.67445 281 9.67445 281 9.67445 281 9.67445 281 9.67445 281 9.67445	23 24 24 23 24 23 24 23 24 23 24 23 24 23 24	281 9.94587 267 9.94580 254 9.94573 240 9.94573 199 9.94540 185 9.94540 172 9.94540 172 9.94540 173 9.94540 174 9.94513	7767776777	208 9.72598 246 9.72628 383 9.72629 320 9.72689 53358 9.72720 395 9.72750 432 9.72780 470 9.72811 507 9.72841	30 31 30 31 30 30 31 30	0.27402 0.27372 0.27341 0.27311 0.27280 0.27250 0.27250 0.27220 0.27189	794 781 768 755 1.8741 728 715 702	59 58 57 56 55 54 53
2 3 4 5 6 7 8 9 10 11 12	999 9.67728 47024 9.07733 050 9.677280 101 9.67353 127 9.67353 178 9.67353 178 9.67353 178 9.67354 229 9.67354 239 9.67453 239 9.67445 281 9.67445 366 9.67493 366 9.67493	23 24 24 23 24 23 24 23 24 23 24 23 24 23 24	277 9.94580 254 9.94573 240 9.94576 213 9.94560 213 9.94550 185 9.94540 172 9.94540 172 9.94540 172 9.94540 174 9.94519 130 9.94513	767776777	246 9.72028 283 9.72659 320 9.72659 53358 9.72720 395 9.72750 432 9.72750 470 9.72811 507 9.72841	30 31 30 31 30 30 31 30	0.27372 0.27341 0.27311 0.27280 0.27250 0.27250 0.27220 0.27189	781 768 755 1.8741 728 715 702	57 56 55 54 53
4 5 6 7 8 9 10 11 12	47024 9.67733 050 9.67280 47076 9.67280 101 9.67380 127 9.67380 128 9.67350 129 9.67350 129 9.67350 229 9.67450 229 9.67440 235 9.67440 306 9.67460 306 9.67450 268 0.67740 306 9.67740 306 9.67740 307 9.67740 306 9.67740 306 9.67740 306 9.67740 306 9.67740 307 9.77740 306 9.67740 307 9.77740 307 9.77740 307 9.77740 307 9.777740 307 9.77777777777777777777777777777777777	24 24 23 24 23 24 23 24 23 24 23 24 23 24	254 9.94573 240 9.94507 88226 9.94560 213 9.94553 199 9.94540 185 9.94540 172 9.94533 88158 9.94526 144 9.94519 130 9.94519	7776777	283 9.72659 320 9.72689 53358 9.72720 395 9.72750 432 9.72780 470 9.72811 507 9.72841	30 31 30 30 31 30	0.27341 0.27311 0.27280 0.27250 0.27250 0.27280 0.27189	768 755 1.8741 728 715 702	57 56 55 54 53
4 5 6 7 8 9 10 11 12	050 9.07250 47076 9.67380 101 9.67380 127 9.67397 153 9.67374 47204 9.67374 229 9.67374 229 9.674374 235 9.67440 306 9.67460 306 9.67460 306 9.67460	24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24	240 9.94507 88226 9.94550 213 9.94553 199 9.94540 185 9.94540 172 9.94533 88158 9.94540 144 9.94519 130 9.94519	7776777	53358 9.72720 395 9.72750 432 9.72780 470 9.72811 507 9.72841	31 30 30 31 30	0.27311 0.27280 0.27250 0.27250 0.27220 0.27189	1.8741 728 715 702	55 54 53
6 7 8 9 10 11 12	101 9.67303 127 9.67354 153 9.67354 178 9.67354 47204 9.67395 239 9.67445 281 9.67445 281 9.67445 366 9.67493 47332 9.67453	23 24 23 24 23 24 23 24 23 24 23 24	213 9.94553 199 9.94540 185 9.94540 172 9.94533 88158 9.94520 144 9.94519 130 9.94519	776777	53358 9.72720 395 9.72750 432 9.72780 470 9.72811 507 9.72841	30 30 31 30	0.27250 0.27220 0.27189	728 715 702	54 53
7 8 9 10 11 12	127 9.67337 153 9.67356 178 9.67374 47204 9.67396 229 9.67443 255 9.67443 281 9.67405 306 9.67493 306 9.67493 306 9.677513 358 0.677533	24 23 24 23 24 23 24 23 24 23	199 9.94540 185 9.94540 172 9.94533 88158 9.94520 144 9.94519 130 9.94513	76 77 77	470 9.72811 507 9.72841	30 31 30	0.27220	715 702	53
9 10 11 12	153 9.67350 178 9.67374 47204 9.67398 229 9.67421 255 9.67445 281 9.67492 306 9.67492 47332 9.67515 358 9.67515	24 24 23 24 23 24	185 9.94540 172 9.94533 88158 9.94526 144 9.94519 130 9.94513	777	470 9.72811 507 9.72841	30	0.27180	702	
10 11 12	178 9.67374 47204 9.67398 229 9.67421 255 9.67445 281 9.6746 306 9.67492 47332 9.67515 358 9.67515	24 23 24 23 24	172 9.94533 88158 9.94526 144 9.94519 130 9.94513	7	507 9.72841			20.	
II 12	229 9.67421 255 9.67445 281 9.67465 306 9.67492 47332 9.67515 358 9.67515	23 24 23 24	144 9.94519 130 9.94513	7	52545 0.72872			689	51
12	255 9.67445 281 9.67465 306 9.67492 47332 9.67515 358 9.67515	24 23 24	130 9.94513		1 22242 2.1-01-	30 30		1.8676	50
	306 9.67492 47332 9.67515 358 9.67535		117 9.94506	6	582 9.72902 620 0.72032	30	0.27008	663 650	49 48
	306 9.67492 47332 9.67515 358 9.67535			7	620 9.72932 657 9.72963	31	0.27037	637	47
14	358 0.07530		103 9.94499	7	694 9.72993	30	0.27007	624	46
15	358 9.67539	24	88089 9.94492	7	53732 9.73023	- 30 31		1.8611	45
16			075 9.94485	76	769 9.73054 807 9.83084	30	0.26946	598	44
17 18	383 9.07502 409 9.07580	24	062 9.94479	7	807 9.83084 844 9.73114	30	0.26916	585 572	43 42
19	434 9.07000		034 9-94405	7	882 9.73144	30	0.26856	559	41
80	47460 0.67633	- 24	88020 9.94458	7	53920 9.73175	31	0.26825	1.8546	40
21	486 9.07050	23	006 9.94451	76	957 9-73205	30 30	0.20795	533	39
22 23	511 9.67680		87993 9-94445 979 9-94438	7	995 9.73235 54032 9.73205	30	0.20705	520 507	38 37
24	562 9.67720	-3	965 9.94431	7	070 9.73295	30	0.20705	495	36
25	47588 9.67750	- 24	87951 9.94424	7	54107 9.73320	31	0.26674	1.8482	85
26	014 0.07773	-3	937 9-94417	777	145 0.73350	30	0.26644	469	34
27 28	639 9.67790 665 9.67820	24	923 9.94410	6	183 0.73380 220 0.73410	30	0.20014 0.20584	456	33
20	690 9.67843	-3	909 9.94404 896 9.94397	7	220 9.73416 258 9.73446	30	0.20554	443 430	32 31
30	47716 0.67860	23	87882 9.94390	7	54296 9.73476	30		1.8418	30
31	741 9.67890		868 9.94383	777	333 9-73507	31 30	0.26493	405	29
32	707 9.07913	1 22	854 9-94376	7	371 9.73537	30	0.26463	392	28
33 34	793 9.6793 818 9.6795 9	23	840 9.94369 826 9.94362	7	409 9.73507 446 9. 73597	30	0.26433 0.26403	379 367	27 26
85	47844 9.67982	23	87812 9.94355	7	54484 0.73627	30		1.8354	25
36	869 9.68000		798 9.94349	67	522 0.73057	30 30	0.26343	341	24
37	895 9.68020	00	784 9.94342	2	560 9.73687	30	0.26313	329	23 22
38 39	920 9.6805 2 946 9.6807 5		770 9.94335 756 9.94328	7	597 9-73717 635 9-73747	30	0.20263	316 303	21
40	47971 9.68098	23	87743 9.94321	7		30	0.26223	the second se	20
41	997 0.68121	23	729 9.94314	7	711 9.73807	30 30	0.26193	278	19
42	48022 9.6814 048 9.6816	23	715 9.94307	77	748 0.73837	30	0.20103	265	18
43 44	048 9.6816 073 9.6819	23	701 9.94300 687 9.94293	7	786 9.73867 824 9.73897	30	0.20133	253 240	17 16
45	48000 0.68213	23	87673 9.94286	7	54862 9.73927	- 30	0.26073	1.8228	15
46	124 9.6823	24	659 0.04270	76	900 9.73957	30 30	0.26043	215	14
47	150 0.08200	22	645 9.94273	7	938 9-73987	30	0.20013	202	13
48 49	175 9.68283 201 9.68305		631 9.94260 617 9.94259	7	975 9.74017 55013 9.74047	30	0.25983	190 177	12 11
50	48226 9.68328	23	87603 9.94252	7	55051 9.74077	30	0.25923		10
51	252 9.68351	23	589 9.94245	7	089 9.74107	30	0.25803	152	
52	277 9.68374	23	575 9-94238	777	127 9.74137	30 29	0.25863	140	9 8
53 54	303 9.68397 328 9.68420	1 00	561 9.94231 546 9.94224	7	165 9.74166 203 9.74196	30	0.25834 0.25804	127 115	7 6
55			546 9.94224 87532 9.94217	7	55241 9.74220	30		1.8103	5
56	48354 9.68443 379 9.68466	23	518 9.94210	7	279 9.74250	30	0.25744	09 0	4
57	405 9.68489	23	504 9.94203	77	317 9.74286	30 30	0.25714	078	3
58	430 9.68512	22	490 9.94190	7	355 9.74310	29	0.25684	065	2 1
59 60	456 9.68534 481 9.68557	23	476 9.94189 462 9.94182	7	393 9-74345 431 9-74375	30	0.25055	053 040	0
						<u>'</u>			
	Nat. Cos Log	. d.	Nat. Sin Log.	d.	Nat. Cot Log	.c.d.	Log. Ta	n Nat.	'

61°

Digitized by Google

ļ

-		$\mathbf{\Omega}$
~	<u> </u>	~
~	ιēl	

1	N. Cim -				N Terra	Γ.			
_	Nat. Sin Log.	d.	Nat. Cos Log.	. d.	Nat. I an Log	c.d.			
0	48481 9.68557 506 9.68580	23	87462 9.94182	7	55431 9-74375	30	0.25625	1.8040 028	60
2	532 9.68603	23	448 9.94175 434 9.94108	7	469 9.74403 507 9.74435	30	0.25595 0.25565	020	59 58
3	557 9.68625	22 23	420 9.94101	777	545 9-74463	30	0.25535	003	57
4	583 9.68648	23	406 9.94154	7	583 9-74494	30	0.25500	1.7991	56
5 6	48608 9.68671 634 9.68694	23	87391 9.94147	7	55621 9.74524	30	0.25470	1.7979 966	55
78	650 0.68716	22	377 9-94140 363 9-94133	7	659 9.74554 697 9.74583	29	0.25440	954	54 53
	684 9.68739	23	349 9.94120	77	736 9.74013	30 30	0.25387	942	52
9	710 9.08702	22	335 9.94119	17	774 9.74643	- 30	0.25357	930	51
10 11	48735 9.68784 761 9.68807	23	87321 9.94112	7	55812 9.74673	29	0.25327 0.25298	1.7917	50
12	786 0.68820	22	306 9.94105 292 9.94098	7	850 9.74702 888 9.74732	30	0.25208	905 893	49 48
13	811 0.68852	23	278 9.94090	8	926 9.74702	30	0.25238	881	47
14	837 9.68875	22	264 9.94083	17	964 9.74791	- 30	0.25209	868	46
15 16	48862 9.68897 888 0.68020	23	87250 9.94070	7	56003 9.74821	30		1.7856	45
17	888 9.68920 913 9.68942	22	235 9.94069 221 9.94062	7	041 9.74851 079 9.74880	29	0.25149 0.25120	844 832	44 43
18	938 9.08905	23	207 9.94055	7	117 9.74910	30	0.25090	820	42
19	964 9.68987	23	193 9.94048	777	156 9.74939	29 30	0.25061	808	41
20	48989 9.69010	22	87178 9.94041	17	56194 9.74969	29	0.25031	1.7796	40
2I 22	49014 9.69032 040 9.69055	23	164 9.94034 150 9.94027	7	232 9.74998 270 9.75038	30	0.25002	783 771	39 38
23	065 9.69077	22	136 9.94020	78	309 9.75058	30	0.24042	759	37
24	090 9.69100	23	121 9.94012		347 9.750	- 30	0.24913	747	36
25	49116 9.69122	22	87107 9.94005	777	56385 9.75117	20		1.7735	85
26 27	141 0.00144 166 0.00107	23	093 9.03998 079 0.03001	17	424 9.75146	30	0.24854	723 711	34
28	192 0.60180	22	079 9.93991 064 9.93984	7	462 9.75170 501 9.75205	29		699	33 32
29	217 9.69212	23	050 9.93977	7	539 9.75235	30	0.24795	687	31
80	49242 9.69234	22	87036 9.93970	7	56577 9.75264	30	0.24730	1.7675	80
31	268 9.69250	23	021 9.93963	8	616 9.75294	20	0.24706	663	29 28
32 33	293 9.69279 318 9.69301	22	007 9-93955 86993 9-93948	7	654 9.75323 693 9.75353	مُما	0.24677	651 639	20
34	344 9.69323	22	978 9.93941	7	693 9.75353 731 9.75382	29	0.24618	627	26
85	49369 9.69345 394 9.69368	22	86964 9.93934	2	56769 9.75411	30	0.24589	1.7615	25
36	394 9.69368	22	949 9-93927	777	808 9.75441	l ān	0.24550	603	24
37 38	419 9.69390 445 9.69412	22	935 9.93920 921 9.93912	8	846 9.75470 885 9.75500	30	0.24530	591 579	23 22
39	470 9.69434	22	906 9.93905	7	923 9.75529		0.24471	579 567	21
40	49495 9.69456	22	86892 0.03808	777	56062 0.75558	30	0.24442		20
41	521 9.69479	22	878 0.0380I	7	57000 9.75588 039 9.75617	29	0.24412	544	19 18
42 43	546 9.69501 571 9.69523	22	863 9.93884 849 9.93876	8	039 9.75017 078 9.75047	30	0.24383 0.24353	532 520	18 17
44	596 9.69545	22	834 9.93869	7	116 9.75676	29	0.24324	508	16
45	49622 0.60567	22	86820 9.93862	7	57155 9.75705	29		1.7496	15
46	647 9.69589	22	805 9.93855	78	193 9.75735	30	0.24205	485	14
47 48	672 9.69611 697 9.69633	22	791 9.93847 777 9.93840	7	232 9.75764 271 9.75793	29	0.24236	473 461	13 12
49	723 9.69655	22	777 9.93840 762 9.93833	7	271 9.75793 309 9.75822	29	0.24178	449	11
50	49748 9.69677	22	86748 0.03826	7	57348 9.75852	30		I.7437	10
51	773 9.69699	22	733 0.03810	78	386 9.75881	29	0.24119	426	8
52 53	798 9.69721 824 9.69743	22	719 9.93811 704 9.93804	7	425 9.75910	29	0.24090 0.24001	414 402	8
53 54	824 9.69743 849 9.69765	22	690 9.93797	7	464 9.75939 5°3 9.75969	30	0.24031	391	6
55	49874 9.69787	22	86675 0.03780	8	57541 9.75998	29		1.7379	5
56	899 9.69809	22	661 9.93782	77	580 0.70027	29	0.23973	367	4
57	924 9.69831 950 9.69853	22	640 0.03775	7	619 0.76050	30	0.23944	355	3
58 59	950 9.69853 975 9.69875	22	632 9.93768 617 9.93760	8	657 9.76086 696 9.76113	29	0.23014	344 332	ī
59 60	50000 9.69897	22	603 9.93753	7	735 9.70144	29	0.23850	321	Ō
	Net Cost	4	Net Sin T	4	Net Cott	ام م		D Net	11
	THAL OUS LOG	. a.	Nat. Sin Log	. a.	In at. OULLOg	.,c.d.	LOG. 1 9	urrinat.	
		_		_					

60°

30°

'	Nat. Sin Log.	d.	Nat. Cos Log.	. d.	Nat.T	anLog.	c.d.	Log. Co	t Nat.	
0	50000 9.69897	22	86603 9.93753	7	57735	9.76144	29	0.23850		60
1 2	025 9.09919 050 9.09941	22	588 9.93746	78	774	9.76173 9.76202	29	0.23827	309	59 58
3	076 9.69963	22	573 9-93738 559 9-93731	7	851	9.76231	29	0.23798	297 286	50
4	101 9.69984	21	544 9.93724	7	890	9.76261	30	0.23739	274	56
5	50126 9.70006	22	86530 9.93717	7	57929	9.76290	29	0.23710		55
6	151 9.70028	22	515 9.93709	87	968	9.76319	29 29	0.23681	251	54
78	176 9.70050	22	501 9.93702		58007	9.76348	29	0.23652	239	53
8	201 9.70072	21	486 9.93695	78	046	9.76377	29	0.23623	228	52
10	227 9.70093	22	471 9.93687	7	085	9.76406	29	0.23594	216	51
II	50252 9.70115 277 9.70137	22	86457 9.93680 442 9.93673	7	58124	9.76435 9.76464	29	0.23505		50
12	302 9.70159	22	442 9.93073 427 9.93665	8	201	9.76493	29	0.23530	193 182	49 48
13	327 9.70180	21	413 9.93658	78	240	9.76522	29	0.23478	170	47
14	352 9.70202	22	398 9.93650	2	279	9.76551	29	0.23449	159	46
15	50377 9.70224	21	86384 9.93643	7	58318	9.76580	29 29	0.23420	1.7147	45
16	403 9.76245	22	369 9.93636	78	357	9.70609	30	0.23391	136	44
17 18	428 9.70267	21	354 9.93628	7	396	9.76639	29	0.23361	124	43
18	453 9.70288 478 9.70310	22	340 9.93621 325 9.93614	7	435	9.76668 9.76697	29	0.23332	113	42
20	50503 9.70332	22	86310 9.93606	8	474	9.70725	28	0.23303	1.7000	41 40
21	528 9.70353	21	295 9.93599	78	50513	9.70725	29	0.23275	079	39
22	553 9.70375	22	281 9.93591		591	9.76783	29	0.23217	067	38
23	578 9.70390	21	266 9.93584	7	631	9.76812	29 29	0.23188	056	37
24	603 9.70418	21	251 9.93577	7 8	670	9.76841	29	0.23159	045	36
25	50628 9.70439	22	86237 9.93569	7	58709	9.76870	20	0.23130	1.7033	35
26	654 9.70461	21	222 9.93562	8	748	9.76899	29	0.23101	022	34
27 28	679 9.70482 704 9.70504	22	207 9-93554 192 0-03547	7	787 826	9.76928	29	0.23072	011	33
20	704 9.70504 729 9.70525	21	192 9.93547 178 9.93539	8	865	9.76957 9.76986	29	0.23043 0.23014	988	32 31
30	50754 9.70547	22	86163 9.93532	7	58905		29		1.6977	30
31	779 9.70508	21	148 9.93525	7	944	9.77015 9.77044	29	0.22050	965	20
32	804 9.70590	22 21	133 9.93517	8	983	9.77073	29	0.22027	954	28
33	829 9.70611	22	119 9.93510	78	59022	9.77101	20	0.22899	943	27
34	854 9.70633	21	104 9.93502	7	001	9.77130	29	0.22870	932	26
35	50879 9.70654	21	86089 9.93495	8	59101	9.77159	20		1.6920	25
36	904 9.70675 929 9.70697	22	074 9.93487	7	140	9.77188	29	0.22812	909 898	24
37 38	929 9.70697 954 9.70718	21	059 9.93480 045 9.93472	8	179 218	9.77217 9.77240	29	0.22783	887	23
39	979 9.70739	21	030 9.93465	7	258	9.77274	28	0.22720	875	21
40	51004 9.70761	22	86015 9.93457	8	59297	9.77303	29		1.6864	20
41	029 9.70782	2I 2I	000 9.93450	78	336	9.77332	29	0.22668	853	19
42	054 9.70803	21 21	85985 9.93442	7	376	9.77361	29 20	0.22639	842	18
43	079 9.70824	22	970 9.93435	8	415	9.77390	28	0.22010	831	17
44	104 9.70846	21	956 9.93427	7	454	9.77418	29	0.22582	820	16
45 46	51129 9.70867 154 9.70888	21	85941 9.93420 926 9.93412	8	59494	9.77447	29		1,6808	15
40	179 9.70909	21	926 9.93412 911 9.93405	78	533 573	9.77470 9.77505	29	0.22524 0.22405	797 786	14 13
48	204 0.70031	22	896 9.93397	-	612	9.77533	28	0.22407	775	12
49	229 9.70952	21	881 9.93390	78	651	9.77562	29	0.22438	764	II
50	51254 9.70973	2I 2I	85866 9.93382		59691	9.77591	29	0.22400	1.6753	10
51	279 9.70994	21 21	851 9.93375	78	730	9.77619	28 29	0.22381	742	9
52	304 9.71015	21	836 9.93367		770	9.77648	29	0.22352	731	8
53 54	329 9.71036 354 9.71058	22	821 9.93360 806 0.03352	78	809	9.77677	29	0.22323 0.22204	720	76
54 55		21	77000	8	59888	9.77706	28		709	5
56	51379 9.71079 404 9.71100	21	85792 9.93344 777 9.93337	7	59888	9-77734 9-77763	29	0.22200	687	4
57	429 9.71121	21	762 9.93329	8	967	0.77701	28	0.22200	676	3
58	454 9.71142	21	747 9.93322	78	60007	9.77820	29 29	0.22180	665	2
59 60	479 9.71163	21	732 9.93314	7	046	9.77849	28	0.22151	654	I
60	504 9.71184	2	717 9.93307	1	086	9.77877		0.22123	643	0
	Nat. Cos Log.	d.	Nat. Sin Log.	d.	Nat. C	ot Log.	c.d.	Log.Ta	n Nat.	1
_		-	-8	-		0	-	a		

59°

91	0
O.	L

,		in T				<u>31</u>			<u> </u>	- 0		r
		in Log.	d.	· · · · · · · · · · · · · · · · · · ·		. d.		anLog.	.d.			
0 1	51504 529	9.71184 9.71205	21	85717	9-93307 9-93299	8	60086 126	9.77877	29	0.22123	1.6643 632	6
2	554	9.71220	21	687	9.93299 9.93291	8	165	9.77900 9.77935	29	0.22004 0.22005	621	5
3	579	9.71247	2I 2I	672	9.93284	7 8	205	9.77963	28 29	0.22037	610	5
4	604	9.71268	21	657	9.93276	7	245	9.77992	28	0.22008	599	5
6	51628 653	9.71289 9.71310	21	85642	9.93209 9.93261	8	60284 324	9.78020 9.78049	29	0.21980	1.0588 577	5
7 8	678	9.71331	2I 2I	612	0.03253	8	364	0.78077	28	0.21023	566	5
	703	9.71352	21	597	9.93246	7 8	403	9.78077 9.78100	29 29	0.21804 0.21865	555	5
9 10	728	9.71373	20	582	9.93238	8	443	9.78135	28		545	5
II	51753 778	9.71393 9.71414	21	85567 551	9.93230 9.93223	7	60483 522	9.78163 9.78192	29	0.21837 0.21808	1.6534 523	5
12	803	9.71435	21 21	536	9.93215	8 8	562	9.78220	28 29	0.21780	512	4
13	828	9.71456	21	521	9.93207	。 7	602	9.78249	29	0.21751	501	4
14 15	_	9.71477	21	506	9.93200	8	642	9.78277	29	0.21723	490	4
10 16	51877	9.71498	21	85491 476	9.93192 9.93184	8	60681 721	9.78300 9.78334	28	0.21604	1.6479 469	4
17	927	9.71539	20 21	461	9.93177	7 8	761	9.78363	29 28	0.21637	409	4
18	952	9.71560	21	446	9.93169	8	801	9.78391	28	0.21609	447	4
19 20	977	9.71581	21	431	9.93161	7	841	9.78419	29	0.21581	436	4
21	52002 026	9.71602 0.71622	20	85416 401	9.93154 9.93140	8	60881 921	9.78448 9.78476	28	0.21552 0.21524	1.0420 415	43
22	051	9.71643	21 21	385	9.93138	8	960	9.78505	29 28	0.21405	404	3
23	076	9.71664	21	370	9.93131	7 8	61000	9.78533	20	0.21407	393	3
24 25	IOI	9.71685	20	355	9.93123	8	040	9.78562	28	0.21438	383	3
26	52126 151	9.71705 9.71720	21	85340	9.93115 9.93108	7 8	61080 120	9.78590 9.78618	28	0.21410 0.21382	1.0372 361	3 3
27	175	9.71747	2I 20	310	9.93100	8 8	160	9.78647	29 28	0.21353	351	3
28	200	9.71707	21	294	9.93092	8	200	9.78675	20	0.21325	340	3
29 30	225	9.71788	21	279	9-93084	7	240	9.78704	28	0.21200	329	3
3U 3I	52250 275	9.71809 9.71829	20	85264	9-93077 9-93069	8	61280 320	9.78732 9.78700	28	0.21268	1.0319 308	3
32	299	9.71850	21 20	234	9.93061	8 8	360	0.78780	29 28	0.21211	297	2
33	324	9.71870	21	218	9.93053	。 7	400	9.78817	28	0.21183	287	2
34 85	349	9.71891	20	203 85188	9.93040	8	440	9.78845	29	0.21155	276	2
3 6	52374 399	9.71911 9.71932	21	173	9.93038 9.93030	8	61480 520	9.78874 9.78902	28	0.21120	1.0205 255	2
37	423	9.71952	20 21	157	9.93022	8 8	561	9.78930	28 20	0.21070	244	2
38	448	9.71973	21	142	9.93014	7	601	9.78959	28	0.21041	234	2
39. 40	473	9.71994	20	127	9.93007	8	641	9.78987	28	0.21013	223	2
4I	52498 522	9.72014 9.72034	20	85112 096	9.92999 0.02001	8	61681 721	9.79015 9.79043	28	0.20985 0.20957	1.0212	1
42	547	9.72055	21 20	081	9.92983	8 7	761	9.79072	29 28	0.20028	191	I
43	572	9.72075 9.72090	21	066	9.92976 9.92968	8	801	9.79100	28	0.20000	181	II
44 45	597 52621	9.72116	20	85035	0.02000	8	842 61882	9.79128	28		170 1.6160	$\frac{1}{1}$
46	646	9.72137	21	020	0.02052	8	922	9.79156 9.79185	29	0.20815	1.0100	ľ
47	671	9.72157	20 20	005	9.92944	8 8	962	9.79213	28 28	0.20787	139	1
48 49	096	9.72177 9.72198	21	84989	9.92936 9.92929	7	62003		28	0.20759	128 118	II
50	52745	9.72218	20	<u>974</u> 84959	0.02021	8	043 62083	9.79269	28	0.20731		i
51	770	9.72238	20 21	943	9.92913	8 8	124	9.79297 9.79326	29 28	0.20074	097	
52	794	9.72259	21 20	928	9.92905	8	164	9.79354	28 28	0.20646	087	
53 54	819 844	9.72279 9.72299	20	913 897	9.92897 9.92889	8	204	9.79382	28	0.20618 0.20590	076 066	
54 55	52869	9.72320	21	84882	9.92881	8	245 62285	9.79410 9.79438	28	0.20502		-
56	893	0.72340	20 20	866	0.02874	7 8	325	9.79430	28	0.20502	1.0055 045	
57 58	918	0.72360	20 21	851	9.92800	8	366	9.79495	29 28	0.20505	034	
58	943 967	9.72381 9.72401	20	836 820	9.92858 9.92850	8	406	9.79523	28	0.20477	024 014	
59 60	992	9.72421	20	805	9.92650	8	446 487	9.79551 9.79579	28	0.20449	014	
-						_			•			÷

58°

Digitized by Google

.

32°

				08						_
1	Nat. Sin Log.	d.	Nat. COS Log.	. d.	Nat. T	anLog.	c.d.	Log. Co)t Nat.	
0	52992 9.72421	20	84805 9.92842	8	62487	9.79579	28	0.20431		60
1 2	53017 9.72441	20	789 9.92834 774 9.92826	8	527 568	9.79007	28	0.20303	1.5993 983	59 58
3	041 9.72461 066 9.72482	21	774 9.92820 759 9.92818	8	608	9-79635 9-79663	28	0.20337	903 972	57
4	091 9.72502	20	743 9.92810	8	649	9.79691	28 28	0.20309	962	56
5	53115 9.72522	20 20	84728 0.02803	78	62689	9.79719	20 28	0.20281	1.5952	55
6	140 9.72542 164 9.72502	20	712 9.92795	8	730	9-79747	29	0.20253	94I	54
78	164 9.72562 189 9.72582	20	697 9.92787 681 9.92779	8	770 811	9.79770	28	0.20224	931 921	53 52
9	214 9.72002	20	666 9.92771	8	852	9.79832	28	0.20168	911	51
10	53238 9.72022	20	84650 9.92703	8 8	62892	0.70860	28 28	0.20140	1.5900	50
11	263 9.72643	2I 20	635 9.92755	8	933	9.79888	28	0.20112	890	49
12	288 9.72663	20	619 9.92747	8	973	9.79910	28	0.20084	880 869	48
13 14	312 9.72683 337 9.72703	20	604 9.92739 588 9.92731	8	63014 055	9-79944 9-79972	28	0.20056	859	47 46
15	53361 9.72723	20	84573 9.92723	8	63095	0.80000	28	0.20000	1.5849	45
16	386 9.72743	20 20	557 9.92715	8 8	136	9.80028	28 28	0.19972	839	44
17	411 9.72763	20	542 9.92707	8	177	9.80050	28	0.19944	829	43
18	435 9.72783	20	526 9.92699	8	217	9.80084	28	0.19916 0.19888	818 808	42
19 20	460 9.72803	20	511 9.92691	8	258	9.80112	28	0.19860		41 40
21	53484 9-72823	20	84495 9.92683 480 9.92675	8	63299 340	9.80140 9.80168	28	0.19832	1.5798 788	39
22	509 9.72843 534 9.72803	20 20	464 9.92667	8	380	9.80195	27	0.19805	778	38
23	558 9.72883	19	448 9.92659	8	421	9.80223	28	0.19777	768	37
24	583 9.72902	20	433 9.92651	8	462	9.80251	28	0.19749	757	36
25 26	53607 9.72932 632 9.72942	20	84417 9.92643 402 9.92635	8	63503	9.80279 9.80307	28	0.19721 0.19693	1.5747 737	85 34
27	632 9.72942 656 9.72962	20	386 0.02027	8	584	0.80335	28	0.1905	727	33
28	681 9.7 2982	20 20	370 0.02010	8 8	625	9.80303	28 28	0.10037	717	32
29	705 9.73002	20	355 9.92011	8	666	9.80391	28	0.19609	707	31
80	53730 9.73022	19	84339 9.92603	8	63707	9.80419	28	0.19581	1.5697	30
31 32	754 9.73041 779 9.73061	20	324 9.92595 308 9.92587	8	748	9.80447 9.80474	27	0.19553 0.19520	687 677	29 28
33	779 9.73061 804 9.73081	20	292 9.92579	8	830	9.80502	28	0.19498	667	27
34	828 9.73101	20 20	277 9.92571	8	871	9.80530	28 28	0.19470	657	26
85	53853 9.73121	19	84261 9.92563	8	63912	9.80558	28	0.19442	1.5647	25
36	877 9.73140	20	245 9-92555	9	953	9.80580	28	0.19414	637	24
37 38	902 9.73160 926 9.73180	20	230 9.92540 214 9.92538	8	994 64035	9.80014	28	0.19380 0.19358	627 617	23 22
39	951 9.73200	20	198 9.92530	8	076	9.80642 9.80669	27	0.19331	607	21
40	53975 9.73219	19	84182 9.92522	8	64117	9.80697	28	0.10303	1.5597	20
41	54000 9.73239	20 20	167 9.92514	8	158	9.80725	28	0.19275	587	19
42	024 9.73259	19	151 9.92500	8	199	9.80753 9.80781	28	0.19247	577 567	18
43 44	049 9.73278 073 9.73298	20	135 9.92498 120 9.92490	8	240 281	0.80808	27	0.10219	557	17 16
45	54097 9.73318	20	84104 9.92482	8	64322	9.80836	28	0.10164	1.5547	15
46	122 9.73337	19 20	088 9.92473	8	363	9.80864	28 28	0.19130	537	14
47	146 9.73357	20	072 9.92405	8	404	9.80892	27	0.10108	527	13
48 49	171 9.73377 195 9.73390	19	057 9.92457 041 9.92449	8	446 487	9.80919 9.80947	28	0.19081 0.19053	517 5 07	12 11
50	54220 9.73416	20	84025 9.92441	8	64528	9.80975	28	0.10025	1.5497	10
51	244 9.73435	19	009 9.92433	8 8	569	9.81003	28 27	0.18007	487	9
52	²⁶⁹ 9.73455	20 19		9	610	9.81030	28	0.18070	477	8
53	293 9.73474	20	978 9.92410 962 9.92408	8	652	9.81058 9.81080	28	0.18942	468 458	76
54 55	317 9-73494	19		8	693		27	0.18914	45º 1.5448	5
56	54342 9.73513 3 ⁶⁶ 9.73533	20	83946 9.92400 930 9.92392	8	64734 775	9.81113 9.81141	28	0.18859	438	4
57	391 9.73552	19 20	915 9.92384	8 8	817	9.81169	28 27	0.18831	.428	3
58	415 9.73572	10	899 9.92370	9	858	9.81196	28	0.18804	418	2
58 60	440 9.7359 1 464 9.73611	20	883 9.92307 867 9.92359	8	899 941	9.81224 9.81252	28	0.18770 0.18748	408 399	I 0
	404 9.73011									
	Nat. Cos Log.	d.	Nat. Sin Log.	d.	Nat. C	ot Log.	c.d.	Log. Ta	n Nat.	1
_					1 0					

57°

<u>33°</u>

1								1			-
	Nat. Sin Log	. d.	Nat. C	OS Log.	d.	Nat.	an Log.	c.d.	Log. C	OT Nat.	
0 I	54464 9.73611	19	83867	9.92359	8	64941	9.81252	27	0.18748	I.5399	60
2	488 9.73630 513 9.73650	20	851 835	9.92351 9.92343	8	982 65024		28	0.18721 0.18693	389 379	59 58
3	537 0.73000	19 20	819	9.92335	8	065	9.81335	28	0.18005	369	57
4	501 9.73089	19	804	9.92326	9 8	100	9.81362	27	0.18665 0.18638	359	56
5	54586 9.73708	19	83788	9.92318	8	65148	9.81390	28	0.18610		55
	610 9.73727 635 9.73747	20	772	9.92310 9.92302	8	189 231	9.81418 9.81445	27	0.18582 0.18555	340	54
7 8	659 9.73700	19	740	9.92203	8	272	9.81473	28	0.18527	330 320	53 52
9	083 9.73785	19	724	9.92285	8	314	9.81500	27	0.18500	311	51
10	54708 9.73805	19	83708	9.92277	8	65355	9.81528	28	0.18472		50
11 12	732 9.73824 756 9.73843	19	692 676	9.92269 9.92260	8	397	9.81550 9.81583	27	0.18444	291 282	49
13	781 0.73863	20	660	9.92252		438 480	9.81011	28	0.18417 0.18380	202	48 47
14	805 9.73882	19	645	9.92244	8	521	9.81638	27 28	0.18362	262	46
15	54829 9.73901	19	83629	9.92235	9 8	65563	9.81666		0.18334	1.5253	45
16 17	854 9.73921	19	613	9.92227	8	604	9.81093	27 28	0.18307	243	44
18	878 9.73940 902 9.73959	19	597 581	9.92219 9.92211	8	646 688	9.81721 9.81748	27	0.18279	233 224	43 42
19	927 9-73978	19	565	9.92202	9	729	9.81770	28	0.18224	214	41
20	54951 9.73997	19	83549		8	65771	0.81803	27	0.18197	1.5204	40
21	975 9.74017	20 19	533	9.92194 9.92186	8	813	9.81831	28 27	0.18100	195	
22	999 9.74036	19	517	9.92177	8	854	9.81858	28	0.18142	185	39 38
23 24	55024 9.74055 048 9.74074	19	501 485	9.92169 9.92161	8	896 938	9.81886 9.81913	27	0.18114	175 166	37 36
25	55072 9.74093	19	83469	9.92152	9	65980	9.81941	28	0.18059	1.5156	85
26	097 974113	20	453	9.92144	8 8	66021	9.81968	27	0.18032	147	34
27	121 9.74132	19 19	437	9.92136		063	0.81000	28 27	0.18004	137	33
28 29	145 9.74151 169 9.74170	19	421	9.92127	8	105	9.82023	28	0.17977	127	32
80		19	405	9.92119	8	147	9.82051	27	0.17949	118	31
31	55194 9.74189 218 9.74208	19	83389	9.92111 9.92102	9	66189 230	9.82078 9.82106	28	0.17022 0.17804	1.5108	80 20
32	242 9.74227	19	356		8 8	272	9.82133	27 28	0.17867	089	28
33	266 9.74246	19 19	340	9.92094 9.92086	9	314	9.82161	20 27	0.17830	080	27
34	291 9.74265	19	324	9.92077	8	356	9.82188	37	0.17812	070	26
85 36	55315 9.74284	19	83308	9.92069 9.92060	9	66398	9.82215	28	0.17785	1.5061	25
30	339 9.74303 363 9.74322	19	276	9.92052	8	440 482	9.82243 9.82270	27	0.17757 0.17730	051 042	24 23
37 38	388 0.74341	19 19	260	9.92044	8	524	0.82208	28	0.17702	032	22
39	412 9.74300	19	244	9.92035	9 8	566	9.82325	27 27	0.17075	023	21
40	55436 9.74379	19	83228	9.92027	9	66608	9.82352	28	0.17648		20
41 42	460 9.74398 484 9.74417	19	212 195	9.92018 9.92010	8	650 692	0.82380 0.82407	27	0.17620 0.17593	004 T 4004	19 18
43	509 9.74430	19	179	9.92002	8	734	9.82435	28	0.17505	985	17
44	533 9.74455	- 19 19	163	9.91993	9 8	776	9.82462	27 27	0.17538	975	16
45	55557 9.74474	19	83147	9-91985	° 9	66818	9.82489	28	0.17511		15
46	581 9.74493 605 9.74512	19	131	9.91970	8	860	9.82517	27	0.17483	957	14
47 48	605 9.74512 630 9.74531	19	115 098	9.91968 9-91959	2	902 944	9.82544 9.82571	27	0.17450	947 938	13 12
49	654 9.74549	18	082	9.91951	8	986	9.82599	28	0.17401	928	II
50	55678 9.74568	19 19	83066	9.91942	9 8	67028	9.82626	27	0.17374	1.4919	10
51	702 9.74587	19	050	9.91934	9	071	9.82653	27 28	0.17347	910	8
52 53	726 9.74606 750 9.74623	19	034	9.91925 9.91917	8	113 155	9.82681 9.82708	27	0.17319	900 891	
53 54	775 9.74644	19	001	9.91908	9	197	9.82735	27	0.17205	882	76
55	55799 9.74662	18	82985	0.01000	8	67239	0.82762	27	0.17238		-5
56	823 9.74681	19 19	969	0.01801	9 8	282	9.82790 9.82817	28 27	0.17210	863	4
57 58	847 9.74700	19	953	9.91883	9	324	9.82817	27	0.17183	854	3
50	871 9.74719 895 9.74737	18	936	9.91874 9.91866	8	366 409	9.82844 9.82871	27	0.17156 0.17120	844 835	2 1
5 8	919 974750	19	904	9.91857	9	451	9.82899	28	0.17101	826	Ô
Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log. Tan Nat.											1

56°

34°

.

·

1	Nat. Sin Log	. d.	Nat. C	OS Log	. d.	Nat.T	anLog.	c.d.	Log. Co	t Nat.	
0	55919 9.74750			9.91857			9.82899		0.17101		60
I	943 9-74775	19 19	887	9.91849	8	493	9.82926	27	0.17074	816	59
2	968 9.74794 992 9.74812	18		9.91840	8	536	9.82953 9.82980	27	0.17047	807	58
3	56016 9.74831	19		9.91832 9.91823	9	620	9.83008	28	0.17020	798 788	57 56
5	56040 9.74850	19	82822	9.91815	8	67663	9.83035	27	0.16065	1.4779	55
6	064 0.74868	18	806	9.91800	8	705	9.83062	27	0.16038	770	54
7	088 9.74887	19 19	790	9.91798		748	9.83089	27 28	0.16011	761	53
8	112 9.74900	18	773	9.91789	8	790	9.83117	27	0.16883 0.16856	751	52
10 10	136 9.74924	19	757	9.91781	9	832	9.83144	27		742	51
11 11	56160 9.74943 184 9.7496 1	18	8274I 724	9-91772 9-91763	8	67875	9.83171 9.83198	27	0.16829	1-4733 724	50 49
12	208 9.74980	19	708	9-91755			9.83225	27	0.16775	715	48
13	232 9.74999	19 18	692	9.91746	8	68002	9.83252	27	0.16748	705	47
14	256 9.75017	19	675	9.91738	9	45	9.83280	27	0.16720	696	46
15	56280 9.75030	18	82659	9.91729		68088	9.83307	27	0.16693	1.4687	45
16 17	3°5 9.75°54 329 9.75°73	19	643 626	9.91720 9.91712	9 8	130 173	9.83334 9.83301	27	0.10000	678 669	44 43
18	329 9.75073 353 9.75091	18	610	9.91703	9 8	215	9.83388	27	0.16612	659	43 42
19	377 9.75110	19 18	593	9.91095		258	9.83415	27	0.16585	650	41
20	56401 9.75128	10	82577	9.91686	9	68301	9.83442	27	0.16558	1.4641	40
21	425 9.75147	18	561	9.91677	8	343	9.83470	27	0.16530	632	39
22 23	449 9.75105 473 9.75184	19	544 528	9.91669 9.91660	9	386	9-83497 9-83524	27	0.16503	623 614	38 37
23 24	473 9.75184 497 9.75202	18	511	9.91651	9	471	9.83551	27	0.16449	605	3/ 36
25	56521 9.75221	19 - 9	82495	0.01643	8	68514	9.83578	27	0.16422		35
26	545 9.75239	18 19	478	9.91634	9	557	0.83605	27	0.16395 0.16368	586	34
27	569 9.75258	19	462	9.91025	8	600	0.83632	27	0.16368	577	33
28 29	593 9-75270 617 9-75294	18	446 429	9.91617 9.91608	9	642 685	9.83659 9.83686	27	0.10341 0.10314	568	32
30		19	82413		9	68728	9.83713	27	0.10314	559	31 80
31 31	56641 9.75313 665 9.75331	18	396	9.91599 9.91591	8	771	9.83740	27	0.10207	1.4550 541	29
32	689 0.75350	19 18	380	0.01582	9	814	9.83768	28	0.16232	532	28
33	713 9.75308	18	363	9.91573	8	857	9.83795 9.83822	27	0.16205	523	27
34 8 E	736 9.75386	19	347	9.91505	9	900		27	0.16178	514	26
85 36	56760 9.75405 784 9.75423	18	82330		9	68942 985	9.83849 9.83870	27	0.16151	1.4505 496	25 24
30 37	784 9.75423 808 9.75441	18	314 297	9-91547 9-91538	8	69028	9.83903	27	0.10124	490	23
38	832 9.75459	18 19	281	9.91530	8 9	071	9.83930	27	0.16070	478	22
39	856 9.75478	19	264	9.91521	9	114	9.83957	27 27	0.16043	469	21
40	56880 9.75496	18	82248	9.91512	8	69157	9.83984	27	0.16016		20
41 42	904 9.75514 928 9.75533	19	231	9.91504	9	200 243	9.84011 9.84038	27	0.15989 0.15962	451 442	19 18
44 43	928 9-75533 952 9-75551	18	198	9.91495 9.91480	9	286	9.84065	27	0.15935	433	10
44	976 9.75509	18 18	181	9.91477	9 8	329	9.84092	27	0.15908	424	16
45	57000 9.75587	18	82165	9.91469	9	69372	9.84119	27	0.15881		15
46	024 9.75605	19	148	9.91460	9	416	9.84146	27	0.15854	406	14
47 48	047 9.75024 071 9.75042	18	132	9.91451 9.91442	9	459 502	9.84173 9.84200	27	0.15827 0.15800	397 388	13 12
40 49	095 9.75660	18	098	9.91433	9	545	9.84227	27	0.15773	379	11
50	57119 9.75678	18	82082	9.91425	8	69588	9.84254	27	0.15746		10
51	I43 9.75696	18 18	065	9.91410	9	631	9.84280	26 27	0.15720	361	9
52	167 9.75714	10	048	9.91407	9	675	9.84307	27	0.15603	352	8
53 54	191 9.75733 215 9.75751	18	032	9.91 398 9.91389	ģ	718 761	9.84334 9.84301	27	0.15666	344	7 6
54 55		18	81999		8	69804	0.84388	27	0.15039	335	5
56		18		9.91381 9.91372	9	847	9.84415	27	0.15585	317	4
57	286 9.75805	18 18	965	9.91363	9	891	9.84442	27	0.15558	308	3
58	310 0.75823	18	949	9-91354 9-91345	9	934	9.84469	27	0.15531	299	2
59 60	334 9.75841 358 9.75859	18	932 915	9.91345 9.91330	9	977 70021	9.84496 9.84523	27	0.15504 0.15477	290 281	I 0
			-					<u> </u>			
	Nat. Cos Log	. d.	Nat. S	in Log.	d.	Nat. C	ot Log.	·c.d.	Log. Ta	n Nat.	1

55°

35°

v Nat. Sin Log. d. Nat. Cos Log. d. Nat. TanLog. cd. Log. Cot Nat. 0 57358 675859 18 81915 901336 8 70011 948533 7 0.15450 7357 13537 7353 13539 7353 13539 73535 11539 <th>_</th> <th></th> <th></th> <th></th> <th>00</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th>	_				00						-
1 381 07585 18 805 0.015245 97 0.15545 17 0.15545 17 0.15545 17 0.15545 17 0.15377 24 25 0.15377 24 25 0.15377 24 25 0.15377 246 35 37 0.15377 246 35 37 0.15377 246 35 37 0.15377 246 35 37 0.15378 246 37 0.15377 246 35 35 35 35 35 37 0.15377 246 35 36		Nat. Sin Log.	d.	Nat. Cos Log	. d.	Nat.T	anLog.	c.d.	-		
1 301 9/578 18 802 9/0130 9 151 9/04403 27 0.15347 26.0 27.0 153 37.4 27.0 153 37.4 27.0 153 37.4 27.0 153 9 151 9.14403 27 0.15347 24.0 153 27.0 153 9.44033 27 0.15347 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153 24.0 153.0 22.0 153.0 150 153.0 150 153.0 150 153.0 150 153.0 150 153.0 150 153.0 150 153.0 14.0 150 153.0 140.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0		5735 ⁸ 9.75859	18	81915 9.91336	8		9.84523	27	0.15477	1.4281	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		301 9.75877		882 0.01210			0.84576	26			
4 453 975930 16 848 901301 9 194 9.44630 7 0.15343 14377 56 6 5747 977905 18 81832 901343 9 335 9.44630 7 0.15340 220 54 9 572 977005 18 752 9.91349 9 335 0.44771 27 0.15240 201350 20 51 10 57570 976035 18 752 9.91349 9 7452 9.4413 9.44774 27 0.15240 20155 24707 20.15230 1.4193 10 1.5326 20177 1.5326 113 667 9.76075 18 68174 9.91348 9 70573 0.44971 27 0.15385 167 44 15 57715 9.7604 18 6814 9.91149 9 70573 0.44972 27 0.15045 144 144 144 144 144 144 144 144 144 144 144 144 144 144<		429 9.75913					9.84003				
b 57477 0.75947 0.75947 0.15343 1.4237 1.5 7 524 0.75967 1.8 7.6 5.9 1.5 5.72 0.75047 1.5 1.6 1.6 1.6 1.6 1.4 1.4 1.4 1.6 1.5 1.5 1.5 1.5 1.6 <t< th=""><th></th><th></th><th></th><th>848 9.91301</th><th>-</th><th>194</th><th></th><th></th><th></th><th>246</th><th>56</th></t<>				848 9.91301	-	194				24 6	56
0 501 97598 18 76 904064 27 0.5310 220 534 8 548 975093 18 78 901267 9 365 94878 20 0.5230 220 534 0.5230 220 534 0.5230 220 534 0.5230 220 534 0.5230 220 534 0.5230 220 534 0.5230 220 1523 0.5230 220 1523 0.5230 220 1523 0.5230 220 1523 0.5230 220 1523 70 15230 1.54 164 165 0.70737 18 71 15200 1.51 154 44 44 1.51 1577 546 904197 7 0.5121 134 44 <t< th=""><th></th><th>57477 9-75949</th><th></th><th>81832 9.91292</th><th></th><th></th><th>9.84657</th><th></th><th>0.15343</th><th></th><th></th></t<>		57477 9-75949		81832 9.91292			9.84657		0.15343		
8 548 9.7502 18 775 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 9 772 9.01287 7 0.15200 1.4103 60 11 619 9.70075 18 714 9.01287 9 753 9.01287 7 0.15200 1.4103 44 13 607 9.70011 18 868 9.04297 7 0.1501 134 44 147 752 9.70140 18 815 9.71149 9 844 9.85003 7 0.14994 1.4447 44		501 9.75907		815 9.91283	9			27	0.15310		
9 572 9 412 0.84704 7 0.15236 200 11 10 57596 976039 18 81748 9.9 7413 0.4473 7 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15209 1413 0.15201 135 1415 0.15201 135 1415 0.1501 132 44 0.1501 132 44 0.14094 1414 141 14194 1414 1414 1417 14194 1416 14194 1414 141 141 1414 1414 1414 1414 1414 1414 1414 1414 1414 1414 1414 1414 1414 1414 1414 1414 1414 </th <th>8</th> <th>548 0.70003</th> <th></th> <th>782 0.01200</th> <th></th> <th>368</th> <th></th> <th>27</th> <th>0.15202</th> <th></th> <th></th>	8	548 0.70003		782 0.01200		368		27	0.15202		
10 57505 9.777 9.84405 27 0.15212 1.5212 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.5751 1.556 9.7753 9.84055 27 0.15702 1.33 4.33 17 7.850 9.76533 9.77633 9.77653 9.85050 27 0.14907 1.34 4.34 18 7.850 9.91147 9 3.50 9.850850 27 0.14907 1.444 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.45 9.	9					412	9-84764				
12 643 9.76075 1-6 7.4 9.91231 9 545 9.84845 -7 0.15138 1/6 1/6 13 657 9.76073 1-8 1664 9.91194 9 556 9.84857 -7 0.15138 1/6		57596 9.76039				70455	9.84791				50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		619 9.76057	18	731 9.91239			9.84818	27			49
14 691 691 691 691 691 691 691 691 691 691 691 691 691 691 691 691 691 99 7073 984095 97 0.1504 1415 456 97 77 984095 97 0.1504 1414 44 17 763 970703 847 99 70073 984095 70 0.1504 1414 44 17 763 970500 18 614 901107 9 848 985033 70 0.14904 1132 43 10 810 970300 18 8530 901149 9 7035 985080 70 0.14934 071 36 21 285 7970378 17 546 901134 9 7110 985085 70 0.14837 080 38 23 9470380 18 81426 901134 9 7110 9850817 70 0.14837 080 0.14837 0.14837 0.14833 0.14953 0.1495		667 0.76003		608 0.01221	9	542		27			
15 57715 9.76129 17 81664 9.91234 9 70673 9.84925 77 0.15075 1.4150 45 16 778 9.76146 18 647 9.91134 9 7777 9.84975 77 0.15075 1.4150 45 17 766 9.76036 18 631 9.91137 9 706.73 9.84970 77 0.15021 133 43 18 766 9.76036 17 553 9.91137 9 70831 9.84503 26 0.14077 13 41 20 577633 9.76036 17 553 9.91137 9 7063 9.85113 27 0.14887 608 38 21 8579 9.7634 18 533 9.91133 9 71103 9.85113 27 0.14837 1.4453 35 24 9.897638 18 453 9.91123 9 7133 8.85106 77 0.14673 6.33 33 24 9.976341 18 415		691 9.76111				629					
10 738 9.70140 18 647 9.91187 9 747 9.84979 27 0.15021 134 43 18 766 9.76030 18 631 9.91187 9 8.48 9.85033 70 0.14904 124 42 19 810 9.76030 18 81758 9.91187 9 9 8.48 9.85033 70 0.14904 124 42 21 857 9.7633 18 8158 9.91143 9 775 9.85133 77 0.14897 6803 37 22 881 9.76378 17 546 9.91143 9 7110 9.85133 77 0.14876 653 34 25 57952 9.76376 17 77 74 8496 9.91163 9 135 9.85373 77 0.14773 0.44773 0.44773 0.4473 146 9.91163 9 137 9.85334 77 0.14773 0.4473 146 0.14773 0.14773 0.14773 0.14773 0.14773 <th>15</th> <th></th> <th></th> <th>81664 0.01203</th> <th></th> <th></th> <th>9.84025</th> <th></th> <th></th> <th></th> <th>45</th>	15			81664 0.01203			9.84025				45
17 702 0.970104 18 031 0.91170 9 84,85006 27 0.14904 124 42 19 810 0.70500 18 614 0.91170 9 84,85006 27 0.14904 124 42 19 810 0.70500 18 513 0.91147 9 804 9.85006 27 0.14907 115 41 20 57833 0.70523 17 556 0.91147 9 935 9.85066 27 0.14887 0.6800 27 0.14887 0.6800 27 0.14887 0.6800 27 0.14887 0.6800 27 0.14834 071 35 23 944 9.70523 18 513 9.91137 9 7110 9.85103 27 0.14733 0.4773 36 35 36 0.14834 0.14633 13 0.14773 36 0.14733 40 142 9.90105 9 2139 9.85347 7 0.14733 14.013 30 0.14733 14.1405 130 14		738 9.70140		647 9.91194		717	9.84952		0.15048		44
19 810 5/7 5/		702 0.70104	18	031 0.01185		700	9.84979				
20 57833 9.76218 18 81580 9.91149 9 7081 9.8509 20 0.14911 1.4105 40 21 857 9.70231 17 546 9.9119 935 9.85149 27 0.14914 0.07 39 24 928 9.70271 18 533 9.91131 9 71023 9.85149 27 0.14807 1.4003 35 25 57952 9.70371 18 533 9.91131 9 71110 9.851393 27 0.14807 1.4003 35 26 9.70374 17 81496 9.91134 9 71110 9.851393 27 0.14807 1.4003 35 27 9.90 9.70341 18 452 9.91006 9 136 9.853397 7 0.14673 1.4003 36 31 0.970395 18 445 9.91005 9 373 9.83354 7 0.14640 0.1237 0.14640 0.1237 0.14640 0.14233 1.3994 27 0.14640 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>848</th> <th>0.85033</th> <th></th> <th></th> <th>•</th> <th></th>						848	0.85033			•	
11 857 9.70336 17 563 9.913 9.83 9.84 9.933 9.85140 27 0.14897 680 38 24 928 9.70373 18 533 9.91133 9 700 9.85143 27 0.14897 680 38 24 928 9.70374 18 533 9.91133 9 7103 9.85140 27 0.14897 680 38 25 57952 9.70374 18 81496 9.91137 9 71110 9.85193 27 0.14897 640 9.35 0.45733 445 9.33 0.44733 0.45733 453 33 0.14773 32 0.14773 32 0.14773 32 0.14773 32 0.14773 34 0.14773 34 0.59 9 373 9.85347 27 0.14606 0.1237 33 1.412 9.01005 9 373 9.85347 27 0.14606 0.1237 0.14606 0.14733 1.4019 31 0.14773 1.4019 310 0.14750 0.14506<	- i-										
as 881 970523 11 546 901141 9 979 985113 27 0.14897 089 38 as 904 97021 18 530 991132 9 71023 985140 27 0.14807 1.4063 35 255 57952 970371 18 81496 991142 9 71103 985140 27 0.14780 054 34 256 9709 970324 18 445 991067 9 144 985.983207 27 0.14753 0.44753 345 33 26 9709 970398 18 445 991076 9 242 9853277 27 0.14753 0.14731 1.4053 1.3994 27 0.14700 0.21707 0.33 0.14731 1.4053 1.3994 27 0.14731 1.4053 1.3994 27 0.14731 1.4053 1.3994 27 0.14731 1.4053 1.3994 27 0.14600 0.14731 1.4053 1.3994 27 0.14500 937 9.55 9.5	21	857 9.76230			8		9.85080				_
33 924 970571 18 535 931123 9 70539542 26 0.14834 711 36 24 928 97692 976378 17 81496 991103 9 154 985103 27 0.14753 0.5433 453 0.14773 0.5433 453 0.14773 0.5433 453 0.14773 0.5433 453 0.14773 0.5433 453 0.14773 0.5433 453 0.14773 0.5433 453 0.14773 0.5433 453 0.14777 0.37 32 0.14773 0.5433 455 0.14773 0.5433 455 0.14773		881 9.70253	18		-		9.85113		0.14887		
25 57952 976307 17 81496 991114 9 71110 9.85193 27 0.14807 1.4063 35 26 976 976344 18 462 991065 9 154 9.85210 27 0.14807 1.4063 35 28 58023 976304 18 445 991097 9 242 9.85327 27 0.14773 0.44733 0.453 33 29 0.47 9.70336 18 445 991097 9 242 9.85327 27 0.14773 1.4019 30 0.14773 1.4019 30 0.14620 012 29 0.14620 0.1460 0.22 83 31 0.14620 0.1460 0.1460 0.1460 0.1460 0.1460 0.1460 0.1460 9 71549 9.85407 27 0.1460 0.1460 959 23 0.1460 9.953 9.953 9.85407 27 0.14460 959 23 0.1460 959 23 0.1460 959 23 0.14460 9.959 9.953<		904 9.70271	18						0.14800		37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								27			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		976 0.76324				1 '	0.85220		0.14780		
28 58023 970300 18 445 9.91078 9 242 9.85377 27 0.14727 0.37 38 31 30 047 9.70396 17 845 9.85377 27 0.14727 0.237 38 31 31 049 9.70396 18 315 9.91056 9 373 9.85327 27 0.14670 0.28 31 32 118 9.70431 17 376 9.91051 9 417 9.85380 27 0.14630 0.01673 1.4019 80 33 141 9.70461 18 344 9.91033 9 505 9.85434 27 0.14500 0.028 242 36 212 9.70501 18 344 9.91035 9 503 9.85447 27 0.14503 1.3994 27 37 383 9.705501 18 312 9.90103 9 537 9.85447 27 0.14503 9.9251 22 0.14480 9.9251 22 0.14480 <t< th=""><th></th><th>999 0.76342</th><th></th><th>462 9.91090</th><th></th><th>198</th><th>0.85247</th><th></th><th>0.14753</th><th>045</th><th>33</th></t<>		999 0.76342		462 9.91090		198	0.85247		0.14753	045	33
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		58023 9.70300		445 9.91087			9.85273			037	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									0.14073		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		118 0.70431				417	9.85380		0.14620		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33	141 9.76448					9.85407		0.14503		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34		18								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		58189 9.70484			9					1.3976	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						637	0.85514	27	0.14515		23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	200 0.70537		276 9.90990		681	9.85540		0.14400	951	22
40 50'30' 9.70'572 18 61'42 9.90'0'8 9 71'70'9 9.85'94 20 0.14400 1.3934 20 41 330 9.70'0'0'7 18 191 9.90'0'6 9 813 9.85'7 27 0.143'53 9.05'5 16 43 378 9.70'0'0'7 18 191 9.90'0'1' 9 91'7'0'9 9.85'7 27 0.143'53 90'6 90'f 44 40''1'7' 77 1.90'0'3'1' 9 91'9.90'9.85'7'4' 27 0.143'53 90'f 0.143'53 90'f 0.143'0' 90'f 0.143'0' 90'f 0.143'0' 90'f 0.143'f'' 0.143'f'' 0.85'f'' 27' 0.143'f'' 0.143'f''' 0.143'f''' 0.143'f''' 0.143'f''' 0.143'f''' 0.143'f''' 0.143'f'''' 0.143'f'''' 0.143'f'''' 0.143'f'''' 0.143'f'''' 0.141'f'''' 0.141'f''''''' 0.141'f'''''' 0.141'f''''''''''''''''''''''''''''''''''	_										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		58307 9-70572	18				9.85594				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		354 0.705007					0.85647				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		378 9.70025									
45 58425 9.70000 17 81157 9.90033 9 71990 9.85727 27 0.14273 1.3801 15 46 449 9.70077 18 140 9.90924 9 7234 9.85724 27 0.14273 1.3801 15 47 472 9.70077 18 17 140 9.90924 9 7234 9.85754 27 0.14273 1.3801 15 48 496 9.707712 17 106 9.90906 9 122 9.85807 27 0.14193 865 12 49 519 9.707030 17 80 9.90887 9 72211 9.85807 27 0.14193 865 12 50 58543 9.707047 18 025 9.90876 9 225 9.85897 27 0.14193 840 9 0.14193 840 9 0.14193 840 9 0.1407 831 8 8 9 344 9.858973 27 0.14078 831 8 8		401 9.70042									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		58425 9.76660					9.85727			1.3891	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 47	449 9.700	18		9	72034	9-05754	26	0.14240		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	496 9.76712	17	106 0.00000			9.85807		0.14103	865	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49			089 9.90896		167	9.85834	· ·	0.14160		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		58543 9.70747			-		9.85860	1		1.3848	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		507 9.70705	17	055 9.90878			9.85887		0.14113	840	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		614 0.76800		021 0.00860		344			0.14060		
55 58661 9.76833 17 80987 9.09842 19 72432 9.85093 27 0.14007 1.3806 5 56 684 9.76853 18 970 9.90833 9 477 9.86020 27 0.14007 1.3806 5 57 708 9.76870 17 953 9.90833 9 521 9.86020 27 0.13926 789 3 58 731 9.76870 17 913 9.90833 9 521 9.86045 27 0.13926 789 3 59 755 9.76904 17 919 9.90805 9 610 9.86073 27 0.13927 781 2 59 755 9.76904 17 919 9.90805 9 610 9.86106 26 0.13927 781 2 60 779 9.76922 18 902 9.90796 9 654 9.86126 6	54	637 9.76817			-	388	9.85907		0.14033		6
50 084 9/70852 18 970 9/90323 9 477 9/80202 26 0.139260 7/98 4 57 708 9/70870 17 953 9/90833 9 521 9.86020 26 0.139260 7/89 4 58 731 9/70870 17 936 9.90833 9 521 9.86046 26 0.139264 7/89 3 58 731 9/70847 17 936 9.90833 9 521 9.86073 27 0.139274 7/81 2 59 755 9.76904 17 919 9.90805 9 610 9.86100 27 0.139207 7/81 2 60 779 9.769222 18 902 9.90790 9 654 9.86126 26 0.139274 7/24 0		58661 9.76835		80987 9.90842		_	9.85993	1	0.14007		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		684 9.7685 2								798	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57 58	731 0.708/97			9			27	0.13954	789	
60 779 9.76922 ¹⁰ 902 9.90796 ⁹ 654 9.86126 ²⁰ 0.13874 764 0	59	755 9.76904	17	919 9.90805		610	9.86100	27	0.13900		I
Nat.Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log. Tan Nat. /	60		10	902 9.90790	9	654		20	0.13874		0
The over tog. a. Inat offices, a. Mat over og. c.a. tog. I all hat.		Nat Cos Log	4	Nat Sin Log	d	Nat C	otior	c.d	Log Ta	n Nat	,
			ч.		<u>.</u>		a chog.	c.u.	~~g. 1 a	al.	

54°

•

•

ດ	n o
5	n -

1	Nat. Sin Log.	d.	Nat. Cos L	og. d.	Nat. T	an Log.	c.d.	Log. Co	ot Nat.	
0	58779 9.76922	17	80902 9.907	96	72654	9.86126		0.13874	1.3764	60
12	802 9.70939 826 9.70957	18	885 0.007	87	699	9.86153	27 26	0.13847	755	58
3	826 9.76957 849 9.76974	17	867 9.907 850 9.907	77 9	743	9.86179 9.86206	27	0.13821 0.13794	747 739	58 57
4	873 9.70991	17	833 9.907	50 1	832		26	0.13768	730	56
5	58896 9.77009	18 17	80816 9.907	50 0	72877	9.86259	27 26	0.13741	1.3722	55
6	920 9.77026	17	799 9.907 782 0.007	41 TO	921 966	9.86285	27	0.13715	713	54
78	943 9.77043 967 9.77061	18	782 9.907 765 9.907	22 9	73010	9.86312 9.86338	26	0.13688	705	53 52
9	990 9.77078	17 17	748 9.907	13 9	05 5	9.86365	27	0.13635	688	51
10	59014 9.77095	17	80730 9.907		73100	9.86392	27	0.13608	1.3680	50
II I2	037 9.77112 061 9.77130	18	713 9.900 696 9.900	22 9	144 189	9.86418 9.86443	27	0.13582	672 663	49 48
13	084 9.77147	17	679 9.900	70 2	234	9.86471	26	0.13529	655	47
14	108 9.77104	17 17	662 9.906	67 9 10	278	9.86498	27 26	0.13502	647	46
15 16	59131 9.77181	18	80644 9.906	57	73323	9.86524	27	0.13476		45
10	154 9.77199 178 9.77216	17	627 9.906 610 9.906	20 9	368 413	0.80577	26	0.13449 0.13423	630 622	44 43
18	201 0.77233	17 17	593 9.906	30 .9	457	9.86577 9.86603	26 27	0.13307	613	42
19	225 9.77250	18	576 9.906	20	502	9.86630	20	0.13370	605	41
20 21	59248 9.77268 272 9.77285	17	80558 9.906 541 9.906		73547	9.86656 9.86683	27	0.13344	1.3597 588	40
22	272 9.77285 295 9.77302	17	541 9.906 524 9.905	10	59 2 637	0.86700	26	0.13317 0.13291	580	39 38
23	318 9.77319	17 17	507 9.905	53 9	681	9.86736	27 26	0.13264	572	37
24	342 9.77336	17	489 9.905	4	726	9.86762	27	0.13238	564	36
25 26	59365 9.77353 389 9.77370	17	80472 9.905 455 9.905	95 T	73771 816	9.86789 9.86815	26	0.13211	1.3555 547	85 34
27	389 9.77370 412 9.77387	17 18	438 9.905	16 9	861	9.86842	27	0.13185 0.13158	539	33
28	430 9.77405	10 17	420 9.905	37 5	906	9.86868	26 26	0.13132	531	32
29 80	459 9.77422	17	403 9.905	7 0	951	9.86894	27	0.13100	522	31
31	59482 9.77439 506 9.77456	17	80386 9.905 368 9.9050	no. 9	73996 74041	9.86921 9.86947	26	0.13079 0.13053	1.3514 506	80 29
32	529 9.77473	17 17	351 9.904		086	9.86974	27 26	0.13020	498	28
33	552 9.77490	17	334 9.904	90 J TO	131	9.87000	27	0.13000	490	27 26
<u>34</u> 85	576 9.77507	17	316 9.904 80299 9.904	0	176	9.87027	26	0.12073	481	25
36	59599 9.77524 622 9.77541	17	80299 9.904 282 9.904	Kal 9	74221 267	9.87053 9.87079	26	0.12047	1.3473 465	24
37	646 9-77558	17 17	264 0.004	52 10	312	9.87106	27 20	0.12894	457	23
38 39	669 9.77575 693 9.77592	17	247 9.904 230 9.904	NS N	357 402	9.87132 9.87158	26	0.12868	449	22 21
39 40	59716 9.77609	17	80212 9.904		74447	9.87185	27	0.12815	440	20
41	739 9.77020	17	195 0.004		492	9.87211	26	0.12789	424	19
42	703 0.77043	17 17	178 9.9040	05 1	538	9.87238	27 26	0.12762	416	18
43 44	786 9.77660 809 9.77677	17	160 9.903 143 9.903		583 628	9.87264 9.87290	26	0.12730	408 400	17 16
45	59832 9.77694	17			74674	9.87317	27	0.12683	1.3392	15
46	856 9.77711	17 17	108 9.903	68 9 10	719	0.87343	26 26	0.12657	384	14
47 48	879 9.77728 902 0.77744	16	091 9.903	58 2	764 810	0.87300	27	0.12631	375 367	13 12
40 49	902 9.77744 926 9.77761	17	073 9.903 056 9.903	30 10	855	9.87396 9.87422	26	0.12578	359	11
50	59949 9.77778	17	80038 9.903	9	74900	9.87448	26	0.12552	1.3351	10
51	97 2 9-777795	17 17	021 0.003	20 10	946	0.87475	27 26	0.12525	343	8
52 53	995 9.77812 60019 9.77829	17	003 9.903 79986 9.903		991 75937	9.87501 9.87527	26	0.12499 0.12473	335 327	
55 54	042 9.77840	17	968 9.903	02 9	082	9.87554	27	0.12440	319	7 6
55	60065 9.77862	16 17	79951 9.902	82 10	75128	9.87580	26 26	0.12420	1.3311	5
56	⁰⁸ 9 9.77879	17	934 9.902	73 1	173	9.87606	27	0.12304	303	4
57 58	135 0.77013	17	916 9.902 899 9.902	EA 9	219 264	9.87633 9.87659	26	0.12367	295 287	3 2
59 60	158 9.77930	17 16	881 9.902	44	310	9.87685	26 26	0.12315	278	I
60	182 9.77946		864 9.902	35 9	355	9.87711		0.12289	270	0
1	Nat. Cos Log.	d.	Nat. Sin L	og. d.	Nat. C	ot Log.	c.d.	Log.Ta	I n Nat.	1
	8					3	_	<u> </u>		

.

53°

1	Nat. Sin Log	d	Nat C	OS Log	d	Nat T	anior	c d		t Nat	
0		. u.			. u.			1			60
ĭ	205 0.77003	17	79864	9.90235 9.90225	IO	75355 401	9.87711 9.87738	27	0.12289 0.12262	262	59
2	228 9.77980	17 17	829	9.90210	9 10	447	9.87704	26 26	0.12230	254	58
3	251 9.77997 274 9.78013	16	811 793	9.90206 9.90197	9	492 538	9.87790 9.87817	27	0.12210 0.12183	246 238	57 56
4	60298 9.78030	17	79776	0.00187	10	75584	0.87843	26	0.12153	1.3230	55
6	321 9.78047	17 16	758	0.00178	9 10	629	9.87869	26 26	0.12131	222	54
7	344 9.78003	17	74I	9.90108	9	675	0.87805	27	0.12105	214	53
8	367 9.78080 390 9.78097	17	723 706	9.90159 9.90149	IÓ	721 767	9.87922 9.87948	26	0.12078 0.12052	206 198	52 51
10	60414 9.78113	16	79688	0.00130	10	75812	9.87974	26	0.12030	1.3190	50
11	437 0.78130	17	671	9.90130	9 10	858	9.88000	26 27	0.12000	182	49
12	460 9.78147	16	653	9.90120	9	904	9.88027	26	0.11973	175	48
13 14	483 9.78103 506 9.78180	17	635 618	9.90111 9.90101	IÓ	950 996	9.88053 9.88079	26	0.11947 0.11921	167 159	47 46
15	60529 9.78197	17	79600	0.0000I	10	76042	9.88105	26		1.3151	45
16	553 9.78213	16 17	583	9.90082	9 10	088	9.88131	26 27	0.11869	143	44
17	576 9.78230	16	565	9.90072	9	134	9.88158	26	0.11842	135	43
18 19	599 9.78240 622 0.78263	17	547 530	9.90063 9.90053	IÓ	180 226	9.88184 0.88210	26	0.11816 0.11790	127 119	42 41
20	60645 9.78280	17	79512	0.00043	10	76272	9.88236	26	0.11704	1.3111	40
21	668 9.78296	16	494	9.90034	9 10	318	9.88262	26 27	0.11738	103	39
22	691 9.78313	17 16	477	9.90024	10	364	9.88289	26	0.11711	095	38
23 24	714 9.78329 738 9.78340	17	459 441	9.90014 9.90005	9	410 456	9.88315 9.88341	26	0.11685	087 079	37 36
25	60761 9.78362	16	79424		IO	76502	0.88307	26	0.11633	1.3072	85
26	784 0.78370	17 16	406	9.89995 9.89985	10 9	548	9.88393	26 27	0.11607	064	34
27 28	807 9.78395	17	388	0.80070	10	504	9.88420	26	0.11580	056	33
20 20	830 9.78412 853 9.78428	16	371 353	9.89966 9.89956	10	640 686	9.88446 9.88472	26	0.11554 0.11528	048 040	32 31
80	60876 9.78445	17	79335	9-89947	9	76733	9.88498	26	0.11502	1.3032	30
31	899 9.78401	16 17	318	9.89937	10 I0	779	0.8852	26 26	0.11470	024	29
32	922 9.78478	16	300	9.89927	9	825	9.88550	27	0.11450	017	28
33 34	945 9.78494 968 9.78510	16	282 264	9.89918 9.89908	IÓ	871 918	9.88577 9.88603	26	0.11423 0.11397	009	27 26
85	60001 0.78527	17	79247	0.80808	10	76964	0.88610	26	0.11371	1.2993	25
36	61015 9.78543	16 17	229	9.89888	10 9	77010	9.88655 9.88681	26	0.11345	985	24
37	038 9.78500 061 9.78570	16	211	9.89879 9.89869	io	057	9.88681 9.88707	26	0.11319	977	23
38 39	084 9.78592	16	193 176	9.89859	10	103 149	9.88733	26	0.11203	970 962	22 2I
40	61107 9.78009	17	79158	9.89849	10	77196	9.88759	26	0.11241	1.2954	20
4I	130 9.78625	16 17	140	9.89840	9 10	242	9.88780	27	0.11214	946	19
42	153 9.78642 176 9.78658	16	122 105	9.89830 9.89820	10	289	9.88812 9.88838	26	0.11188	938	18
43 44	176 9 .78658 199 9.78674	16	087	9.89810	10	335 382	9.88864	26	0.11102	931 923	17 16
45	61222 9.78091	17	79069	9.89801	9	77428	9.88890	26 26	0.11110	1.2915	15
46	245 9.78707	16 16	051	9.89791	10 10	475	0.88016	26 26	0.11084	907	14
47 48	268 9.78723 291 9.78739	16	033 016	9.89781 9.89771	IO	521 568	9.88942 9.88068	26	0.11058	900 892	13 12
40 49	314 9.78750	17	78998	9.89701	10	615	9.88994	26	0.11032	884	12
50	61337 0.78772	16 76	78980	0.80752	9	77661	9.89020	26	0.10980	1.2876	10
51	360 9.78788	16 17	962	9.89742	10 10	708	9.89046	26 27	0.10054	869	2
52 52	383 9.78805 406 9.78821	16	944 926	9.89732 9.89722	10	754 801	9.89073 9.89099	26	0.10027	861 853	8
53 54	429 9.78837	16	908	9.89712	10	848	9.89125	26	0.10075	846	7 6
55	61451 9.78853	16 16	78891	9.89702	10	77895	9.89151	26 26	0.10840	1.2838	5
56	474 9.78869	10	873	9.89693	9 10	941	9.89177	20	0.10823	830	4
57 58	497 9.78886 520 9.78902	16	855 837	9.89683 9.89673	IO	988 78035	9.89203 9.89229	26	0.10797 0.10771	822 815	3
59 60	543 9.78918	16 16	819	9.89663	10	082	9.89255	26 26	0.10745	807	I
60	566 9.78934	10	801	9.89653	10	129	9.8 92 81	20	0.10719	799	0
	Nat. Cos Log	. d.	Nat. S	Sin Log.	d.	Nat. C	ot Log.	c. d.	Log. T a	n Nat.	1

52°

Digitized by Google

ດດ	00
กต	•

	0.1								- 0		
_	Nat. Sin Log	. d.	Nat. C	OS Log	. d.	Nat. I	anLog.	c.d.	Log. CC	DT Nat.	
0	61566 9.78934	16	78801	9.89653	10	78129	9.89281	26	0.10719	1.2799	60
12	589 9.78950 612 9.78967	17	783	9.89643 9.80633	10	175	9-89307 9-89333	26	0.10003	792 784	59 58
3	635 9.78983	16	747	9.89624	9 10	269	9.89359	26 26	0.10641	776	57 56
4	658 9.78999	10	729	9.89614	10	316	9.89385	20	0.10613		
5	61681 9.79013	16	78711	9.89604	10	78363	9.89411	26			55
6	704 9.79031 726 9.79047	16	694 676	9.89594 9.89584	10	410 457	9-89437 9-89403	26	0.10563	753 746	54 53
7 8	749 9.79003	16 16	658	9.89574	10 10	504	9.89489	26 26	0.10511	738	52
9	772 9.79079	16	640	9.89564	10	551	9.89515	20	0.10485	731	51
10	61795 9.79095	16	78622	9-89554	IO	78598	9.89541	26	0.10459		50
II I2	818 9.79111 841 9.79128	17	604 586	9-89544 9-89534	IO	645 692	9.89507 9.89593	26	0.10433 0.10407	715 708	49 48
13	864 9.79144	16 16	568	9.89524	10	739	0.80010	26 26	0.10381	700	47
14	887 9.79100	16	550	9.89514	10 10	786	9.89645	20	0.10355	693	46
15	61909 9.79176	16	78532	9.89504	9	78834	9.89671	26	0.10329		45
16 17	932 9.79192 955 9.79208	16	514 496	9.89495 9.89485	IO	881 928	9.89697 9.89723	26	0.10303	677 670	44
18	955 9.79208 978 9.79224	16	490	0.80475	10	975	9.89749	26	0.10251	662	43
19	62001 9.79240	16 16	460	9.89405	10 10	79022	9.89775	26 26	0.10225	655	4 I
20	62024 9.79256	16	78442	9.89455	IO	79070	9.89801	26	0.10199	1.2647	40
21 22	046 9.79272	16	424	9.89445	10	117 164	9.89827	26	0.10173	640	39
22	069 9.79288 092 9.79304	16	405 387	9.89435 9.89425	10	212	9.89853 9.89870	26	0.10147	632 624	38 37
24	115 9.79319	15	369	9.89415	10	259	9.89905	26	0.10005	617	36
25	62138 9.79335	16 16	78351	0.80405	10 10	79306	0.80031	26 26	0.10060	1.2609	85
26	160 0.70351	16	333	9.89395 9.89385	IO	354	9.89957 9.89983	26	0.10043	602	34
27 28	183 9.79307 206 0.70383	16	315	9.89385	10	401	9.89983	26	0.10017	594 587	33
20	206 9.79383 229 9.79399	16	297 279	9.89375 9.89364	11	449 496	9.90009 9.90035	26	0.09991 0.09965	507	32 31
30	62251 9.79415	16	78261	9.89354	10	79544	9.90061	26	0.00030	1.2572	80
31	274 9-79431	16 16	243	9.89344	10 10	591	0.00086	25 26	0.09914	564	29
32	297 9 -7944 7	16	225	9.89334	10	639	9.90112	26	0.09888	557	28
33 34	320 9.79463 342 9.79478	15	206 188	9-89324 9-89314	10	686	9.90138 9.90164	26	0.00862	549	27 26
85	62365 9.79494	16	78170	9.89304	IO	<u>734</u> 79781	9.90104	26	0.00810	542	25
36	388 9.79510	16	152	0.80204	IO	829	9.90216	26	0.00784	527	24
37	411 9.79526	16 16	134	9.89284	10 10	877	0.00242	26 26	0.09758	519	23
38	433 9-79542	16	116	9-89274	IO	924	9.90268	26	0.00732	512	22 21
<u>39</u> 40	456 9.79558	15	098	9.89264 9.89254	10	972 80020	9.90294	26	0.00706	504 1.2497	20
41	62479 9-79573 502 9-79589	16	78079 061	9.89244	10	00020	9.90320 9.90346	26	0.00054	489	19
42	524 0.70005	16 16	043	9.89233	11 10	115	9.90371	25 26	0.00620	482	18
43	547 9.79621	15	025	9.89223	10	163	9.90397	26	0.00003	475	17
44 45	570 9.79636	16	007	9.89213	10	211	9.90423	26	0.09577	467	16 15
4 6	62592 9.79652 615 9.79668	16	77988 970	9.89203 9.89193	10	80258 306	9-90449 9-90475	26	0.09551 0.09525	452	14
47	638 9.79684	16	952	9.89183	10 10	354	9.90501	26	0.00400	445	13
48	660 9.79699	15 16	934	9.89173	10	402	9.90527	26	0.09473	437	12
49	683 9.79715	16	916	9.89162	10	450	9.90553	25	0.00447	430	$\frac{11}{10}$
50 51	62706 9.79731 728 9.79746	15	77 ⁸ 97 879	9.89152 9.89142	10	80498 546	9.90578 9.90604	26	0.09422 0.09396	1.2423 415	
52	751 9.79762	16	861	9.89132	10	594	0.00030	26	0.00370	408	8
53	774 9.79778	16 15	843	9.89122	10 10	642	9.90656 9.90682	26 26	0.09344	401	76
<u>54</u>	796 9.79793	16	824	9.89112	10	690		26	0.09318	393	
55	62819 9.79809	16	77806	9.89101	10	80738	9.90708	26	0.00202	1.2386	5
56 57	842 9.79825 864 9.79840	15	788 769	9.89091 9.89081	10	786 834	9-90734 9-90759	25	0.09266 0.09241	378 371	43
58	887 9.79856	16 16	751	9.89071	10 11	882	9.90785	26	0.00213	364	2
59 60	909 9.70872	10	733	9.89060	IO	930	9.90811	20	0.00180	356	I O
00	932 9.79887		715	9.89050		978	9.90837		0.09163	349	
	Nat. COS Log	. d.	Nat. S	Sin Log.	d.	Nat. C	ot Log.	c.d.	Log. Ta	n Nat.	'

51°

°

_			_		-		_	_		_		_	
1	Nat. S	in l	og.	d.	Nat. C	OS Log	. d.	Nat. T	'anLog.	c.d.	Log. Co)t Nat.	
0	62932	0.708	87	- 6	77715	9.89050		80078	9.90837		0.09163	1.2240	60
I		9.799	ni i	16	696	9.80040	IO	81027	9.90803	26	0.00137	342	
2	977	9.799	7 Q	15 16	678		10	075	9.90889	26	0.00111	334	59 58
3	63000		24	16	660		10 11	123	0.00014	25 20	0.00086	327	57
4	022	9.799	Ro i		641	9.89009		171	9.90940		0.00060	320	56
5	63045	9.799		15	77623	0.88000	10	81220	9.90966	26	0.00024	1.2312	55
6	068 0	9.799	<u> 2</u> τ 1	16	605	9.88989	10	268	0.00002	26	0.09034 0.09008	305	54
7	090	0.700	06	15	58ŏ	9.88978	II	316	9.91018	26	0.08082	208	53
8	113	9.800	12	16	568	0.88068	IO	364	9.91043	25	0.08957	200	52
9	135	9.800		15	550	<u>9.8895</u> 8	10	413	9.91009	26	0.08031	283	51
10	63158	9.800		16	77531	9.88948	10	81461	9.91095	26	0.08005		50
11	180	9.800	-91	15	51	9.88937	II	510	9.91121	26	0.08879	268	49
12	203	9.800	74	16	494	0.88027	10	558	9.91147	26	0.08853	261	48
13	225	0.800	ا م	15	476	0.88017	10	606	9.91172	25	0.08828	254	47
14	248	9.801	οξ	16	458	9.88900	11	655	9.91198	26	0.08802	247	46
15	63271	9.801	20	15		9.88800	10	81703		26			45
16	293	0.801	26	16	77439 421	0.88886	10		9.91224	26	0.08776 0.08750		
17	316	9.801	ĒT 🗌	15	402	9.88875	11	752	9.91250 9.91270	26	0.08724	232 225	44
18	338	9.801	24	15	384	9.88865	10	849	9.91301	25	0.08699	218	43
19	361	0.801	82	16	366	0.88855	10	898	9.91327	26	0.08073	210	42 41
20	63383	0.801	077	15	_	9.88844	11			26			
21	406	0.802	12	16	77347	9.88834	10	81946	9.91353	26	0.08647 0.08621	1,2203 196	40
22	400	9.802	- ă ∣	15	310	9.888	10	995 82044	9.91379	25	0.08021	190 189	39
23	451	9.802	44	16	202	9.88813	11	02044	9.91404 9.91430	26	0.08570	181	38
-3 24	473	9.802	50	15	273	9.88803	IO	141	0.01450	26	0.08544	174	37 36
25	63496	0.802		15			IO			26			
26	518	9.802		16	77255 236	9.88793 9.88782	11	82190	9.91482	25	0.08518	1.2107	85
27		9.803	اشم	15	218	9.88772	10	238 287	9.91507	26	0.08403		34
28		0.803	20	15	199	9.88761	II	336	9.91533	26	0.08441	153	33
29	585	0.803		16	181		10	385	9.91559 9.91585	26	0.08415	145 138	32
80	63608		_	15			10			25			31
		9.803 9.803		15	77162	9.88741 9.88730	II	82434	9.91610	26	0.08300		80
31 32	652	9.803	82	16	144	9.88720	10	483	9.91030	26	0.08364	124	29
33	675	9.803	077	15	125	9.88709	II	531 580	9.91662 9.91688	26	0.08338 0.08312	117 109	28
34	698	0.804	12	15	088	9.88600	10	629	0.01713	25	0.08287	102	27 26
85	63720	0.804		16		9.88688	II	82678		26	0.08261	_	25
36		9.804		15	77070 051		10	727	9.91739 9.91765	26	0.08235	1.2095 088	
37	765	9.804	-R	15	033		10	770	9.91791	26	0.08200	081	24 23
38	787	0.804	2	15	014	9.88657	11	825	9.91816	25	0.08184	074	22
39	810	9.804	80	16	76996		10	874	9.91842	26	0.08158	066	21
40	63832	9.805		15	76977	0.88636	11		0.01868	26			20
41	854	9.805	TO	15	959	0.88626	10	82923	9.91803	25	0.08132 0.08107	052	
42	877	9.805	- i - i -	15	939	9.88615	II	83022	9.91919	26	0.08081	052	19 18
43	800	9.805	Zn i	16	021	0.88605	10	071	9.91945	26	0.08055	038	17
44		9.805	22	15	903	9.88594	II	120	9.91971	26	0.08020	031	16
45	63944	9.805		15	76884	9.88584	10	83169		25		1.2024	15
46	966	9.805	ດຂໍ່	15	866	9.88573	11	218	9.91996 9.92022	26	0.08004	017	
47		0.800	TO :	15	847	9.88563	10	268	9.92022	26	0.07952	009	14 13
48	64011		3ė i	15	828	9.88552	II	317	0.02073	25	0.07927	002	13
49	033	9.806	41	16	810	9.88542	10	366	9.92073	26	0.07901		11
50		9.806	56	15			II		·	26			
51	04050	9.800	71	15	76791	9.88531 9.88521	10	83415	9.92125	25		1.1988 981	10
52	100	0.800	86	15	772	0.88510	11	405	9.92150	20	0.07850		9 8
53	123	9.807	οτ 🗌	15	754	9.88499	11	514	9.92176 9.92202	26	0.07824	974 967	
55 54	145	9.807		15	735	9.88489	IO		9.92202	25	0.07798	960	7 6
55	64167			15			11			26	0.07773		
		9.807	46	15	76698	9.88478	10	83662	9.92253	26	0.07747	1.1953	5
56	190 212	9.807	φν	16	679	9.88468	11	712	9.92279	25	0.07721	946	4
57 58	234	0.807		15	661	9.88457 9.88447	10	761 811	9.92304	26	0.07696	939	3
	256	9.807 9.807	02	15	642 623	9.88436	II	860	9.92330	26	0.07070	932	2 1
59 60	279	0.808	ا مو	15	604	9.88425	II	910	9.92350 9.92381	25	0.07644	925 918	ō
	Nat. C	OS L	.og.	d.	Nat. S	Bin Log.	d.	Nat. C	ot Log.	c.d.	Log.Ta	n Nat.	11
						8'							
				-			μŅ	~					

°

40°

-						IU				- 0		
Ľ	Nat. 2	in Log	. d.	Nat. C	OS Log	. d.	Nat.	anLog.	c.d.	Log. CC)T Nat.	
0	64279	9.80807	15	76604	9.88425	10	83910		26	0.07610		60
I 2	301	9.80822 9.80837	15	586 567	9.88415 9.88404	11	960 84009	9-92407 9-92433	26	0.07593 0.07507	910 903	59 58
3	346	9.80852	15	548	9.88394	IO II	059	9.92458	25 20	0.07542	896	57
4		9.80867	15	530	9.88383	II	108	9.92484	26	0.07516	889	56
5 6	64390	9.80882	15	76511	9.88372 9.88362	IO	84158	9.92510	25	0.07400	1,1882	55
	412	9.80897 9.80912	15	492 473	9.88351	11	208 258	9.92535 9.92501	20	0.07405	875 868	54 53
7 8	457	9.80927	15	455	9.88340	II IO	307	0.02587	26 25	0.07413	861	52
9	479	9.80942	15	436	9.88330	11	357	9.92012	26	0.07388	854	51
10 11	64501	9.80957	15	76417	9.88319 9.88308	11	84407	9.92638 9.92663	25	0.07362	1.1847 840	50
12	524 546	9.80972 9.80987	15	380	9.88298	IO	457 597	9.92689	26	0.07337	833	49 48
13	568	9.81002	15 15	361	9.88287	II	556	9.92715	26 25	0.07285	826	47
14	590	9.81017	15	342	9.88276	10	000	9.92740	26	0.07260	819	46
15 16	64612		15	76323	9.88266 9.88255	II	84656	9.92766	26	0.07234 0.07208	1.1812	45
17	635 657	9.81047 9.81061	14	304 286	0.88244	II	706 756	9.92792 9.92817	25	0.07183	799	44 43
18	679	9.81076	15 15	267	9.88234	10 11	806	0.02843 0.02868	26 25	0.07157	792	42
19	701	9.81091	15	248	9.88223	II	856		26	0.07132		41
20 21	64723	9.81100 9.81121	15	76229	9.88212 9.88201	II	84906	9.92894 9.92020	26	0.07100		40
22	746 768	9.81130	15	192	9.88191	IO	956 85006	9.92945	25	0.07080	77 I 764	39 38
23	790	9.81151	15 15	173	9.88180	II II	057	9.92971	26	0.07020	757	37
24	812	9.81166	14	154	9.88169	II	107	9.92996	26	0.07004	<u>750</u>	36
25 26	64834 856	9.81180	15	76135	9.88158 9.88148	IO	85157	9.93022	26	0.06978	1.1743	85
27	878	9.81195 9.81210	15	097	9.88137	II	207 257	9.93048 9.93073	25	0.00027	736 729	34 33
28	901	0.81225	15 15	078	9.88120	II II	308	9.93099	26 25	0.00001	722	32
29	923	9.81240	14	059	9.88115	10	358	9.93124	26	0.06876	715	31
80	64945	9.81254 9.81269	15	76041	9.88105 9.88094	II	85408	9.93150	25	0.06850 0.06825	1.1708 702	80
31 32	967 989	0.81284	15	003	0.88083	II	458	9.93175 9.93201	26	0.00700	695	29 28
33	65011	9.81299	15 15	75984	0.88072	II II	559	9.93227	26 25	0.00773	688	27
34	033	9.81314	-3 I4	965	9.88001	IO	609	9.93252	26	0.00748	681	26
85 36	65055	9.81328	15	75946	9.88051 9.88040	11	85660 710	9.93278	25	0.00722 0.00007	1.1074 667	25 24
37	077 100	9.81343 9.81358	15	908	0.88020	11	761	9-93303 9-93329	26	0.00071	660	23
38	122	9.81372	14 15	889	9.88018	11	811	0.03354	25 26	0.06646	653	22
39	144	9.81387	15	870	9.88007	II	862	9.93380	26	0.06620	647	21
40 41	65166	9.81402 9.81417	15	75851 832	9.87996 9.87985	11	85912 963	9.93406 9.93431	25	0.06594	1.1640 633	20 19
42	210	9.81431	14	813	9.87975	10 11	86014	0.03457	26	0.00509	626	18
43	232	9.81446	15 15	794	9.87964	11	064	9.93482	25 26	0.00518	619	17
44	254	9.81461	14	775	9.87953	11	115	9.93508	25	0.06402	612	16 15
45 46	65276 298	9.81475 9.81490	15	75756 738	9.87942 9.87931	11	86166 216	9-93533 9-93559	26	0.06407 0.06441	1.1606 599	10 14
47	320	9.81503	15	719	9.87920	11	267	9.93584	25 26	0.00410	592	13
48	342	9.81519	14 15	700	9.87909	11	318	9.93010	26	0.00300	585	12
49 50	364	9.81534	15	680	9.87898	11	368	9.93636	25	0.06364	578	11 10
51 51	65386 408	9-81549 9-81563	14	75661 642	9.87887	10	86419 470	9.93661 9.93687	26	0.06339	1.1571 565	
52	430	9.81578	15 14	623	9.87866	11	521	9.93712	25 20	0.06313 0.06288	558	8
53	452	9.81592	14	604	9.8785	11	572	9.93738	20 25	0.06262	551	Z
54 55	474	9.81607	15	585	9.87844	II	623	9.93763	26	0.06237	544	ŝ
56 56	65496 518	9.81622 9.81636	14	75566 547	9.87833 9.87832	11	86674 725	9-93789 9-93814	25	0.06211 0.06186	1.1538 531	4
57	540	9.81651	15 14	528	9.87811	II II	1 776	0.03840	26 25	0.06160	524	3
58	562	9.81005	15	509	9.87800	ii	827	9.93805	25 26	0.00135	517	â
59 60	584 606	9.81680 9.81694	14	490 471	9.87789 9.87778	11	878 929	9.93891 9.93916	25	0.06109	510 504	Ŏ
			_									-
	Nat. C	OS Log.	d.	Nat. S	In Log.	d.	Nat. C	ot Log.	c.d.	Log. I a	n Nat.	'

49°

41°

1	Nat. S	in Log	. d.	Nat. C	OS Log	. d.	Nat.T	anLog.	c.d.	Log. Co	ot Nat.	
0		9.81694	15	75471		11	86929	9.93916	26	0.06084	1.1504	6
1 2	628 670	9.81709	14	452	9.87707	n	980			0.06058	497	5
3	672	9.81723 9.81738	15	433 414	9.87750 9.87745	II	87031		25 20	0.06033	490 483	5
4	694	9.81752	14	395	9-87734	II	133	9.94018	25	0.05982	477	5
5	65716	9.81767	15	75375	9.87723	11	87184	9.94044	26			Š
6	738	9.81781	14 15	356	9.87712	II II	236	9.94069	25 20	0.05931	463	5
8	759 781	9.81796 9.81810	14	337	9.87701	11	287	9.94095	25	0.05005	456	5
9	803	9.8182 <u>5</u>	15	318	9.87690 9.87679	II	338 389	9.94120 9.94146	20	0.05880	450	5
10	65825	9.81839	14	75280	9.87668	11	87441		25	0.05829	443	5
11	847	0.81854	15	261	9.87657	II	492	9-94171 9-94197	26	0.05803	430	4
12	869	9.81868	14 14	241	9.87646	II II	543	9.94222	25 26	0.05778	423	4
13	891	9.81882	15	222	9.87035	11	595	9.94248	25	0.05752	416	4
14	913	9.81897	14	203	9.87624	11	646	9.94273	26	0.05727	410	4
15 16	65935	9.81911	15	75184	9.87613	12	87698	9.94299	25	0.05701	1.1403	4
10	956 978	9.81926 0.81940	14	165 146	9.87601	II	749 801	9.94324	26	0.05070	396 389	4
18	66000	9.81955	15	126	9.87590 9.87579	II	852	3.3.00	25	0.05650 0.05625	383	4
19	022	9.81909	14	107	9.87568	II	904		26	0.05599	376	14
20	66044	9.81983	14	75088	9.87557	11	87955	9.94426	25	0.05574	1.1369	4
21	066	9.81998	15 14	~ 069	9.87546	11 11	88007	9-94452	26 25	0.05548	363	3
22	088	9.82012	14	050	9.87535	II	059	9-94477	26	0.05523	356	3
23 24	109	9.82026 9.82041	15	030	9.87524	11	110 162		25	0.05497	349	3
25	131		14		9.87513	12		3-3-10	26	0.05472	343	3
26	66153 175	9.82055 9.82069	14	74993	9.87501 9.87490	11	88214 265	9-94554	25	0.05446		8
27	197	9.82084	15	973 953	9.87479	II	317	9-94579 9-94604	25	0.05421 0.05396	329 323	3
28	218	9.82098	14 14	934	9.87468	11 11	369	9.94630	26	0.05370	316	3
29	240	9.82112	14	915	9.87457	11	421	9.94655	25 26	0.05345	310	3
80	66262	9.82126	15	74896	9.87446	12	88473	9.94681	25	0.05319		3
31	284	9.82141	14	876	9.87434	11	524	9.94706	26	0.05294 0.05268	296	2
32	306 327	9.82155 9.82169	14	857 838	9.87423	11	576 628	9.94732	25	0.05208	290 283	2
33 34	349	9.82184	15	818	9.87412 9.87401	11	680	9-9475 7 9-94783	26	0.05243	203 276	2
85	66371	0.82108	14	74799	9.87390	11	88732	9.94808	25	0.05192		2
36	393	9.82212	14	780	9.87378	12	784	9.94834	26	0.05166	263	2
37 38	414	9.82226	14 14	760	9.87367	II II	836	9.94859	25 25	0.05141	257	2
38	436	9.82240	15	74I	9.87350	II	888	9.94884	26	0.05116	250	2
39	458	9.82255	14	722	9.87345	11	940	9.94910	25	0.05090	243	2
40	66480	9.82269	14	74703	9.87334	12	88992	9-94935	26	0.05065		2
41 42	501 523	9.82283 9.82297	14	683 664	9.87322 9.87311	11	89045	9.94901 9.94986	25	0.05039	230 224	II
43	545	9.82311	14	644	9.87390	II	149	9.94950	26	0.04988	244 217	ī
44	566	9.82326	15	625	9.87288	12	201	9.95037	25	0.04963	211	Ī
45	66588	9.82340	14	74606	9.87277	11 11	89253	9.95062	25 26	0.04938	1.1204	1
46	610		14 14	586	9.87266	11	306	0.05088	20 25	0.04012	197	I
47	632		14	567	9.87255	12	358	9.95113	26	0.04887	191	ļ
48 19	653 675	9.82382 9.82396	14	548 528	9.87243	II	410		25	0.04861 0.04836	184 178	III
19 50	66697	9.82410	14		9.87232	11	463	9.95164	26	0.04810		Î
51	718	9.82424	14	74509	9.87221 9.87209	12	89515	9.95190 9.95215	25	0.04810	1.1171	-
52	740	9.82439	15 14	470	9.87198	II II	620	9.95240	25 26	0.04700	158	
53	762	9.82453	14	451	9.87187	11 12	672	9.95266	20 25	0.04734	152	
54		9.82467	14	431	9.87175	11	725		-5 26	0.04709	145	
55	66805	9.82481	14	74412	9.87164	11	89777	9.95317	25	0.04683		
56	827 848	9.82495	14	392	9.87153	12	830	9.95342	26	0.04658	132 126	•
57 58		9.82509 9.82523	14	373 353	9.87141 9.87130	II	883 935	9.95368 9.95393	25	0.04632	120	
59 60	891		14	334	9.87119	II	988	9.95418	25	0.04582	113	
6 0	913	9.82551	14	314	9.87107	12		9-95444	26	0.04556	106	
		OS Log					-					İ
										Log. T a		

48°

•

Ì

42°

						ΞŇ						
Ľ	Nat. 5	In Log	. d.	Nat. C	OS Log	. d.	Nat. I	anLog.	c.d.	-		
0	66913	9.82551	14	743 ¹ 4	9.87107	11	90040	9-95444 9-95409	25	0.04550	1.1106	60
12		9.82505 9.82579	14	295 276	9.87096 9.87083	II	093 146	9-95499 9-95495	26	0.0453I 0.04505	100 093	59 58
3	978	9.82593	14	256	9.87073	12	199	9.95520	25	0.04480	087	57
4	999	9.82007	14 14	237	9.87062	11 12	251	9-95545	25 26	0.04455	080	56
5		9.82621	14	74217	9.87050	11	90304	9.95571	25	0.04429	1.1074	55
6	043	9.82635 9.82649	14	198 178	9.87030	11	357	9.95590	26	0.04404	067 061	54
78	086	9.82003	14	178	9.87028 9.87016	12	410 463	9.95622 9.95647	25	0.04378 0.04353	054	53 52
9	107	9.82677	14	139	9.87005	II	516	9.95672	25 26	0.04328	048	51
10		9.82691	14 14	74120	9.86993	12 11	90569	9.95698	20	0.04302	1.1041	50
II	151	9.82703	14	100	9.86982	12	621	9-95723	25	0.04277	035	49
12 13	172 194	9.82719 9.82733	14	080 061	9.86970 9.86959	11	674 727	9-95748	26	0.04252 0.04220	028 022	48
14	215	9.82747	14	041	9.86947	12	781	9-95774 9-95799	25	0.04201	016	47 46
15	67237	0.82761	14	74022	9.86936	II	90834	9.95825	26		1.1009	45
16	258	9.82775 9.82788	14 13	002	9.86924	12 11	887	9.95850	25 25	0.04150	003	44
17 18		9.82788 9.82802	14	73983	9.86913	II	940	9.95875	20		1.0996	43
10		0.82816	14	963 944	9.86902 0.86800	12	993 91046	9.95901 9.95926	25	0.04099	990 983	42 41
20		9.82830	14	73924	9.86879	11	91099	9-95952	26	0.04048		40
21	366	0.82844	14	904	9.86867	12 12	153	9-95977	25	0.04023	971	39
22		9.82858	14 14	885	9.86855	12	206	0.00002	25 26	0.03998	964	38
23 24		9.82872 9.82885	13	865 846	9.86844 9.86832	12	259	9.96028	25	0.03972	958	37
25		9.82899	14	73826	0.86821	II	313	9.96053	25	0.03947	951	<u>36</u> 85
26		0.82013	14	806	0.86800	12	91366 419	9.96078 9.96104	26	0.03922 0.03896	1.0945 939	34
27	495	9.82927	14 14	787	9.8679 8	11 12	473	9.96129	25 26	0.03871	932	33
28	516	9.82941	14	767	9.86786	II	526	9.90155	25	0.03845	926	32
29		9.82955	13	747	9.80775	12	580	9.96180	25	0.03820	919	31
80 31		9.82968 9.82982	14	73728	9.86763 9.86752	11	91633	9.96205 9.96231	26	0.03705	1.0913 907	80 20
32		0.82000	14	688	0.80740	12	740	0.06256	25	0.03769 0.03744	900	28
33	623	9.83010	14 13	669	9.86728	12 11	794	9.96281	25	0.03719	894	27
34		9.83023	-3 I4	649	9.86717	12	847	9.96307	25	0.03693	888	26
85	67666 688	9.83037	14	73629	9.86705 9.86694	11	91901	9.96332	25	0.03668	1.0881	25
36 37	709	9.83051 9.83065	14	590	0.86682	12	955	9.96357	20	0.03 643 0.03617	875 869	24 23
38	730	9.83078	13 14	570	9.86670	12 11	062	9.96408	25	0.03592	862	22
39		9.83092	14	551	9.86659	12	116	9.96433	25 26	0.03507	856	21
40		9.83106	14	7353I	9.86647	12	92170	9.96459	25	0.03541	1.0850	20
41 42		9.83120 9.83133	13	511 491	9.86635 9.86624	11	224	9.96484 9.96510	26	0.03516	843 837	19 18
43		9.83147	14	472	9.86612	12	277 331	9.90535	25	0.03490 0.03465	831	17
44		9.83101	14	452	9.86600	12	_ 385	9.96560	25 26	0.03440	824	16
45	67880	9.83174 9.83188	13 14	73432	9.86589	11 12	92439	9.96586	20	0.03414	1.0818	15
46	901	9.83188	14	413	9.86577	12	493	9.96011	25	0.03389	812	14
47 48		9.83202 9.83215	13	393 373	9.86565 9.86554	11	547 601	9.96636 9.96662	26	0.03364 0.03338	8o5 799	13 12
49		9.83229	14	353	9.86542	12	655	9.96687	25	0.03313	793	11
50	67987	9.83242	13	73333	9.86530	12 12	92709	0.00712	25 26	0.03288	1.0786	10
51	68008	9.83256	14 14	314	9.86518	12 11	703	9.90738	20	0.03262	780	9
52 53		9.83270 9.83283	13	294 274	9.86507 9.86495	12	817 872	9.96763 9.96788	25	0.03237 0.03212	774 768	8
55		9.83297	14	254	9.86483	12	926	9.9681	26	0.03180	761	7 6
55		9.83310	13	73234	9.86472	II	92980	0.06830	25	0.02161	1.0755	5
56	115	9.83324	14 14	215	9.86460	12 12	93034	9.9686	25 26	0.03136	749	4
57		9.83338	13	195	9.86448	12	088	9.96890	25	0.03110	742	3
58 59	157 179	9.83351 9.83365	14	175 155	9.86436 9.86425	II	143 197	9.96915 9.96940	25	0.03085 0.03060	736 730	2 I
59 60	200	9.83378	13	135	9.86413	12	252	9.96966	26	0.03034	724	Ô
			در	Net C		د ا	No.			Les Te		,
	Ivat. C	US LOG	. a.	IVAL. S	in Log.	α.	Ivat. C	ot Log.	c.a.	LOG. I O	II Nat.	'

47°

	n o
_	

1	Nat. S	in Log.	d.	Nat. C	OS Log	. d.	Nat. T	anLog.	c.d.	Log.Co	t Nat.	
0		9.83378		73135	9.86413	-	93252	9.96966		0.03034		60
I	221	9.83392	14 13	116	9.86401	12 12	306	9.96991	25 25	0.03000	717	59 58
23		9.83405 9.83419	14	096 076	9.86389 0.86377	12	360 415	9.97016 9.97042	26	0.02984	711 705	5° 57
4	285	9.83432	13 14	056	9.86377 9.86366	11 12	469	9.97007	25 25	0.02933	699	56
5	68306	9.83446	13	73036	9.86354	12	93524	9.97092	26	0.02008	1,0692	55
6	327 349	9.83459 0.83473	14	016 72996	9.86342 9.86330	12	578 633	9.97118	25	0.02882	686 680	54 53
8	370	9.83473 9.83480 9.83500	13 14	976	9.86318	I2 I2	688	9-97143 9-97168	25	0.02832	674	52
-2	391		13	957	9.86306	11		9.97193	26	0.02807	668	51
10 11		9.83513 9.83527	14	72937 917	9.86295 0.86283	12	93797 852	9.97219	25	0.02781 0.02756	1.0661 655	50
12	455	0.83540	13	897	9.86271	12 12	906	9.97244 9.97269	25 26	0.02731	649	49 48
13	476	9.83554	14 13	877	9.86259	12	961	9-97295	25	0.02705	643	47
14 15		9.83507	14	857	9.86247	12	94016	9.97320	25	0.02080	637 1.0630	46 45
16	539	9.83581 9.83594	13	837-831 817	9.86235 9.86223	13	9407I 125	9-97345 9-97371	26	0.02655	1.0030	44
17	561	0.83008	14 13	797	9.86211	12 11	180	9.97396	25 25	0.02604	618	43
18 19	582 603	9.83621 9.83634	13	777	9.86200 9.86188	12	235 290	9.97421	26	0.02579	612 606	42 41
20		0.83648	14	<u>757</u> 72737	0.86176	12	94345	<u>9-97447</u> 9-97472	25	0.02553		40
21	645	0.8300I	13	717	9.86164	12 12	400	9.97497	25 26	0.02503	593	39
22	666 688	9.83674 9.83688	13 14	697	9.86152	12	455	9-97523	25	0.02477	587 581	38
23 24	709	9.83701	ıз	677 657	9.86140 9.86128	12	510 565	9-97548 9-97573	25	0.02452 0.02427	575	37 36
25		9.83715	14	72637	0.86116	12	94620	9.97598	25 26	0.02402	1.0569	85
26	75I	9.83728	13 13	617	9.86104	12 12	676	9.97624	25	0.02370	562	34
27 28	772 793	9.83741 0.8375E	14	597	9.86092 0.86080	12	731 786	9.97649 9.97674	25 20	0.02351 0.02320	556 550	33 32
29	814	9.83755 9.83763	13	577 557	0.86068	12	841	9.97700		0.02300	544	31
80	68835	9.83781	13 14	72537	9.86056	12 12	94896	9.97725	25 25	0.02275	1.0538	80
31	857 878	9.83795 9.83808	14	517	9.86044	12	952	9-97759	20	0.02250	532	29 28
32 33	899	9.83821	īž	497 477	9.86032 0.86020	12	95007	9.97770 9.97801	25	0.02224	526 519	20
34	920	9.83834	13 14	457	9.86008	12 12	118	9.97826	25 25	0.02174	513	26
85	68941	9.83848	13	72437	9.85996	12	95173	9.97851	26	0.02149	1.0507	25
36 37	962 983	9.83861 9.83874	13	417 397	9.85984 9.85972	12	229 284	9-97877 9-97902	25	0.02123	501 495	24 23
38	69004	9.83887	13 14	377	9.85960	I2 I2	340	9.97927	25 26	0.02073	489	22
39	025	9.83901	14	357	9.85948	12		9-97953	25	0.02047	483	21
40 41		9.83914	13	72337	9.85936	12	95451	9.97978	25	0.02022		20
42		9.83927 9.83940	13	317 297	9.85924 9.85912	12	506 562	9.98003 9.98029	26	0.01997	470 464	18
43	109	9.83954	14 13	277	9.85900	12 12	618	9.98054	25 25	0.01946	458	17
44 45		9.83967	13	257	9.85888	12	673	9.98079	25	0.01921	452	16 15
4 6		9.83980 9.83993	13	72236 216	9.85876 9.85864	12	95729	9.98104 9.98130	26	0.01896 0.01870	1.0446 440	10 14
47	193	9.84000	13 14	196	9.8585i	13 12	841	0.08155	25 25	0.01845	434	13
48 49	214 235	9.84020 9.84033	13	176 156	9.85839 9.85827	12	897	9.98180 9.98200	20	0.01820	428 422	12 11
49 50	235 69256	0.84046	13	72136	9.85815	12	952 96008	9.98200	25	0.01794		10
51	277	9.84059	13	116	9.85803	12 12	064	9.98250	25	0.01744	410	9
52	298	0.84072	13 13	095	0.85701	12	120	9.98281	25 26	0.01719	404	
53 54	319 340	9.84085 9.84098	13	075 055	9.85779 9.85766	13	176 232	9.98307 9.98332	25	0.01603 0.01668	398 392	76
55	69361	9.84112	14	72035	9.85754	12	96288	9.98357	25	0.01643	1.0385	5
56	382	9.84125	13 13	015	9.85742	12 12	344	9.98383	26 25	0.01617	379	4
57 58	403 424	9.84138 9.84151	13	71995	9.85730 9.85718	12	400	9.98408 9.98433	25	0.01502 0.01507	373 367	3
59 60	445	9.84164	13	974	9.85706	12	457 513	9.98458	25 26	0.01542	361	I
60	466	9.84177	13	934	9.85693	13	569	9.98484	20	0.01516	355	0
	Nat. C	OS Log	. d.	Nat. S	Sin Log	d.	Nat. C	ot Log.	c.d.	Log. Ta	n Nat.	'

46°

44°

Nat. Sin Log. d. Nat. Cos Log. d. Nat. TanLog. c.d. Log. Cot Nat.											
	Nat. SIN Lo	g. d.	Nat. C	OS Log	. d.	Nat. I	an Log.	c.d.	Log. Co	DT Nat.	
0	69466 9.8417	[13	71934	9.85693	12	96569	9.98484	25	0.01516		60
1 2	487 9.8419 508 9.8420	13	914 894	9.85681 9.85669	12	625 681	0.08500 9.98534	25	0.01401	349 343	59 58
3	529 9.8421	5 - 13	873	9.85057	12 12	738	9.98500	26	0.01440	337	57
4	549 9.8422		853	9.85645	12	794	9.98585	25 25	0.01415	331	56
5	69570 9.8424	1 12	71833	9.85632	12	96850	9.98610	25	0.01300		55
6	591 9.8425 612 9.8426	7 74	813	9.85620 9.85608	12	907 963	9.98635 9.98661	26	0.01365	319	54
78	633 9.8428	13	792 772	9.85596	12	97020	9.98686	25	0.01339 0.01314	313 307	53 52
9	654 9.8429	2 13	752	9.85583	13 12	<i>°</i> 076	9.98711	25 26	0.01289	301	51
10	69675 9.8430		71732	9.85571	12	97133	9.98737	25	0.01263	1.0295	50
II	696 9.8432	1 7 2	711	9-85559	12	189	9.98762	25	0.01238	289	49
12 13	717 9.8433 737 9.8434	13	691 671	9.85547 9.85534	13	246 302	9.98787 9.98812	25	0.01213 0.01188	283 277	48 47
14	758 9.8430	13	650	9.85522	12	359	9.98832	26	0.01162	271	46
15	69779 9.8437	- 13	71630	9.85510	12	97416	0.08863	25	0.01137	1.0265	45
16	800 9.8438	5	610	9.85497 9.85485	13 12	472	9.98888	25 25	0.01112	259	44
17 18	821 9.8439		590	9.85485	12	529 586	9.98913	26	0.01087	253	43
19	842 9.8441 862 9.8442		569 549	9.85473 9.85460	13	643	9.98939 9.98964	25	0.01061 0.01036	247 241	42 41
20	69883 9.8443'	- 13	71529	9.85448	12	97700	9.98989	25	0.01011	1.0235	40
21	904 9.8445	13 13	508	9.85436	12	756	9.99015	26 25	0.00085	230	39
22	925 9.8446	5 70	488	9.85423	13 12	813	9.99040	25	0.00000	224	38
23 24	946 9.8447 966 9.8448	1 12	468 447	9.85411	12	870 927	9.99065 9.99090	25	0.00935 0.00910	218 212	37 36
25	69987 9.8450	- 13	71427	9.85399 9.85380	13	97984	9.99116	26	0.00884	1.0206	85
26	70008 9.8451	2 - 3	407	9.85374	12	97904	9.99141	25	0.00850	200	34
27	029 9.8452	3 23	386	9.85361	13 12	600	9.99166	25 25	0.00834	194	33
28	049 9.8454	1 12	366	9.85349	12	155	9.99191	20	0.00800	188	32
29 80	070 9.8455	12		9.85337	13	213	9.99217	25	0.00783	182	31 80
3U 3I	70091 9.8450		71325	9.85324 9.85312	12	98270 327	9.99242 9.99207	25	0.00758 0.00733	1.0176 170	30 29
32	132 9.8459	2 -3	284	9.85299	13	384	9.99203	26	0.00707	164	28
33	153 9.8400		264	9.85287	12 13	441	9.99318	25 25	0.00082	158	27
34	174 9.8461	- 12	243	9.85274	12	499	9.99343	25	0.00057	152	26
85	70195 0.8463		71223	9.85262	12	98556	9.99368	26	0.00632 0.00606	1.0147	25 24
36 37	215 9.8464 236 9.8465	1 13	203 182	9.852 <u>3</u> 0 9.85237	13	613 671	9-99394 9-99419	25	0.00581	141 135	23
38	257 9.8466		162	9.85223	12	728	9.99444	25 25	0.00556	129	22
39	277 9.8468	13	141	9.85212	13 12		9.99469	-3 26	0.00531	123	21
40	70298 9.8469	1 10	71121	9.85200	13	98843	9.99495	25		I.0117 111	20
41 42	319 9.8470 339 9.8472	13	100	9.85187 9.85175	12	901 958	9.99520 9.99545	25	0.00480 0.00455	105	19 18
43	360 9.8473	3 13	059	9.85162	13	99016	9-99570	25 26	0.00430	099	17
44	381 9.8474	12	039	9.85150	12 13		9.99596	20	0.00404	094	16
45	70401 0.8475	1 12	71019	9.85137	13	99131	9.99621	-5 25	0.00379	1.0088	15
46	422 9.8477	172	70998	9.85125	13	189	9.99646	26	0.00354 0.00328	082 076	14 13
47 48	443 9.8478 463 9.8479	\$ 12	978 957	9.85112 9.85100	12	247 304	9.99672 9.99697	25	0.00303	070	13 12
49	484 9.8480	s∣ *3	937	9.85087	13	362	9.99722	25	0.00278	064	II
50	70505 9.8482		70916	9.85074	13 12	99420	9-99747	25 26	0.00253	1.0058	10
51	525 9.8483		896	9.85062	12	478	9-99773	25	0.00227	052	8
52 53	546 9.8484 567 9.8486	- i - 3	875 855	9.85049 9.85037	12	536 594	9.99798 9.99823	25	0.00202	047 041	
53 54	587 9.8487	1 13	834	9.85024	13	652	9.99848	25	0.00152	035	76
55	70608 9.8488	- 12 5 To	70813	9.85012	12	99710	9.99874	26	0.00126	1.0029	5
56	628 9.8489	3 43	793	9.84999	13 13	768	9.99899	25	0.00101	023	4
57	649 9.8491	1 10	772	9.84986	12	826	9.99924	25	0.00070	017 012	3
58 59	670 9.8492 690 9.8493	5 45	752 731	9-84974 9-84961	13	884	9.99940 9.99975	26	0.00025	000	Ĩ
59 60	711 9.8494		711	9.84949	12		10,00000	25	0.00000	000	Ō
	Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log. Tan Nat. /										

45°

No. 22. CALCULATION OF ELEMENTS OF MACHINE DESIGN.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. THEORY OF CRANE DESIGN.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys, etc.

No. 24. EXAMPLES OF CALCULATING DESIGNS.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. DEEP HOLE DBILLING.-Methods of Drilling; Construction of Drills.

No. 26. MODERN PUNCH AND DIE CONSTRUCTION.—Construction and Use of Sub-press Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. LOCOMOTIVE DESIGN, Part I.-Boilers, Cylinders, Pipes and Pistons.

No. 28. LOCOMOTIVE DESIGN, Part II.—Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. LOCOMOTIVE DESIGN, Part III.—Smokebox; Exhaust Pipe; Frames; Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels.

No. 30. LOCOMOTIVE DESIGN, Part IV.-Springs, Trucks, Cab and Tender.

NO. 31. SCREW THREAD TOOLS AND GAGES.

No. 32. SCREW THREAD CUTTING .--- Change Gears; Thread Tools; Kinks.

No. 33. SYSTEMS AND PRACTICE OF THE DRAFTING-ROOM.

No. 34. CARE AND REPAIR OF DYNAMOS AND MOTORS.

No. 35. TABLES AND FORMULAS FOR SHOP AND DRAFTING-ROOM.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. IBON AND STEEL .- Principles of Manufacture and Treatment.

No. 37. BEVEL GEABING.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. GRINDING AND LAPPING.—Grinding and Grinding Machines; Disk Grinders; Bursting of Emery Wheels; Kinks; Lapping Flat Work and Gages.

No. 39. FANS, VENTILATION AND HEATING .- FANS; Heaters; Shop Heating.

No. 40. FLY-WHEELS .- Their Purpose, Calculation and Design.

No. 41. JIGS AND FIXTURES, Part I.—Principles of Jig and Fixture Design; Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. JIGS AND FIXTURES, Part II .- Open and Closed Drill Jigs.

No. 43. JIGS AND FIXTURES, Part III .- Boring and Milling Fixtures.

No. 44. MACHINE BLACKSMITHING .- Systems, Tools and Machines used.

No. 45. DROP FORGING .-- Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. HARDENING AND TEMPEBING .- Hardening Plants; Treating High-

Speed Steel; Hardening Gages; Case-hardening; Hardening Kinks.

No. 47. ELECTRIC OVER-HEAD CRANES.—Design and Calculation.

No. 48. FILES AND FILING.-Types of Files; Using and Making Files.

No. 49. GIBDERS FOR ELECTRIC OVERHEAD CRANES.

NO. 50. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part I.

No. 51. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part II.

No. 52. Advanced Shop Abithmetic for the Machinist.

No. 53. USE OF LOGARITHMS, AND LOGARITHMIC TABLES.

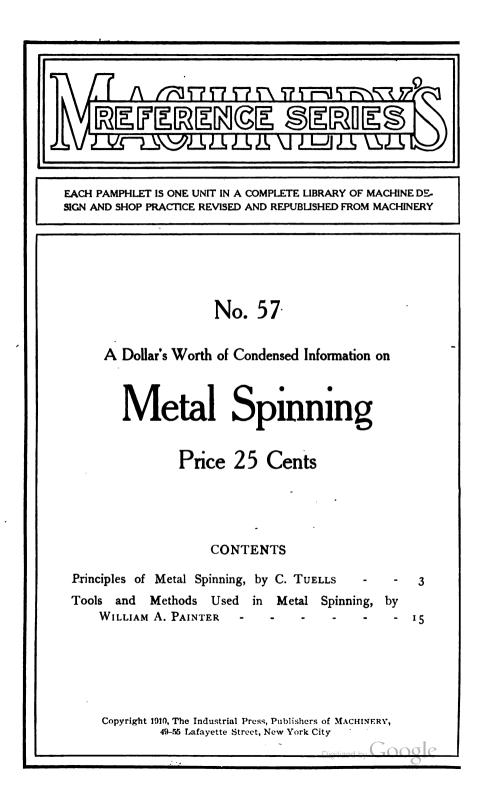
No. 54. Solution of TRIANGLES, Part I.-Methods, Rules and Examples.

No. 55. Solution of TBIANGLES, Part II.-Tables of Natural Functions.

No. 56. BALL BEARINGS .- Principles of Design and Construction.

No. 57. METAL SPINNING.-Machines, Tools and Methods Used.

No. 58. HELICAL AND ELLIPTIC SPRINGS .--- Calculation and Design.


No. 59. MACHINES, TOOLS AND METHODS OF AUTOMOBILE MANUFACTURE.

NO. 60. CONSTRUCTION AND MANUFACTURE OF AUTOMOBILES.

The Industrial Press, Publishers of MACHINERY GOOGL 49-55 Lafayette Street ^{Subway Station}, New York City, U.S.A.

Digitized by Google

MACHINERY'S REFERENCE SERIES

This treatise is one unit in a comprehensive Series of Reference books, originated by MACHINERY, and including an indefinite number of compact units, each covering one subject thoroughly. The whole series comprises a complete working library of mechanical literature in which the Mechanical Engineer, the Master Mechanic, the Designer, the Machinist and Tool-maker will find the special information he wishes to secure, selected, carefully revised and condensed for him. The books are sold singly or in complete sets, as may be desired. The price of each book is 25 cents, and it is possible to secure them on even more favorable terms under special offers issued by MACHINERY's circulation department and sent to any one on request.

The success of the Reference Series was instantaneous and copies are now widely distributed in machine shops and metal working plants everywhere.

CONTENTS OF REFERENCE BOOKS

No. 1. WORM GEABING.—Calculating Dimensions for Worm Gearing; Hobs for Worm-Gears; Location of Pitch Circle; Self-Locking Worm Gearing; etc.

No. 2. DEAFTING-ROOM PEACTICE.—Drafting-Room System; Tracing, Lettering and Mounting; Card Index Systems.

No. 3. DRILL JIGS.—Elementary Principles of Drill Jigs; Drilling Jig Plates; Examples of Drill Jigs; Jig Bushings; Using Jigs to Best Advantage.

No. 4. MILLING FIXTURES.—Elementary Principles of Milling Fixtures; Collection of Examples of Milling Fixture Design, from practice.

No. 5. FIRST PRINCIPLES OF THEORETICAL MECHANICS.

No. 6. PUNCH AND DIE WORK.—Principles of Punch and Die Work; Suggestions for the Making and Use of Dies; Examples of Die and Punch Design.

No. 7. LATHE AND PLANER TOOLS.—Cutting Tools for Planer and Lathe; Boring Tools; Shape of Standard Shop Tools; Forming Tools.

No. 8. WORKING DRAWINGS AND DRAFTING-ROOM KINKS.

No.'9. DESIGNING AND CUTTING CAMS.—Drafting of Cams; Cam Curves; Cam Design and Cam Cutting; Suggestions in Cam Making.

No. 10. EXAMPLES OF MACHINE SHOP PRACTICE.—Cutting Bevel Gears with Rotary Cutters; Making a Worm-Gear; Spindle Construction.

No. 11. BEABINGS.—Design of Bearings; Causes of Hot Bearings; Alloys for Bearings; Friction and Lubrication; Friction of Roller Bearings.

No. 12. MATHEMATICS OF MACHINE DESIGN.—Compiled with special reference to shafting and efficiency of hoisting machinery.

No. 13. BLANKING DIES.—Making Blanking Dies; Blanking and Piercing Dies; Construction of Split Dies; Novel Ideas in Die Making.

No. 14. DETAILS OF MACHINE TOOL DESIGN.—Cone Pulleys and Belts; Strength of Countershafts; Tumbler Gear Design; Faults of Iron Castings.

No. 15. SPUR GEARING.—First Principles of Gearing; Formulas for Spur Gearing; Design and Calculation of Gear Wheels; Strength of Gear Teeth.

No. 16. MACHINE TOOL DRIVES.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. STRENGTH OF CYLINDERS .- Formulas, Charts, and Diagrams.

No. 18. SHOP ARITHMETIC FOR THE MACHINIST.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. USE OF FORMULAS IN MECHANICS.—With numerous applications.

No. 20. SPIRAL GEARING.—Calculating Spiral Gears; Rules, Formulas, and Diagrams for Designing Spiral Gears; Efficiency of Spiral Gearing, etc.

No. 21. MEASUBING TOOLS.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc.

See inside back cover for additional titles

MACHINERY'S REFERENCE SERIES

EACH NUMBER IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DESIGN AND SHOP PRACTICE REVISED AND REPUB-LISHED FROM MACHINERY

NUMBER 56

BALL BEARINGS

CONTENTS

Principles of Ball Bearings - - - - 3 Design and Construction of Ball Bearings, by ASHER GOLDEN 16

Copyright, 1910, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City

.

,

.

•

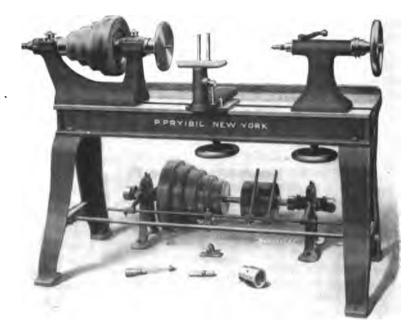
CHAPTER I

PRINCIPLES OF METAL SPINNING*

Metal spinning, that process of sheet metal goods manufacturing which deals with the forming of sheet metal into circular shapes of great variety by means of the lathe, forms and hand-tools, is full of kinks and schemes peculiar to itself. It is the purpose of this treatise to give a description of spinning in general, and to outline some of the methods and tools used in spinning for rapid production.

The products of metal spinning are used in a great many lines of manufacture. Examples of this work are chandelier parts, cooking utensils, silver and brittania hollow-ware, automobile lamps, caneheads and many other sheet metal specialties. Brass, copper, zinc, aluminum, iron, soft steel, and, in fact nearly all metals yield readily to the spinner's skill. At best spinning is physically hard work, and the softer the stock, the easier and quicker the spinner can transform it into the required product.

There are but two practical ways of forming pieces of sheet metal into hollow circular articles: by dies and by spinning. By far the cheapest and best method of producing quantities of this class of work is by the use of dies, but there are many cases where it is impractical or impossible to follow this course. Dies are expensive and there is constant danger of breakage, whereas spinning forms are easily and cheaply made and are almost never damaged by use beyond a reasonable amount of wear. Thus it will be seen that when the production is small, it does not pay to make costly dies. Again, the styles or designs of many articles that are spun are constantly being changed; if made by dies each change would necessitate a new die, while in spinning merely a new wooden form is required-and sometimes the old form can be altered, costing practically nothing. Still other advantages of spinning are that in working soft steel, a much cheaper grade may be spun than can be drawn with dies; beads may be rolled at the edges of shells at little expense: experimental pieces may be made quickly, and, added to these features comes the fact that very difficult work that cannot possibly be made with dies can be spun with comparative ease. It must not be construed from the above that spinning is to be preferred to die work in all or even in the majority of cases, because, on the contrary, die work is a more economical method of manufacture, and should always be used when possible on production work. The cases already cited are merely given to point out some of the instances in which, for economical reasons, spinning is to be preferred to die work.


* MACHINERY, December, 1909.

Digitized by Google

No. 57-METAL SPINNING

The Spinning Lathe

The principal tool used in the operation of spinning is the spinning lathe, shown in Fig. 1. While in many respects this machine is similar to any other lathe, it is built without back-gears, carriage or leadscrew, is very rigid in construction, and, on the whole, very much resembles a speed lathe. Like other lathes, the spinning lathe is fitted with a cone pulley (preferably of wood, because of its lightness and gripping qualities), allowing the use of four or five different speeds. Speed is an important factor in spinning. Arbitrary rules for spinning speeds cannot be given, as the thicker the stock the

Fig. 1 Spinning Lathe

slower must be the speed; thus while 1/32-inch iron can be readily spun at 600 revolutions, 1/16-inch iron would necessitate reducing the speed to 400 revolutions per minute: Zinc spins best at from 1,000 to 1,400 revolutions; copper works well at 800 to 1,000; brass and aluminum require practically the same speed, from 800 to 1,200; while the comparatively slow speed of 300 to 600 revolutions is effective on iron and soft steel. Brittania and silver spin best at speeds from 800 to 1,000 revolutions.

One of the essential parts of the spinning lathe is the T-rest. The base of this rest is movable on the ways of the lathe, and it has at the side nearest the operator, a stud about four inches in diameter and six inches high, through which is swiveled the T-rest proper.

PRINCIPLES OF METAL SPINNING

As the illustration shows, provision is made for raising and lowering the rest, and the entire rest may be clamped in any desired position by means of the hand-wheel shown beneath the ways. The rest proper consists of an arm, 12 to 15 inches long, similar to a wood turner's rest, and through the face of this arm are from twelve to sixteen closely spaced %-inch holes. These holes are to receive the pin against which the hand tools are held while spinning. The pin is three inches long and of %-inch steel, turned down on one end to loosely fit the holes in the rest.

Another important part of the spinning lathe is the tail-center. This center is sometimes the ordinary dead center that is in general

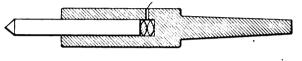


Fig. 2. Revolving Center

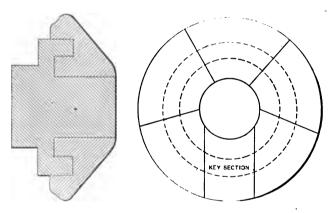
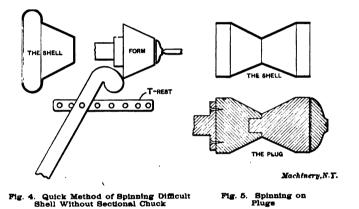


Fig. 3. Sectional Spinning Chuck

machine shop use, but nearly all spinners use the revolving center, shown in Fig. 2. The revolving center is $\frac{3}{4}$ inch diameter (without taper) and about six inches long, and is fitted into the socket in which it runs; this socket is, in turn, fitted to the taper hole in the tailstock. At the bottom of the hole in the socket are two steel buttons, hardened and ground convex on their faces. These buttons act as ball bearings and reduce friction to a minimum.

Forms and Chucks for Spinning


The shape of a shell made by spinning is dependent on the form or chuck upon which the metal is spun. Forms are used for plain spinning where the shape of the shell will permit of its being readily taken from the form after the spinning has been completed; but when the shape of the shell is such that it will not "draw," as the molders say, it becomes necessary to employ sectional chucks, similar to the

5

Digitized by GOOGI

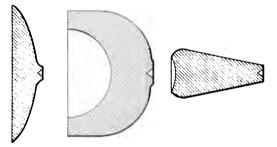
No. 57-METAL SPINNING

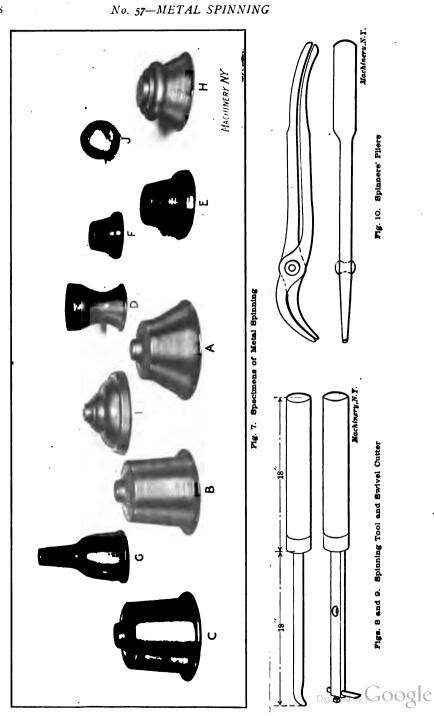
one shown in Fig. 3. Generally speaking, spinning forms are made of kiln dried maple. After being bored and threaded to fit the lathe spindle, the spinner turns the maple block to agree with a templet shaped in outline to the sample shell. When no sample is furnished, the templet must be laid out from a sketch or drawing; in either case proper allowance is made for the thickness of the stock. When large quantities of shells are to be spun, all alike, the form is sometimes made of lignum vitæ. Another method is to turn the maple form small enough so that one shell may be spun and cemented to it and then this metal-cased form is used to spin the balance of the shells. For continuous spinning, forms are made of cast iron or steel, which of course makes a most satisfactory surface to spin on and gives indefinite service.

A sectional or "split" chuck, as it is sometimes called, is, as the name implies, a spinning chuck or form which may be taken apart in sections after the shell has been spun over it. As before stated, this class of spinning chuck is only used when the finished shell could not be removed from an ordinary form after spinning. After a shell has been spun over a sectional chuck, the shell and the sections of the chuck are together pulled lengthwise from the core of the chuck. Then, starting with the key section, it is an easy matter to remove each section from the inside of the shell. As the sections are removed, they are replaced upon the core, slipped under the retaining flange and the chuck is ready for spinning a new shell. The whole operation of removing and replacing the sections of a chuck takes less time than it does to tell it, and, as the sections are of different sizes, it is easy to replace the them in the proper order. Like other forms, sectional chucks are made of wood or metal, according to the requirements of the job. The core and retaining ring are first made from one piece and then the sections are turned in a continuous ring and split with a fine saw. In some cases it is necessary to add a small piece to the last section to make up for the stock lost in splitting the sections.

PRINCIPLES OF METAL SPINNING

Another kind of sectional chuck, known to the trade as a "plug" (shown in Fig. 5) is used extensively in some shops in cases where the shell must have projections or shoulders at both ends, and no bottom to the shell is required. In making the plug, which is always in two parts, the first half is turned to take the shell from one end to the center of the smallest diameter. Into the end of this part is bored a hole to which is fitted the end of the second part, which is afterwards turned to fit the shell. Over this two-part plug the shell is spun; then the bottom of the shell is cut out and the first half of the plug removed, thus allowing the shell to be withdrawn. The first part is then replaced and the plug is ready for use again. Fig. 4 shows a method of spinning difficult shells that ordinarily would require a sectional chuck. The shell shown at the left of Fig. 4 is first spun as far as the bulged part on an ordinary form that ends at this




Fig. 6. Three Types of Followers

point. Then after annealing, it is replaced on the form and while another operator holds the wooden arm, supported with a pin in the T-rest, the spinner forms the metal around the bulge-shaped end of the.arm. The arm, being stationary on the inside of the shell, acts as a continuation of the spinning form, and by this method as good a shell is obtained as could be spun with a sectional chuck.

For spinning operations upon tubing or press-drawn tubes, steel arbors are generally used. Tubing may be readily spun upon an arbor and it can be reduced or expanded to comply with the shape of shell required much more quickly than the shell could be spun from the blank.

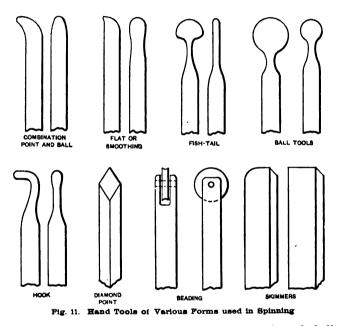
Followers

For holding the sheet metal blank to the spinning form, a block of wood known as the follower, is used (see Fig. 6). Followers are made to sult the shape of the work with which they are to be employed, always being made with the largest possible bearing on the work; thus a shell with a flat bottom twelve inches in diameter would be turned with the aid of a follower having an 11%-inch face, while a shell with a 4-inch face would take a follower with a 37%-inch face. All shells do not have flat bottoms, consequently, in spinning such as do not, it becomes necessary to employ hollow followers. Hollow followers have their bearing surfaces turned out to fit the ends of the Digitized by

forms with which they are to be used. In practice, the blank is held against the end of the spherical form with a small flat follower until enough of the shell has been spun to admit of the hollow follower being used. All followers are made with a large center hole in one end to receive the revolving tail-center.

In starting to spin a difficult shell it sometimes happens that the necessarily small follower will not hold the blank. To prevent this slipping, the face of the follower is covered with emery cloth. Often, however, on rough work, the spinner will not stop to face the follower, but will make a large shallow dent at the center of the blank; the extra pressure required to force the metal against the form will usually overcome the slipping tendency.

Hand Tools


Hand tools, in great variety, form the principal asset of the spinner's kit. Spinning tools are made of tool steel forged to the required shapes, and are hardened and polished on the working end. The round steel from which they are made varies from $\frac{1}{2}$ inch to $\frac{1}{2}$ inch in diameter, according to the class of work upon which they are to be used. The length of a spinning tool is about 2 feet, and it is fitted into a wooden handle 2 inches diameter and 18 inches long, making the total length of the handled tool about 3 feet, as shown in Fig. 8. As the spinner holds this handle under the right armpit, he secures a great leverage upon the work and is better able to supply the physical power required to bring the metal to the desired shape.

The commonest and by far the most useful of the spinning tools is the combination "point and ball" which together with a number of other tools, is shown in Fig. 11. This tool is used in doing the bulk of the spinning operations-for starting the work and bringing it approximately to the shape of the form. Its range of usefulness is large on account of the many different shapes that may be utilized by merely turning the tool in a different direction. Next in importance comes the flat or smoothing tool which, as the name implies, is for smoothing the shell and finishing any rough surfaces left by the point and ball tool. The fishtail tool, so named from its shape, is used principally in flaring the end of a shell from the inside, "spinning on air." as it is sometimes termed. This tool is used to good advantage in any place where it is necessary to stretch the metal to any extent, and its thin rounding edge proves useful in setting the metal into corners and narrow grooves. Other tools are the ball tool which is adapted to finishing curves; the hook tool, used on inside work; and the beading tool which is needed in rolling over a bead at the edge of a shell when extra strength or a better finish is desired.

When much beading of one kind is being done, a large heavy pair of round-nose pliers (Fig. 10) with the jaws bent around in a curve and sprung apart enough to allow for the thickness of the metal proves to be a handy tool. After the edge of the shell has been flared out to start the bead, the pliers are opened enough to admit the metal and then closed and the stock guided around to form the bead as far

as possible. In this way the larger part of a bead is rapidly formed, one jaw of the pliers acting as a spinning tool and the other corresponding to the back-stick. During this operation, the pliers are, of course, supported by being held against the T-rest.

Closely allied with these spinning tools are two other tools (also shown in Fig. 11) known as the diamond point and the skimmer. The diamond point is for trimming the edges of the shell during the spinning operation and for cutting out centers or other parts of the work. The skimmer is for cleaning up the surface of a shell, removing a small amount of metal in doing so, the amount depending upon the skill the spinner used in the spinning proper.

When the bottoms are to be cut from a large number of shells and it is necessary that they be cut exactly alike, a tool known as a swivel cutter is used. This tool (see Fig. 9) is simply an iron bar with a cutter on one end, which swivels near the center around a pin in the T-rest; thus by a slight movement of the arm the cutter is brought up to the work, cutting a piece from the shell of exactly the same size each time.

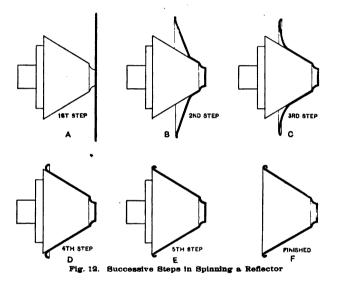
The Spinning Operation

In order to make clear the successive steps in spinning, let us briefly consider the making of a copper head-light reflector, and the way the work is handled when a few hundred pieces are to be made.

By trial spinning, the size of the blank required for one of the reflectors is determined, and with the square shears the copper sheets

Digitized by GOOGLE

are cut into pieces an eighth of an inch larger each way. These squares are then taken to the circular shears and cut to round shapes ready for the spinning lathe. The spinning form, of kiln-dried maple, is screwed to the spindle and the belt thrown to that step of the cone pulley which will bring the speed nearest to 1,200 revolutions. From the stock-room a follower is selected whose face will nearly cover the bottom of the form. It is now "up to" the spinner. Holding a blank and also the follower against the end of the form, he runs the tailcenter up to the center in the follower just hard enough to hold the blank in place. Then, starting the lathe, he centers the blank by lightly pressing against its edge a hard wood stick. As soon as it "lines up" he runs the center up a little harder and clamps it in place. Some spinners will "hop in" a blank with the lathe running, but this is dangerous practice and sometimes the blank will go sailing across the room. Often this happens in truing up the blank and for this reason it is considered advisable to have a wire grating at the further side of the lathe to prevent serious accidents; for a sheet metal blank is a dangerous missile traveling at the high rate of speed which is imparted to it by the lathe.


With a piece of beeswax (soap is sometimes used for economical reasons) the spinner lightly rubs the rapidly revolving blank and then adjusts the pin in the T-rest to a point near enough to the blank to obtain a good leverage with the spinning tool. Holding the handle of his point and ball tool under his right armpit and using the tool as a lever and the pin on the rest as a fulcrum, he slowly forces the metal disk back in the direction of the body of the form, never allowing the tool to rest in one spot, but constantly working it in and out, applying the pressure on the way out to the edge of the disk and letting up as he comes back for a new stroke. In the meantime his left hand is busy holding a short piece of hard wood (called the backstick), firmly against the reverse side of the metal at a constantly changing point opposite the tool. The object of the back-stick is to keep the stock from wrinkling as it is stretched toward the edge of the disk. Wrinkles cause the metal to crack at the edges and for this reason they must be kept from the stock as much as possible.

After a few strokes of the spinning tool have been taken, the shell will appear about as shown at B, Fig. 12, and at this point it is necessary to trim the shell at the edges with the diamond-point tool. Trimming is required because spinning stretches the stock and the resulting uneven edge will cause splits in the metal if it is not trimmed occasionally. As a carpenter is known by his chips, so a spinner is known by the way his work stretches. While the even pressure of a good spinner will stretch the stock very little, the uneven pressure of the inexperienced man will lead him into all sorts of trouble on account of the way the stock will "go." In either case the metal always stretches least in the direction in which the sheet stock was originally rolled, consequently giving the edge a slight oval shape. In trimming zinc, the spinner holds a "swab" of cloth just above the diamond point,

to prevent the chips from flying into his face and eyes—or those of his neighbors. With other metals the swab is unnecessary.

The reflector is now taking shape. With each successive stroke the spinner sets a little more of the metal against the form. Not only does spinning stretch the metal, but it hardens it as well; therefore, at the stage C it becomes necessary to anneal the partially completed reflector, which is done by heating it to a low red in a gas furnace. In running through a lot of shells, the common practice is to spin them all as far as possible without annealing, and after annealing the whole lot, to complete the spinning.

After replacing the shell upon the form, it is trimmed and worked further along the form, gradually assuming the appearance shown at

D. At this time, the spinner goes back to the small radius at the front end of the shell and with a ball tool he closes the annealed metal hard down against the form, for the spinning has tended to pull the stock slightly from the form at this point. The body of the reflector is now practically completed and the spinner directs his attention to rolling the bead at the outside edge. Slowly he begins to roll the edge of the shell back, using his hook tool to complete the bead as far as possible and exercising care to keep the back-stick firmly against the metal so as to keep the wrinkles out. Now, with the diamond point, he gives the edges a final trim, and with the beading tool closes down the bead snugly against the rest of the shell, as shown at E. Lastly, the swivel cutter is placed in the proper hole of the T-rest and a turn of the tool cuts out the center to the exact size, and the reflector is completed. If any burrs or rough places remain they are easily removed at this time with the skimmer or diamond point, and a little emery cloth gives the shell a finished appearance.

Referring to the illustration Fig. 7, A, B and C represent the three most important stages of spinning a shell like that shown at C. Annealing is necessary between steps A and B. D is a shell spun upon a form of the plug variety, and E and F are two views of a shell spun after the method shown in Fig. 4, F being the completed shell. G illustrates a very difficult shell to spin, on account of the small follower that must be used: the length of the small diameter also adds to the difficulty. H shows a shell that must be spun upon a sectional chuck. while I is a plain easy job of ornamental spinning. The ball shown at J was spun from one piece of aluminum and it is more of a curiosity than a specimen of practical spinning. It was first spun over a form that would leave one half of the ball complete and the stock for the other half straight out like a short tube. Next a wooden split chuck was made, hollowed out to receive the finished end of the ball and the open end was gradually spun down and in until the ball was complete with but a 1/16-inch hole at the end. This hole was plugged and the hollow ball was done.

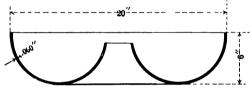
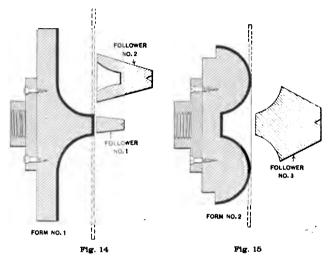



Fig. 13. An Interesting Example of Metal Spinning

As another example of metal spinning, assume the shape shown in Fig. 13. The shell is to be 20 inches in diameter, 6 inches deep, and 0.060 inch thick. The metal to be used is zinc. This is an interesting metal spinning job, and not a particularly difficult one. The shell can be best spun with the aid of two spinning forms, such as are illustrated in Figs. 14 and 15. These forms should be made of kiln-dried maple if there are comparatively few shells to be spun. If there are many, the forms should be made of cast iron. Fig. 14 shows the first form to be used, which conforms to the outside of the shell as far as the centers of the spherical ring. Beyond these points, the form is straight. The blank to be spun is placed as indicated by the dotted lines, and follower No. 1 is used to hold the work against the form. The chief trouble will be met in properly starting the shell, because of the small follower that must be employed. However, follower No. 2 may be substituted after working the metal back against the form a few inches, and as this gives a better grip on the shell, there will be no further danger of slipping. After spinning the zinc shell to the shape of the first form (Fig. 14) it will probably have to be annealed, but this can only be determined by trial. In annealing zinc, the flame should not be allowed to touch the metal. The half completed shell is then put on form No. 2 shown in Fig. 15. It is an easy matter to spin the metal round to complete the arc. The dotted line shows the position of the shell before starting the last part of the spinning. Of course, it will be understood

No. 57-METAL SPINNING

that the shell must be trimmed several times during the spinning, and if the trimming is frequently done, a well-shaped shell should result. For spinning on form No. 2, follower No. 3 must be used. Either beeswax or soap should be frequently rubbed over the work while spinning. If it is necessary to cut out the center, it can be done before removing the shell from the last form by simply removing the follower and using a diamond point tool, or in large product work the swivel cutter will work well. The shell will cling to the form without the follower. The spinning speed should be from 800 to 1,000 R. P. M.

While the operation of spinning is a comparatively simple one to describe, it is not easily learned, and to-day good all-around spinners are hard to find. The limits of accuracy are not as closely defined as in straight machine work, but there are times when good fits are absolutely necessary, as in cases where two shells must slip snugly together. In this chapter we have taken up only the plain every-day kind of spinning, and were we to follow its work in the gold and silversmith's trade, we would see it evolve into a fine art. In order to insure really good work coming from the spinning lathe, there is a wide range of knowledge that the spinner must have. That knowledge may be brought together and summed up by a single word—judgment.

CHAPTER II

TOOLS AND METHODS USED IN METAL SPINNING*

The principal object of this chapter is to describe in detail the various operations of spinning metal so that a tool-maker or machinist who has not access to a metal spinner, will be able to make his own tools, rig up an engine or speed lathe, and make the simple forms or models that are required in experimental work. To do this intelligently, it is necessary to follow in detail every step in metal spinning from the circular blank to annealing, pickling, dipping, burnishing, etc., and also to know how to make the simpler forms of spinning tools, what lubricants to use on the different kinds of metals, what material to make the spinning chuck of, and how far the metal can be worked before annealing.

Spinning metal into complicated and elaborate shapes, is an art fully as difficult as any craft, and the man is truly an artist that can make artistic and graceful outlines in metal, especially when only a few pieces are required and the cost will not allow of making special chucks to do the work on and with no outline chucks to govern his design, the forms being made by skill and manipulation of tools alone. Such skill is far superior to that of the Russian metal worker, who, instead of making a vase or ornament of one piece, cuts up several sections and soft solders them together, after covering them with crude "gingerbread" work to disguise his poor metal work.

The amateur can imitate the Russian work, but never the work of the skilled spinner. There are several grades of spinners, most of them never attaining the skill of the model-maker or the facility for handling the different metals. A man that has had several years of experience spinning brass or copper would not be able to spin britannia or white metal without stretching it to a very uneven thickness. As brass or copper is harder than the other metals mentioned, they resist the tool more and require more pressure in forming, and if the operator used the same pressure on the softer metals, he would stretch or distort them, so that they would be perhaps one-quarter of the original thickness at angles and corners where the strain in spinning would be greatest, which would ruin the articles. The best test for skill in ordinary spinning, is to take a long difficult shape, after being finished, and saw it in two lengthwise, and if the variation in thickness is less than 25 per cent of the original gage, it is good practice. Some spinners can keep within 10 per cent of the gage on ordinary work, but they are scarce.

The spinning trade in this country is mostly followed by foreigners, Germans and Swedes being the best. The American that has intelli-

* MACHINERY, March and April, 1910.

No. 57-METAL SPINNING

gence and skill enough to be a first class spinner, will generally look around for something easier about the time that he has the trade acquired. It is an occupation that cannot be followed up in old age, as it is too strenuous, the operator being on his feet constantly, and having to use his head as well as his muscles.

General Remarks on Metal Spinning Chucks

For common plain shapes, a patternmaker's faceplate, with a tapered center screw, is sufficient for holding the wood chuck. The hole in the wood should be the same taper as the screw, thus giving an even grip on the thread. If a straight hole only is used, and it is not reamed out before screwing to the plate, it will only have a bearing on one or two threads, and if the chuck is taken off and replaced on the faceplate, it will not run true. Care should also be taken to face off the end of the chuck flat, or to slightly recess it, so that it will screw up evenly against the faceplate, as a high center will cause it to rock and run out of true.

In large chucks (over five inches) it is best to have three or four wood screws, besides the center screw. The holes for these can be spaced off accurately on a circle in the iron faceplate, and drilled and countersunk. It is best to have twice as many holes as screws; that is, if four screws are used there should be eight holes, so that if the chuck has to be replaced at any time and the wood has shrunk, it can be turned one eighth of a revolution further than the original chucking.

Where a chuck has to be used several times, it is better practice to cut a thread in the wood and screw the chuck directly to the spindle of a lathe, not using the faceplate. This thread can be chased with a regular chasing 'tool, where the operator has the skill, or if not, the wood can be bored out and a special wood tap used. Such a tap has no flutes and it is bored hollow, there being a wall about 3/16 inch thick. One tooth does all the cutting, that is the one at the end of the thread. The chips go into the hollow part of the tap. The end of the tap for about $\frac{1}{4}$ inch should have the same diameter as the hole before threading to act as guide for the cutting tooth.

It is essential that a chuck should run very true and be balanced perfectly, as the high speed at which it runs will cause it to vibrate and run out of true, causing the finished metal to show chatter marks. The best wood for chucks is hard maple, and it should be selected for its even grain and absence of checks and cracks. It is best to paint the ends with paraffine or red lead, or to immerse the chucks in some vegetable oil after turning. Cottonseed oil is very good for this purpose, but care should be taken not to soak the chucks too long.

For a man not skilled in spinning, it is better to use metal chucks than wood, for if there are many shells of a kind, the operator is liable to bear too hard on the tool, thus compressing the chuck and making the last shells smaller than the first. Corners and angles not well supported might also be knocked off. The writer prefers cold-

TOOLS AND METHODS

rolled steel for chucks up to 6 inches in diameter and cast iron for the larger ones, but where good steel castings can be obtained, a good chuck can be made by turning roughly to shape a wood pattern, allowing enough for shrinkage and finishing, and hollowing out the back to lighten it. When the chuck is finished all over in the lathe, it should balance much better than a cast iron one, as there are not the chances of having blow holes in the iron, thus throwing the chuck out of balance.

Annealing

The distance that metal can be drawn without annealing, can only be learned by experience. A flat blank rotated in the lathe, being soft, will offer little resistance and it can be gradually drawn down by a tool held under the chuck and against the blank. This tool is pushed from the center outward and forward at the same time, and every time it passes over the blank or disk the metal becomes harder by friction, and the change of formation and the resistance at the point of the tool greater. This can be felt as the tool is under the operator's arm. When the spring of the metal is such that the tool does not gain any, but only hardens the metal, the shell should be taken off and annealed. If the metal has been under a severe strain, it should be hammered on the horn of an anvil or any metal piece that will support the inside. The hammer should be a wood or rawhide mallet, but never metal, the object being to put dents or flutes in the metal to relieve the strain when heating for annealing; if this is not done the shell will crack.

After annealing the shell it should be pickled to clean the oxide or scale from the surface; otherwise the metal will be pitted. When the scale is crowded into the metal and when it will not finish smooth after spinning to shape, the metal can be finished by skimming or shaving the outer surface which cuts out all tool marks; it can then be finished with medium emery cloth or the shell can be bright dipped, and be run over with a burnishing tool before buffing. Burnishing can be done on the spinning chuck, but the speed should be higher than for spinning; this requires some skill for a good job, and it can be done only on metal chucks.

Annealing is best accomplished in a wood or gas oven, where a forge fire is used. The metal should never touch the coke or other fuel, but it should be held in the flame above the fire. Where only part annealing is required, the shell can be immersed in water, the part to be annealed being exposed above the water, and a blowpipe used on it. The remainder of the shell will then be hard. This way of annealing is sometimes necessary on a special shapes.

Brass should be heated to a cherry red, and held at that point for a few minutes, in a muffle furnace. If an open furnace is used, just bring the metal to a cherry red and then dip it in water; this method is better than when waiting for it to cool, the action being just the opposite to that on steel. Brass such as the common yellow brass is not suitable for spinning, there being but 55 per cent copper and 45 per cent zinc. There are two grades of brass suitable for spinning. These

17

Digitized by GOOGLE

are known as "spinning and drawing," having 60 per cent copper and 40 per cent zinc, and "extra spinning and drawing" having 67 per cent copper and 33 per cent zinc. There is also a better grade known as "low brass" having from 75 to 80 per cent copper; it has the color of bronze and is only used on very deep and difficult spinning.

The scale, after annealing, should be pickled off in an acid bath (described further on in this chapter), and the part thoroughly washed in running water. Brass, German silver and the harder metals should be hammered before annealing; it is not necessary to hammer zinc, copper, aluminum, etc.

A pyrometer in an annealing furnace would be an advantage where quantities of the softer metals such as zinc, aluminum, etc., are being heated. Copper is annealed the same as brass and is also pickled. Zinc is coated with oil before being put in the oven, and when the oil

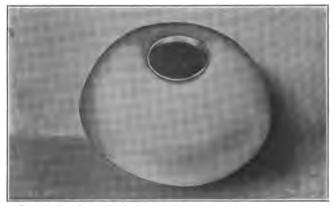


Fig. 16. Zinc Lamp Shade Spun in One Operation without Annealing

turns brown, which occurs when the temperature is about 350 degrees, the metal is ready to take out; it should then be plunged in water to shed the scale, but not pickled. The melting point of zinc is 780 degrees F. Aluminum can be annealed the same as zinc, as the melting point is 1,140 degrees F.

Steel should be annealed by heating to a cherry red and then allowing it to cool slowly; it should be scaled in a special pickle, thoroughly washed, and then put back in the fire long enough to evaporate every particle of acid that may have remained from the pickling operation. Any acid remaining on the steel will neutralize any lubricant that is applied when spinning. Annealing should be avoided wherever possible. Open hearth steel only should be used. It should be free from scale and preferably cold rolled. Bessemer steel is not suitable, except for very shallow spinnings. Tin plate made from open hearth steel can be spun about one-half as deep as its diameter where the shape is not too irregular. German silver is difficult to spin, especially when it contains over 15 per cent nickel; it has to be hammered hefore annealing, the same as brass, to avoid cracks.

Digitized by Google

TOOLS AND METHODS

Lubricants

Common yellow soap cut up in strips about ½ inch or ¾ inch square is a good lubricant for spinning most metals. It should be applied evenly to the disk or blank while it is revolving, by holding the soap in the hand and drawing it across the surface. Beeswax is the best for spinning steel, but it is expensive. Lard oil mixed with white lead is a fair substitute. Either mutton or beef tallow applied with a cloth swab is very good on most all metals; also vaseline and graphite mixed to a paste and applied the same as tallow.

Examples of Spinning Various Metals

The different metals are malleable, ductile and tenacious in the following order; white metal or britannia, aluminum, zinc, copper, low brass, high brass, German silver, steel, tin plate. White metal does not harden in spinning, but it requires special skill in handling.

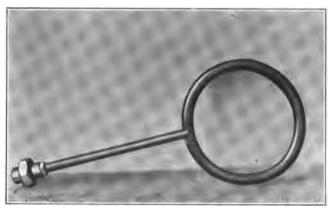
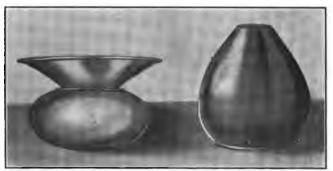


Fig. 17. Gas Burner for Heating Spinning Chuck

or the metal will be of very uneven gage. The best metal for an amateur to start on is copper, as it is both tenacious and ductile, and will stand much abuse in the fire and on the lathe. One of the peculiar properties of zinc is that it has a grain or texture, and when spinning, the two sides that went through the rolls lengthwise will be longer than the sides that have the cross grain, requiring the shell to be trimmed off quite a distance to even the edge.


To show the possibilities of working the different metals, and their relative spinning values, a number of articles made from different materials are illustrated herewith.

A zinc lamp shade is shown in Fig. 16 that is 14¼ inches in diameter and 4¾ inches deep. This shade was spun in one operation, without annealing, from a flat circular blank. All zinc should be warmed before spinning, either over a gas burner at the lathe or in hot soap water, and the chuck also should be heated, as otherwise the blank will soon chill, if spun on a cold metal chuck, as the chuck absorbs the heat long before the operation is finished. Of course—this does

Digitized by GOOGIE

No. 57-METAL SPINNING

not apply to wooden chucks. The chuck may be heated by using the burner shown in Fig. 17, which is located around the spindle of the lathe. The size of the burner should, of course, be in proportion to that of the chuck used. The burner illustrated is 8 inches in diameter. It has several small holes drilled for the gas on the side facing the chuck. The heat of the chuck is regulated by varying the supply of gas to the burner. The blank is heated before it is put on the

Figs. 18 and 19. Examples of Aluminum and Copper Spinning

chuck and the friction of the spinning tool helps to keep it warm until it comes in contact with the chuck. The metal retains its heat until the job is finished, and this sometimes saves an annealing operation.

In Fig 18 is shown an example of aluminum spinning. The article illustrated is a cuspidor having a top 7% inches in diameter, a neck with a 4-inch flare, a diameter at the top of 9% inches, and a height



Fig. 20. German Silver Reflector

Fig. 21. Open Hearth Cold-rolled Steel Shell

of 6½ inches. This shell was spun without annealing, which shows the extreme ductility of aluminum. The copper shell shown in Fig. 19, has a maximum diameter of 7 inches, and a depth of 8 inches; it was spun with four annealings. A German silver reflector, which is 10 inches in diameter at the largest end and 5 inches deep, is shown in Fig. 20. The spinning of such a reflector, when made from this material, is quite difficult. An open hearth cold-rolled steel shell with Digitized by

a maximum diameter of 3 inches and a depth of 4 inches is shown in Fig. 21. This shell was spun without annealing, which shows that the grade of steel used is well adapted for this work.

In Fig. 22 two finished brass shells are shown to the right, and also the number of operations required to change the form of the metal. The upper shell is 6 inches long and $3\frac{1}{2}$ inches in diameter at the

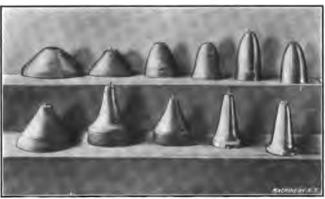


Fig. 22. Various Steps in Spinning the Two Brass Shells at the Right

large end, while the lower one is 7¼ inches long by 3¾ inches in diameter. It was necessary to anneal these shells between each operation, the upper shell being annealed four times and the lower one three times. These pieces were made in quantities sufficient to warrant the making of chucks for each operation, which enabled them to be spun with less skill than would be required if a finishing chuck

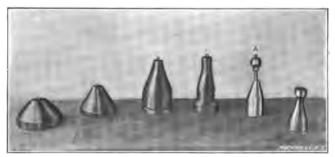


Fig. 28. Another Brass Spinning Operation; the Chuck used is shown at A

only were made. When a single finishing chuck is used, the various operations in spinning a shell of this kind would be left to the judgment of the spinner, who would decide the limit of the stretch of metal between the operations before annealing.

A brass shell that is made in five operations and with four annealings is shown in Fig. 23. The finishing chuck used is a split or key chuck on which it is necessary to cut out the end of the shell in order.

to withdraw the key after the shell is spun. This shell, which is shown finished to the right, is $5\frac{1}{2}$ inches long. It is spun smooth on a machine steel chuck, and is not skimmed, but gone over with a planishing tool at the last operation. The two pieces shown in Fig. 22 were also finished in this way.

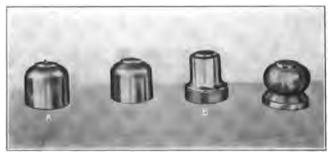


Fig. 24. An Example of "Air Spinning" and the Chucks used

Fig. 24 shows a brass shell, which is a good example of "air spinning," so called because the finishing or second operation on part of the shape is done in the air, thus avoiding the use of a sectional or split chuck. The shell shown is about $5\frac{1}{2}$ inches in diameter. The first or breaking-down chuck is shown at A. The neck or small part

Fig. 25. Miscellaneous Collection of Spinning Chucks

of the piece, and also a portion of the spherical surface, is formed by the spinning tool without any support from the chuck. After the shell is spun or broken down on chuck A, it is annealed and pickled. It is then put back on chuck A and planished or hardened on the part that is to retain its present shape. The work is then placed on the chuck B and the soft part is manipulated by the tool until it conforms to Digitized by the shape shown to the right. While this soft part of the metal is being formed, the part which was previously hardened retains its shape.

Various Types of Metal-spinning Chucks and their Construction

A miscellaneous collection of spinning chucks is shown in Fig. 25. As will be seen, the larger ones are machined out in the back to lighten them, and also to give them an even balance. The larger of those illustrated measure about $9\frac{1}{2}$ inches in diameter, and they are made of cast iron, while the smaller chucks shown in this view are of machine steel. The chuck marked A is a key chuck. Another collection of spinning chucks of various shapes is shown in Fig. 26.

Fig. 26. Another Group of Spinning Chucks. Those in the Upper Row are of the Spiit or Key Type

•Those in the upper row are all key or split chucks, and the keys are shown withdrawn from the sockets. All these chucks, up to 6 inches in diameter, are made of machine steel; those seen in the lower row are shapes which are comparatively easy to spin.

A collection of hard maple chucks is shown in Fig. 27, some of which represent shapes that are difficult to spin. The chuck A is 15 inches long, and the maximum diameter of B is $12\frac{1}{2}$ inches. These figures will serve to give an idea of the proportions of the other chucks. All of the chucks shown have threads cut in them and they are screwed directly to the spindle of the lathe, the faceplate being dispensed with. Some of the larger wooden chucks used measure approximately 5 feet in diameter. A chuck of this size is built up of sections which are glued together.

A number of bronze sectional split chucks are shown in Fig. 28. When spinning over ρ sectional chuck, it is first necessary to break

down the shell as far as is practicable on a solid chuck. Care should be taken, however, to leave sufficient clearance so that the work may be withdrawn. The shell is then annealed, after which it is put on the sectional chuck and the under cut or small end is spun down to the chuck surface. When the entire surface of the shell is spun down to a bearing, the shell is planished or skimmed to a smooth surface;

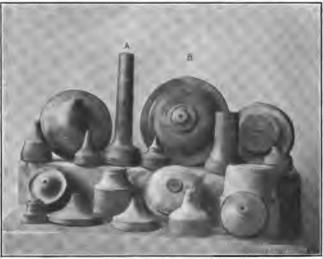


Fig. 27. Various Forms of Spinning Chucks made from Hard Maple

Fig. 28. A Group of Bronze Sectional Chucks

the open edge is also trimmed even and the shell is polished with emery cloth.

A large bronze chuck of seven sections, one of which is a key section, is shown at A. The largest diameter of this chuck is 10 inches. It has a cast iron center hub and a steel cap at the top for holding the sections in place. This cap, when in place in the retaining groove Digitized by

TOOLS AND METHODS

shown, is flush with the top of the chuck. Another large chuck having five sections and one key section is shown at B. The retaining cap in this case is of a different form. The lower parts of the sections of all these chucks fit in a groove at the bottom of the hub. A chuck of five sections that is without a binding cap, is shown at C. This is not a good design as the hub or center is too straight, and all of the grip or drive is from the bottom groove, which is not sufficient. The shape shown at D is more difficult to spin than any of the others, as it is smaller at the opening in proportion to its size. This chuck also requires more sections in order that it may be withdrawn from the shell after the latter is spun. The chuck E is intended for a small shell that is also difficult to spin. The drive pins which prevent the segments of the chuck E from turning may be seen projecting from its base. The centering pins at the outer end of chucks D and E and



Fig. 29. Sectional Chucks made from Wood

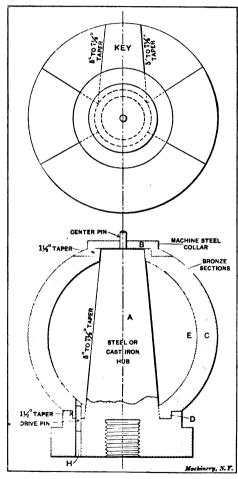
the binding caps may also be seen. The chuck A, because of its size, is hollowed out to reduce the weight. All of these chucks were made for hard service, and they have been used in spinning thousands of shells.

Another group of sectional chucks is shown in Fig. 29. They are mostly made from hard maple. The sections of chuck A are planed and fitted together and thin pieces of paper are glued to these sections before they are glued collectively for turning. By using the paper between the joints, the sections may be easily separated after they are turned to the proper size and form. If the different sections were glued without paper between them, the joint formed would be so good that the separation of the sections could not be controlled, and parts from opposite sections would be torn away. The use of the paper, however, between the glued joints, controls the separation of the sections. The chuck shown at D is also made with the paper between the sections. Chucks B and E are turned from the solid, care being taken to have the grain of the wood lengthwise. After they are turned to the required form, they are split into sections with a sharp

chisel. Before doing this, the key section should first be laid out. There should be as few sections as possible, the number being just sufficient to enable the withdrawing of the chuck from the shell after the latter is spun to shape. This method of making a chuck, while quicker than the other, is not good practice, except for small work.

A lignum vitæ chuck is shown at A in Fig. 30; this was made with paper between the sections. The key-section is shown on top. This wood, while being more durable than hard maple, costs sixteen cents a pound in the rough and, counting the waste material, is not any cheaper than bronze, and is less durable. The hard maple chucks Band C were turned from the solid, after which the sections were split. The segments shown in the center of the illustration did not split evenly, owing to a winding or twisting grain.

Fig. 30. Other Examples of Wooden Sectional Chucks


The construction of a sectional spinning chuck is shown in Fig. 31. This illustration also shows the proper proportion for the central hub and its taper. This hub should never be straight, but should have from 5 to $7\frac{1}{2}$ degrees taper on the central part. There should also be a taper of $1\frac{1}{2}$ degree on the other binding surfaces as indicated. These parts are made tapering so that the shell can be released from the lathe after spinning, without hammering or driving; when straight surfaces are used the work has to be pried off, and it is also harder to set up the sections for the next shell. Another disadvantage is that with straight fittings the wear cannot be taken up. An end cap or binder should be used wherever possible as it steadles the chuck. A drive pin should also be used and the hole for it drilled in the largest section; this is important, as it gives the sections a more positive drive. If they slip they will soon wear themselves loose and leave openings at the joints.

The plan view shows the method of laying out the various sections. The key should be laid out first. One key is enough for the particular

Digitized by Google

form of chuck illustrated, but it is often necessary to use two key sections when the shell opening is small.

When a sectional chuck is to be made, it is important to decide first on the size of the central hub A, the number of sections C, and also the design of the cap or binder B. This cap must not exceed in size the opening in the finished shell, as it would be impossible to remove it

after the chuck sections were taken out. After the size of the hub A has decided been upon. я wooden form should be turned that is a duplicate of A, except that a spherical surface E should be added. This spherical part should be slightly smaller than the inner diameter of the bronze sections in order to allow for machining them. In turning this wooden pattern on which the plaster patterns for the sections are to be formed. the shoulder D should be omitted, as a removable metal ring will take its place.

When the wooden hub is ready, two metal partitions or templets of the same outline as the chuck. though about one-half inch larger than its total diameter, for shrinkage and finishing, are fastened to the hub in the correct position for making a plaster pattern for the key section. These patterns should have extension ends so that the sections when cast may be held by them while

they are being turned.

The templets should be banked around with a wad of clay, and they should also be coated on the inside with sperm oil to keep the plaster from sticking. There should be two brads driven in the hub for each section of plaster to hold the sections in place while they are being turned. After the plaster for the key section has hardened, the templets should be located one on each side of the key section, so

that the two adjacent sections may be made. In this way all the sections are finished. After about forty-eight hours the plaster will be hard enough to turn in the lathe with a hand tool. The form should be roughly outlined and plenty of stock left for shrinkage, as bronze shrinks considerably. Before taking the sections off the wooden frame, the metal band D should be removed to allow the sections to be separated. This should not be done, however, until they are numbered, so that they can be again placed in their proper positions. After the sections are cast, they should be surfaced on a disk grinder. or finished with a file, care being taken to remove as little metal as possible. Each section is next tinned on both contact faces, and then

Fig. 32. A Modern Spinning Lathe

all are assembled and sweated or soldered together by a blow-pipe. It is sometimes necessary to put a couple of strong metal bands around the sections to hold them firmly in place when soldering and also to support them during the turning operation.

The central hub A should be machined first; then the assembled outside shell should be machined to fit the hub A, both on the taper part and at the point D. While the segments are being bored and faced, they are held by the extension ends (not shown) which were provided for this purpose. This outer shell should also be machined all over the inside so that it will be in balance. It is then taken out of the chuck and a hole is drilled in the largest section for drive pin H. The hub A is then caught in the lathe chuck with the assembled sections on it, and a seat is turned for the cap B. After this is done the binder bands can be removed, but not before. The chuck can be finished with a hand tool and file after the roughing cut is taken. After the sections are removed from the hub and numbered at the

Digitized by Google

bottom or inner ends, they can be separated by heating them. If the joints are properly fitted there will be only a thin film of solder, which can be wiped off when hot.

A twenty-four-inch metal spinning lathe that is rigged up in a modern way, is shown in Fig. 32. The hand wheel of the tailstock has been discarded for the lever A, which is more rapid and can be manipulated without stopping the lathe. This lathe has a roller bearing for the center B which is a practical improvement over types previously used. The pin C, which is used in the rest as a fulcrum for the spinning tools, is also an improvement, being larger than those ordinarily used. It is $\frac{3}{4}$ inch in diameter, 6 inches long, and it has

Fig. 33. View showing how the Tool is held when Spinning

a reduced end for the holes in the rest, % inch in diameter by 1 inch long. This pin is large enough so that the spinner can conveniently hold it with his left hand when necessary, and it can also be rapidly changed to different holes. The pins ordinarily used, because of their small size, do not have these advantages. The speed of a spinning lathe having a five-step cone should be about 2,250 to 2,300 revolutions per minute with the belt on the smallest step, and from 600 to 700 revolutions per minute with the belt on the largest step. The fastest speed given is suitable for all work under 5 inches in diameter, and the slowest for work within the capacity of the lathe. On large shells it is sometimes necessary to change from one speed to another as the work progresses. Figs. 33 and 34 show the spinner at work, and illustrate how the tool should be held, and also the proper position of the left hand.

Digitized by Google

Construction of the Tailstock and Back-center

Fig. 35 shows a spinning-lathe tailstock, which has been changed from the hand-wheel-and-screw type to one having a lever and a roller bearing. The spindle A which is withdrawn from the lever and turned one-quarter of a revolution to give a better view of the rollers, is made from 1%-inch cold rolled steel. The rollers against which the center bears do not project beyond the spindle, so that the latter can be withdrawn through the tailstock. This eliminates the excessive overhang caused by ball bearings and other centers. When the center projects too far, the tailstock cannot be set close to the work, owing to the necessity of withdrawing the center when removing the

Fig. 34. Another View showing the Position of the Spinner and the Way the Tool is held when forming the Metal

spun part. The application of this principle to a spinning lathe is original and the type of center illustrated was used only after all other kinds had failed, including all the types of ball bearings and revolving pins. The best forms of ball bearing centers do not last over a year, if in constant use, and they will not always revolve on small work. Two other spindles are shown in this engraving, which were taken from other lathes in order to show different views of the parts. The cylindrical pieces B are the hardened friction rollers which belong in the slot of the spindle F, and C is the hardened pin upon which they revolve. The hardened center D has a threaded end on which the back-centers E of different lengths and shapes are screwed. The friction rollers should always be in a vertical position, and care should be taken to have them exactly central with the spindle.

TOOLS AND METHODS

and also gives the principal dimensions of a roller bearing for a $1\frac{3}{4}$ inch spindle. A is a hardened steel bushing, which is driven into the machine steel spindle. The parts B are the hardened steel rollers which travel in opposite directions. These rollers have a small amount of friction, and this is distributed over a large area. A spindle revolv-

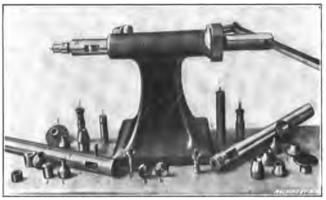


Fig. 35. Detailed View of a Spinning-lathe Tailstock

ing at 2,300 revolutions per minute will not cause these rollers to rotate very rapidly, while a ball bearing with balls traveling in a channel $1\frac{1}{2}$ inch or 2 inches in diameter would be traveling at the same speed as the driving spindle. They also wear out rapidly as the end strain is very great, it being necessary to force the center against

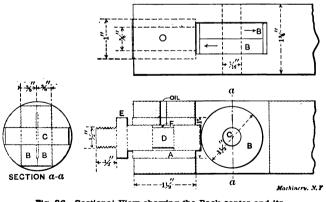


Fig. 36. Sectional View showing the Back-center and its Double Roller Bearing

the metal with considerable pressure to keep it from slipping. C is the hardened pin upon which the rollers revolve, and D is the hardened spindle on which the various back-centers are screwed. The collar E should either be flattened for a wrench, or a 5/16-inch hole, in which a wire can be inserted, should be drilled through the spindle, so that Digitized by the spindle be drilled by the spindle by the spindle be drilled by the spindle be drilled by the spindle be drilled by the spindle by

it can be kept from rotating when screwing on the back-centers. Some spinners prefer the spindle loose, so that it can be withdrawn when changing the centers, while others prefer one with considerable lateral motion, but not enough to permit of withdrawal. By inserting a screw-point in the recess F, the center has considerable lateral motion, but not enough to allow it to be withdrawn. This recess is useful in that it helps to distribute the oil. All parts should be hardened and drawn to a light straw color; they should also be ground or lapped to a true fit after hardening. Back-centers of this construction

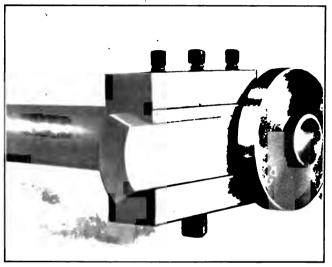


Fig. 37. Attachment used for Rolling Sharp Turns and Beads

have been in use for over three years in one establishment, and it has not been necessary to replace a single part.

Tools Used in Metal Spinning

Fig. 37 shows an attachment which is used to roll any bead or form. This tool, when in use, is inserted in the tailstock spindle in place of the regular center. It is adjustable for any diameter. The roll illustrated is for making a sharp turn, but rounds and other forms are used. The shell being spun by this tool should be held on a hollow chuck. The roll is set at a point where the metal is to be turned over, and by its use the curve may be governed and made uniform with less skill than when the work is done by "air spinning." In addition, the spinning may be done in less time. This attachment, for some shapes, makes the use of sectional chucks unnecessary.

Fig. 38 shows several spinning tools, the heads of which were turned in the lathe instead of being forged. This method of making spinning tools is believed to be original. The spinners prefer them to the tools which are forged in one piece, because the heads which are screwed to the shanks are made of the best quality of steel, such

Digitized by GOOGLE

TOOLS AND METHODS

as the high-speed or self-hardening steel. The shapes are also better and the surfaces more true. The heads of these tools are all threaded with standard ¼-inch, %-inch and ½-inch pipe taps, according to the size. Obviously, a spinner can have as many different shaped heads as may be required of each of the sizes given, and only one handle.

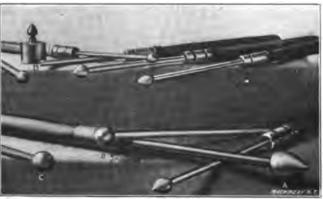


Fig. 38. Metal Spinning Tools with High-speed Steel Removable Heads

The tapering threads in these heads insure that they will always screw on the shanks tightly no matter how often they may be replaced. The $\frac{1}{4}$ -inch size takes a $\frac{1}{2}$ -inch cold rolled holder; the $\frac{2}{3}$ -inch, a $\frac{1}{3}$ -inch holder, and the $\frac{1}{2}$ -inch, a $\frac{3}{4}$ -inch holder. These will be found large enough for the heaviest work. The egg-shaped tool A is a good

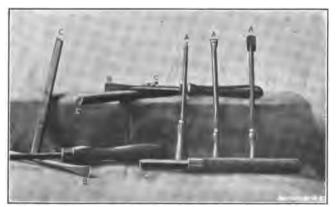


Fig. 39. Tools used for Trimming and Skimming Spun Work

form for roughing or breaking down, as it has plenty of clearance on the heel, and a blunt point that will not tear the metal. This tool is shown in four sizes. The ball or spherical tool B is a good one to to use on curves and large sweeps. The tool C is elliptic, and is slightly different from A, as it has a blunter point. One of these

heads is shown at D screwed onto a reducer by which it is held in the lathe chuck while being turned. These heads or points can also be turned while on the handle by using a steady rest.

Fig. 40. A Group of Spinning Tools of Various Shapes

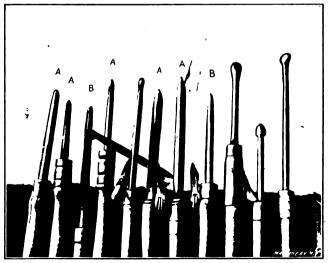


Fig. 41. Another Group of Spinning Tools

A group of trimmers, skimmers and edgers is shown in Fig. 39. Three skimmers of the built-up type are illustrated, the shanks being of machine steel and the blades being riveted to the holders. These

Digitized by Google

L

TOOLS AND METHODS

blades are made of either high-speed or regular steel. Skimmers which are forged in the regular way from one piece of steel, are shown at B. A number of edgers C, which are made of high-speed or self-hardening steel, are also illustrated. These tools are used without handles until they are worn down short, after which tangs are forged on their ends and they are used in handles. Edgers are utilized on all kinds of work for trimming the ends of the shells. The skimmer is seldom used on metal chucks, but mostly in connection with wooden chucks, where the metal cannot be smoothed down with a planisher. The skimmer is run over the metal lightly, taking a thin shaving and smoothing the uneven surfaces. It requires con-

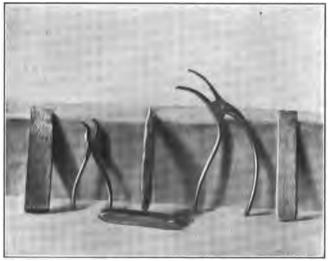


Fig. 42. Spinners' Pliers which are used for turning the Edge of the Metal when making a Large Bend

siderable skill to use this tool without wasting the metal. The surface of the work is finished with emery cloth after skimming.

Figs. 40 and 41 show a number of spinning tools of various shapes. The letters A indicate the breaking-down or round-nosed tools of different sizes. This type of tool, which is finished smooth and has a blunt point, is used for forming corners and sharp angles, and it is the tool most commonly used by spinners. The planishers and burnishers Bare used on all convex surfaces and for finishing on metal chucks where there is to be no skimming done. The tools C are known as hook or poker tools, and they are used to turn up beads or curves from the inside of the shell. The holders having rollers are used for turning over beads, the metal first being trimmed and turned to a vertical position. The other shapes shown are irregular tools for special work and they are not in daily use.

Two pairs of spinners' pliers for turning over the edge of the metal when making large curves are shown in Fig. 42. The wedge-shaped

Digitized by GOOGIC

pieces shown in this illustration are used when breaking down or roughing shells to give a bearing to the metal in order to prevent it from wrinkling or buckling when changing its formation. These pieces are made of hard wood with the exception of the one to the right, which is of steel. When one of these pieces is in use it is held in the left hand at a point directly opposite the spinning tool, the metal being between the two. Wood is preferable in most cases, as it does not harden the metal blank.

The tools shown in Fig. 43 are used in spinning steel. The round tools are of drawn brass, and they can be used where the steel tools

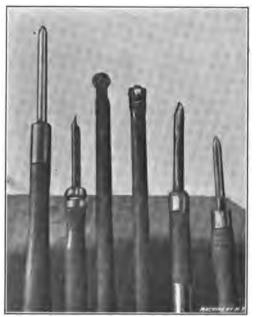


Fig. 43. Some Spinning Tools used in Working Steel

cannot, for while a steel tool is perfection on brass, a brass tool is the only thing on steel. It wears out, however, much more rapidly than one of steel. The rolls shown in the center are used for breaking down steel shells. These tools are hardened and have hardened roller bearings. The handles are made of one-inch iron pipe, which is filled with lead to give weight and strength.

Hard wood tools that are used for breaking down large thin copper blanks ranging from 2 to 5 feet in diameter are shown in Fig. 44. These tools are also used where the surface that the tool will cover without hardening the metal is important. Blanks which are broken down with these tools are finished with the regular types.

The handles of spinning tools vary in diameter from $1\frac{1}{4}$ to $1\frac{3}{4}$ inch, and in length from 16 inches to 20 inches. The tools should

project from the handles from 9 to 18 inches, and the total length of the tool and handle should average from 30 to 34 inches.

A group of wood working tools is shown in Fig. 45. These tools are of the type commonly used by spinners for turning the various shapes of wooden spinning chucks. As the tools illustrated are the kind regularly used for wood turning by patternmakers and other wood-workers generally, they will need no description.

Preparation of the Metal

Brass, copper, and German silver should be pickled after annealing in order to get the scale or oxide from the surface. There are furnaces

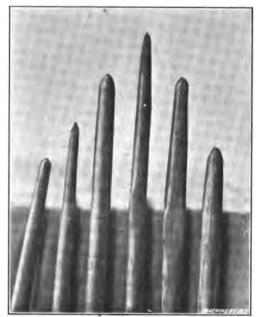


Fig. 44. Wooden Tools which are used on Large Thin Copper Blanks

that anneal without scaling by excluding the air when heating, but they are not in general use. A pickling bath may be made by using one part of oil of vitriol (sulphuric acid) and five parts of water. The shells can be put in hot, or the bath can be heated by a coil of lead or copper pipe running through it. Steam in no case should enter the bath, as the iron in the feed pipe will spoil the pickle. Any basket or box that may be used to hold the shells in the pickle should not contain any iron. If a box is used it should be held together with copper nails. The pickle can be used cold, but it will take a little longer time to remove the scale. As soon as the scale is free, which will be in about half an hour, the shells should be allowed to dry before the next operation, which is that of spinning. A (lead-lined

wooden tank or an earthen jar may be used for holding the pickle. The pickle which is used for steel should be about half as strong as that employed for brass. After the work is in this pickle, the latter should be brought to the boiling point, after which the pieces should

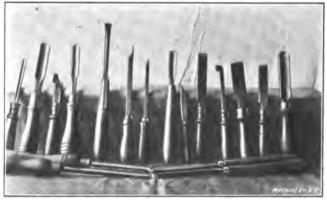


Fig. 45. Wood-turning Tools which are used in turning Spinning Chucks

be taken out and washed. They are then replaced in the fire for a short time to evaporate any acid that may remain after washing.

Finished brass articles may be given different shades by dipping them in a solution consisting of one part aqua fortis (nitric acid) and two parts oil of vitriol. This solution should stand seven or eight hours to cool after mixing, and be kept in a crock immersed in a water bath.

No. 22. CALCULATION OF ELEMENTS OF MACHINE DESIGN.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. THEORY OF CHANE DESIGN.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys, etc.

No. 24. EXAMPLES OF CALCULATING DESIGNS.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. DEEP HOLE DRILLING.—Methods of Drilling; Construction of Drills.

No. 26. MODERN FUNCH AND DIE CONSTRUCTION.—Construction and Use of Sub-press Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. LOCOMOTIVE DESIGN, Part I.-Boilers, Cylinders, Pipes and Pistons.

No. 28. LOCOMOTIVE DESIGN, Part II.—Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. LOCOMOTIVE DESIGN, Part III.—Smokebox; Exhaust Pipe; Frames; Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels.

No. 30. LOCOMOTIVE DÉSIGN, Part IV .- Springs, Trucks, Cab and Tender.

NO. 31. SCREW THREAD TOOLS AND GAGES.

No. 32. SCREW THREAD CUTTING.-Change Gears; Thread Tools; Kinks.

NO. 33. SYSTEMS AND PRACTICE OF THE DRAFTING ROOM.

NO. 34. CARE AND REPAIR OF DYNAMOS AND MOTORS.

No. 35. TABLES AND FORMULAS FOR SHOP AND DRAFTING-ROOM.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. IBON AND STEEL.-Principles of Manufacture and Treatment.

No. 37. BEVEL GEARING.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. GRINDING AND LAPPING.—Grinding and Grinding Machines; Disk Grinders; Bursting of Emery Wheels; Kinks; Lapping Flat Work and Gages.

No. 39. FANS, VENTILATION AND HEATING .- Fans; Heaters; Shop Heating.

No. 40. FLY-WHEELS.--Their Purpose, Calculation and Design.

No. 41. JIGS AND FIXTURES, Part I.—Principles of Jig and Fixture Design; Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. JIGS AND FIXTURES, Part II .- Open and Closed Drill Jigs.

No. 43. JIGS AND FIXTURES, Part III .- Boring and Milling Fixtures.

No. 44. MACHINE BLACKSMITHING.-Systems, Tools and Machines used.

No. 45. DROP FORGING.-Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. HARDENING AND TEMPERING.-Hardening Plants; Treating High-

Speed Steel; Hardening Gages; Case-hardening; Hardening Kinks.

No. 47. ELECTRIC OVER-HEAD CRANES.-Design and Calculation.

No. 48. FILES AND FILING .- Types of Files; Using and Making Files.

No. 49. GIRDERS FOR ELECTRIC OVERHEAD CRANES.

No. 50. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part I.

NO. 51. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part II.

No. 52. Advanced Shop Arithmetic for the Machinist.

No. 53. USE OF LOGARITHMS, AND LOGARITHMIC TABLES.

No. 54. Solution of TRIANGLES, Part I.—Methods, Rules and Examples.

No. 55. Solution of TRIANGLES, Part II.-Tables of Natural Functions.

No. 56. BALL BEARINGS .- Principles of Design and Construction.

No. 57. METAL SPINNING.-Machines, Tools and Methods Used.

No. 58. · HELICAL AND ELLIPTIC Springs.-Calculation and Design.

No. 59. MACHINES, TOOLS AND METHODS OF AUTOMOBILE MANUFACTURE.

No. 60. CONSTRUCTION AND MANUFACTURE OF AUTOMOBILES.

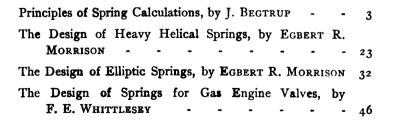
The Industrial Press, Publishers of MACHINERY GOOGLE

49-55 Lafayette Street

Subway Station, Worth Street New York City, U.S.A.

. Digitized by Google

EACH PAMPHLET IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DE-SIGN AND SHOP PRACTICE REVISED AND REPUBLISHED FROM MACHINERY


No. 58

A Dollar's Worth of Condensed Information on

Helical and Elliptic Springs

Price 25 Cents

CONTENTS

Copyright 1910, The Industrial Press, Publishers of MACHINERY, 49-55 Lafayette Street, New York City

MACHINERY'S REFERENCE SERIES

This treatise is one unit in a comprehensive Series of Reference books, originated by MACHINERY, and including an indefinite number of compact units. each covering one subject thoroughly. The whole series comprises a complete working library of mechanical literature in which the Mechanical Engineer. the Master Mechanic, the Designer, the Machinist and Tool-maker will find the special information he wishes to secure, selected, carefully revised and condensed for him. The books are sold singly or in complete sets, as may be desired. The price of each book is 25 cents, and it is possible to secure them on even more favorable terms under special offers issued by MACHINEEY'S circulation department and sent to any one on request.

The success of the Reference Series was instantaneous and copies are now widely distributed in machine shops and metal working plants everywhere.

CONTENTS OF REFERENCE BOOKS

No. 1. WORM GEARING.—Calculating Dimensions for Worm Gearing; Hobs for Worm-Gears; Location of Pitch Circle; Self-Locking Worm Gearing; etc.

No. 2. DRAFTING-ROOM PRACTICE.—Drafting-Room System; Tracing, Lettering and Mounting; Card Index Systems.

No. 3. DRILL JIGS.—Elementary Principles of Drill Jigs; Drilling Jig Plates; Examples of Drill Jigs; Jig Bushings; Using Jigs to Best Advantage.

No. 4. MILLING FIXTURES.—Elementary Principles of Milling Fixtures; Collection of Examples of Milling Fixture Design, from practice.

No. 5. FIRST PRINCIPLES OF THEORETICAL MECHANICS.

No. 6. PUNCH AND DIE WORK.—Principles of Punch and Die Work; Suggestions for the Making and Use of Dies; Examples of Die and Punch Design.

No. 7. LATHE AND PLANER TOOLS.—Cutting Tools for Planer and Lathe; Boring Tools; Shape of Standard Shop Tools; Forming Tools.

No. 8. WORKING DRAWINGS AND DRAFTING-ROOM KINKS.

NO. 9. DESIGNING AND CUTTING CAMS.—Drafting of Cams; Cam Curves; Cam Design and Cam Cutting; Suggestions in Cam Making.

No. 10. EXAMPLES OF MACHINE SHOP PRACTICE.—Cutting Bevel Gears with Rotary Cutters; Making a Worm-Gear; Spindle Construction.

No. 11. BEABINGS.—Design of Bearings; Causes of Hot Bearings; Alloys for Bearings; Friction and Lubrication; Friction of Roller Bearings.

No. 12. MATHEMATICS OF MACHINE DESIGN.—Compiled with special reference to shafting and efficiency of hoisting machinery.

No. 13. BLANKING DIES.—Making Blanking Dies; Blanking and Piercing Dies; Construction of Split Dies; Novel Ideas in Die Making.

No. 14. DETAILS OF MACHINE TOOL DESIGN.—Cone Pulleys and Belts; Strength of Countershafts; Tumbler Gear Design; Faults of Iron Castings.

No. 15. SPUR GEARING.—First Principles of Gearing; Formulas for Spur Gearing; Design and Calculation of Gear Wheels; Strength of Gear Teeth.

No. 16. MACHINE TOOL DRIVES.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. STRENGTH OF CYLINDERS.-Formulas, Charts, and Diagrams.

No. 18. SHOP ABITHMETIC FOR THE MACHINIST.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. Use of FORMULAS IN MECHANICS.—With numerous applications.

No. 20. SPIBAL GEARING.—Calculating Spiral Gears; Rules, Formulas, and Diagrams for Designing Spiral Gears; Efficiency of Spiral Gearing, etc.

No. 21. MEASURING TOOLS.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc. See inside back cover for additional titles

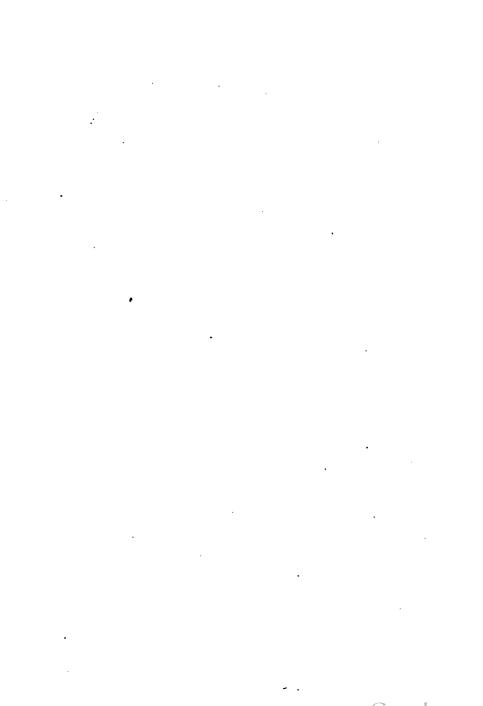
MACHINERY'S REFERENCE SERIES

EACH NUMBER IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DESIGN AND SHOP PRACTICE REVISED AND REPUB-LISHED FROM MACHINERY

NUMBER 58

HELICAL AND ELLIPTIC SPRINGS

. •


CONTENTS

.

Prin	ciples of Spring Calculations, by J. BEGTRUP	3
The	Design of Heavy Helical Springs, by EGBERT R.	
	Morrison	23
The	Design of Elliptic Springs, by EGBERT R. MORRISON	32
The	Design of Springs for Gas Engine Valves, by	
	F. E. WHITTLESEY	46

Copyright, 1910, The Industrial Press, Publishers of MACHINERY, 49-55 Lafayette Street, New York City

Digitized by Google

Digitized by Google

CHAPTER I

PRINCIPLES OF SPRING CALCULATIONS*

Although made in a great variety of shapes, the working and efficiency of any spring can be readily understood and investigated if a few fundamental principles determining the resistance to bending or twisting, and the deflection of elastic bodies are understood. Springs are generally made of steel or brass, and when under tension are either bent or twisted. Let us, therefore, first consider a flat piece of tempered tool steel of even thickness and width, firmly clamped at one end, and with a weight suspended at the free end, as shown in Fig. 1. The free length is a little over 12 inches, the width 1½ inch, the thickness 1/16 inch, and the suspended weight 10 pounds. The deflection at the free end will be about 4½ inches, and the curvature will be as

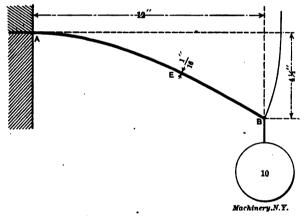
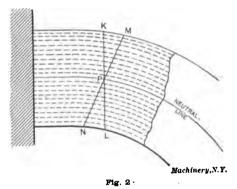


Fig. 1

shown in the figure. If made of high carbon crucible steel, properly tempered, 10 pounds is a safe load on this spring, but it may carry considerably more before the elastic limit is reached. These facts were obtained by calculation, by methods explained later.

It is obvious that the curvature of any part of the spring depends on the leverage or arm of bending, or rather on the "moment of bending," which is the weight multiplied by its arm of leverage. At A the arm is 12 inches, at E it is about 6 inches; the moment of bending at E, therefore, is only half the moment of bending at A; at B there is no arm, and therefore no bending. Consider a small part—an element of the curve at A. This element will be bent to the arc of a circle, and the radius of this arc is called the radius of curvature at A; any ele


• MACHINERY, May, July and August, 1898.

No. 58-SPRINGS

ment nearer B will have a larger radius of curvature. At A the radius of curvature is about 11 inches, at E it is about 22 inches, and at B it is infinite.

Carrying Capacity of a Flat Spring

Considering any spring, we must first know whether it is strong enough to carry the load or will stand the work for which it is intended. The mistake is often made of using, or attempting to use, a spring which has not sufficient strength or endurance for the work it has to do, and which, consequently, gives out after being in use a short time. The spring shown in Fig. 1 being of even thickness through its entire length, is evidently weakest where it is bent most, that is at A. The moment of bending at this point is $10 \times 12 = 120$, and the bending brings forth a moment of resistance or internal resisting moment in the steel equal in magnitude to the bending moment of the extrane-

ous force, and the question to be decided is: What is the greatest fiber stress for this moment? Is it within the safe limit?

Let Fig. 2 represent a small part of the spring greatly magnified and the bending greatly exaggerated, and let the dotted lines represent imaginary fibers or thin parallel strings or strips of steel. The upper half of these will be stretched, and the lower half will be compressed; but right in the center line of the thickness of the spring the fibers will neither be stretched nor compressed, and this line is therefore called the neutral line. We may consider any point in this line as a pivot for a double-armed lever to which the fibers are attached. Let P be the pivot and let KL represent the position of the lever before bending, and suppose that this lever, by the bending of the spring, is thrown in the position MN, and then KM represents the amount of stretching of the extreme upper fibers, and NL represents the compression of the extreme lower fibers, or rather of a small part of these. Steel is not fibrous, but we may call a string of molecules a fiber. All the fibers will be stretched or compressed in proportion to their distance from the neutral line, and they will therefore exert a certain resistance on the imaginary lever MN, and this collective resistance will exactly counterbalance the weight on the end of the spring acting on

Ł

PRINCIPLES OF CALCULATIONS

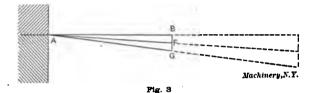
the lever AB, Fig. 1. The outside fibers will be stretched or compressed most, and if they are stretched beyond a certain limit, the spring will break or receive a permanent set. If we double the thickness of the spring, it can evidently only bend half as much before the limit of fiber stress is reached; but the average distance of the fibers from pivot P will, in this case, be doubled-that is, the leverage of resistance will be doubled and the number of fibers will also be doubled. The total resistance to bending at the same limit of fiber stress will therefore be twice doubled; that is, it will be $2 \times 2 = 2^3 = 4$ times as great. or, in other words, doubling the thickness of a spring quadruples its carrying capacity. If we had increased the thickness by one-half only, we should have $(1\frac{1}{2})^2 = 2\frac{1}{4}$ times greater strength. In general, let T and U represent the respective thicknesses of two similar springs of same width and length; then

$\frac{\text{carrying capacity of spring }T}{\text{carrying capacity of spring }U} = \frac{T}{U}$

or, the carrying capacities of otherwise similar springs are as the square of their respective thicknesses. This rule applies to bending only, and not to springs which are twisted. The strength of a flat spring is in simple proportion to its width, which is obvious without demonstration, and therefore, if thickness = t and width = b, the moment of resistance for a given fiber stress $= cbt^{3}$, where c is a constant factor dependent on the allowable fiber stress. This factor can be found experimentally. Suppose, for instance, it is known that 10 pounds is the greatest load which the spring shown in Fig. 1 ought to carry, then in this case, the moment of bending $= 10 \times 12 = 120$, and

the moment of resistance = $c \times 1\frac{1}{2} \times (1/16)^2 = \frac{3}{512} c$. Equating these two quantities we have $120 = \frac{3}{512} c$, or c = 20,480. Now c being

a known constant factor, we can always find the moment of resistance from the formula cbt², and this product divided by the leverage of the load gives the carrying capacity or admissible load. For instance, let the length or leverage be 10 inches, the width 1 inch, and the thickness 1/3 inch, then,


$$\frac{20,480 \times 1 \times (\frac{1}{6})^3}{10} = \frac{20,480}{640} = 32 \text{ pounds},$$

which is the safe load on the free end of the spring. Great exactness is not necessary in such calculations, and the factor 20,500, being easier to remember, may be used instead of 20,480. If a spring is continually working, a smaller factor must be used than would be admissible if it were only occasionally in action, and a much higher factor may be used if it has only to exert a constant pressure without any bending motion. If a spring is sufficiently strong and durable under certain conditions, we may, from the formula here given, design any number of springs equally strong under similar conditions. Digitized by Google

No. 58—SPRINGS

Deflection of a Flat Spring

We will now consider the amount of deflection of a flat spring. Referring to Fig. 3, suppose there be one flexible element at A, and suppose the rest of the spring to be perfectly stiff or unelastic, which part we will call the "arm," and suppose the deflection at A will bring the arm in the position AF. If there now, instead of one flexible element, be two such elements at A, the inclination of the arm will be on line AG, and deflection GB = 2BF. For three flexible elements the deflection would be three times BF, and so on, provided the length of the arm remains the same; that is, the deflection of the arm AB is directly proportional to the number of flexible elements at A. Now suppose we double the length of the arm, as shown by the dotted lines; then we also double the moment of bending, and the deflection at the end of the arm will therefore be twice doubled. Therefore, by doubling the number of elements at A and by doubling the arm, we increase the linear deflection at the free end $2 \times 2 \times 2 = 2^2 = 8$ times. In reality the

arm itself is flexible, and considering it as made up of flexible elements, we may imagine the deflection at the free end as made up of a series of decreasing elementary deflections corresponding to a series of flexible elements of the spring and their respective arms.

Fig. 4 shows the curve of two similar springs of different lengths similarly loaded. AC represents the curve when the length is double that of AE. Suppose we divide AE in a number of small parts and call these elements, and divide AO into the same number of parts; each of these will contain two elements, that is, for each element of AE there will be two corresponding elements of AC, and the distance of any two such elements from the end of the spring will be twice the distance of the corresponding element of AE from E. That is, the arm and the moment of bending of any two elements of AC will be twice the arm and moment of bending of the corresponding element of AE. The deflection of spring AC will therefore be $2 \times 2 \times 2 = 2^{4} = 8$ times the deflection of spring AE. If the deflection of spring AE is $\frac{2}{5}$ inch, the deflection of spring AC will be $2^{4} \times \frac{2}{5} = 3$ inches. If the deflection of AE is $1\frac{1}{4}$ inch, the deflection of AC will be $2^{4} \times 1\frac{1}{4} =$ 10 inches, provided it is strong enough to carry the load.

If spring AC had been three times as long as AE there would, for each element of AE, be three corresponding elements of AC, and the moment of bending of any such group of elements would be three times the moment of bending of the corresponding single element of AE, and the distance of any group of three elements of AC from C

Digitized by Google

PRINCIPLES OF CALCULATIONS

would be three times the corresponding distance on AE; we should, therefore, in this case have a deflection at the free end of $AC = 3^{\circ} =$ 27 times the corresponding deflection of AE. If in this case the deflection of AE were $\frac{1}{4}$ inch, the deflection of AC would be $3^{\circ} \times \frac{1}{4}$ inch $= 6\frac{3}{4}$ inches. If the length of AC were $1\frac{1}{2}$ times the length of AE, we

should have the deflection of $AC = (1\frac{1}{2})^3 \times \frac{1}{4}$ inch $= \frac{21}{32}$ inch.

In general, the deflection at the end is proportional to the third power of the length of the spring. The amount of deflection can be expressed by the formula a^{μ} , in which *l* is the length and *a* is a factor dependent on the load, width, thickness and material of the spring. If we double the width, the bending moment for each element of the width will be halved, and the deflection will consequently be half of

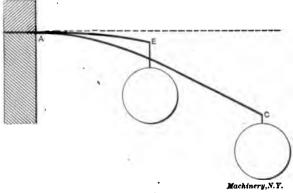


Fig. 4

that of the narrower spring. If we double the thickness of the spring, its area of cross-section is doubled, as is also the average distance of the fibers from the neutral axis, and besides for a given curvature or deflection the outer fibers will be stretched twice as much and will therefore offer twice the resistance (see Fig. 2). The total resisting moment is therefore increased $2 \times 2 \times 2 = 2^3 = 8$ times, or, in general, the moment of resistance is proportional to the third power of the thickness, and the deflection will be inversely proportional to this. If, for instance, we double the thickness and double the length of a flat spring, the deflection will remain the same for the same load. The deflection will also be directly proportional to the load.

It should be observed that we have here the moment of resistance in its general sense, that is, without any restriction in regard to the fiber stress. If we impose the condition that the fibers shall be stretched to a certain extent, as in the formula for strength, we have, in that case, the thickness squared in the moment of resistance, and it should be remembered that this is only in the formula for strength.

We are now atle to calculate the deflection of any flat spring if we know the deflection of any other flat spring of the same material,

Digitized by Google

Let f = deflection of the free end, b = the width of the spring, t = the thickness, i = the length, w = the load, and k = a constant factor depending on the material, then,

$$f = \frac{wl^2}{kbt^2}$$

Suppose we have a spring $1\frac{1}{2}$ inch wide, 1/16 inch thick and 12 inches long, and find that it deflects $4\frac{1}{2}$ inches under a load of 10 pounds, then we have:

$$4\frac{10 \times 12^{3}}{k \times 1\frac{1}{2} \times (1/16)^{3}}$$

from which we deduce k = 10,500,000.

8

Suppose we have a spring 1 inch wide, $\frac{1}{3}$ inch thick, 12 inches long and a load of 25 pounds at the end of it. If this spring is made of best high carbon steel, properly tempered, we may use the constant factor, 20,500, in the formula for carrying capacity, and have the greatest permissible moment of resistance = $20,500 \times (1/8)^3 = 320.3$, and the moment of bending = $12 \times 25 = 300$. Twenty-five pounds is therefore a safe load on this spring. For k = 10,500,000 we have the 25×12^3

deflection = $\frac{10,500,000 \times 4 \times (\frac{1}{6})^{8}}{10,500,000 \times 4 \times (\frac{1}{6})^{8}}$ = 2% inches. A spring $\frac{1}{6}$

inch thick will carry four times as great a load as one 1/16 inch thick, and the deflection under this load will only be one-half of that of the thinner spring; or generally, for the same fiber stress and the same , length, the deflection will be inversely proportional to the thickness.

It is an easy matter to find the deflection of a spring by actual trial and then obtain the correct value of the constant k by calculation, as here explained; but the thickness of the spring must be very carefully measured, for it will be observed that a small variation in the thickness has a great effect on the deflection, and particularly so if thin springs are used. If, for instance, the deflection of a spring 1/16 inch thick is 4 inches, then the deflection of a similar spring which is 1/100 inch thicker will only be two inches for the same load.

The Modulus of Elasticity

The deflection may also be found if the "modulus of elasticity" of the material is known. The modulus of elasticity is the ratio of a direct pulling force to the extension per unit of length of a rod of 1 square inch sectional area. The extension must be within the elastic limit of the material, and is a very small quantity which can only be found by very careful measurement in a testing machine, but as it is obtained by a straight pull, it cannot furnish so trustworthy a constant for the calculation of bending deflection as that obtained by the method just explained. If a steel bar 1 inch square and 10 inches long is stretched one-hundredth of an inch by a pull of 30,000 pounds, the modulus of elasticity is $30,000 \div 0.001 = 30,000,000$ which is the approximately correct figure for unhardened steel. For hardened tool steel it is about 42,600,000 according to Reuleaux. The tensile strength

PRINCIPLES OF CALCULATIONS

of different steels varies considerably. The strength of high carbon steel is greatly increased by hardening. The so-called spring steel is probably more elastic, but less strong, and it is doubtful whether hardening changes its elasticity, while it no doubt increases the elastic limit and the tensile strength; but no spring steel can compare in strength with high-grade high carbon crucible tool steel, properly tempered. The allowable fiber stress depends to a great extent on the treatment of the steel; it may, according to Reuleaux, exceed 200,000 pounds per square inch at the elastic limit. In the formula for carrying capacity, the factor c should be one-sixth of the allowable fiber stress, and in

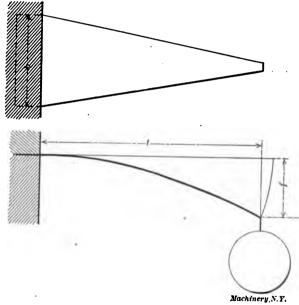


Fig. 5

the formula for deflection of a flat spring of even thickness and width the factor k should be one-fourth of the modulus of elasticity. The allowable fiber stress, is, of course, always less than the elastic limit.

Springs of Uniform Strength

A single steel band of even thickness and width does not always make a desirable spring, for if it is made just strong enough at its base, it will be stronger than necessary at other points, and the deflection at the free end will be less than if every part of the spring were equally strong—that is, if the fiber stress were uniform throughout the entire length. The spring shown in Fig. 5 is of nearly correct form; it is of even thickness and the edges converge nearly to a point.

It is obvious that, in practice, the end must be made a little blunt, but if it were continued to a sharp point, it will be seen that the width would be at any point of the length, proportional to the arm of leverage; the radius of curvature would, therefore, be the same at any point—that is, the spring would bend to the arc of a circle. The strength is the same as that of a spring with parallel sides, but the deflection at the end will be one-half greater, and in the formula for deflection the factor k becomes two-thirds of that for parallel sides. Let the triangular spring be 2 inches wide at the base, 10 inches long, 1/16 inch thick, and made of high carbon steel, hardened, then,

$$\frac{2 \times 20,500}{16^2 \times 10} = 16 \text{ pounds}$$

is a safe load, and the deflection for this load is

 $\frac{16 \times 10^8 \times 16^8}{7,000,000 \times 2} = 4 \ 11/16 \text{ inches.}$

The factor 7,000,000 is here one-sixth of the supposed modulus of elasticity. All that has been said about springs with parallel sides is

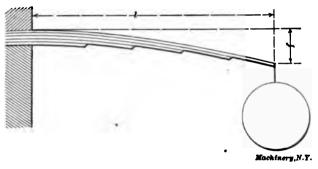
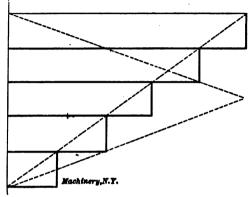


Fig. 6

also applicable to triangular springs, with the exception of the form of the curve and the factor k in the formula for deflection.

Built-up Leaf Springs


To get the most work out of a spring of given length or weight, it will often be found advantageous to use thin wide springs instead of thicker narrow ones, for it will be noticed that it is only the outside fibers which can be fully stretched or compressed, while all the others will be less useful in proportion to their proximity to the neutral axis. Instead of one broad triangular spring we may use a number of parallel springs, one on top of the other, as shown in Fig. 6. Each leaf or plate of this spring will be bent nearly to the same curve, and the deflection will be nearly equal to that of a triangular spring with a base equal to the collective width of all the leaves. Fig. 7 shows the leaves in the same plane laid side by side, and the dotted lines show the approximate size of the equivalent triangular spring. Suppose there be five leaves of tempered spring steel 2 inches wide and $\frac{4}{6}$ inch thick, and let the working length of the main leaf be 18 inches; also suppose

PRINCIPLES OF CALCULATIONS

that the safe working fiber stress for this spring is 96,000 pounds per square inch; then we may, in the formula for strength, put

factor
$$c = \frac{96,000}{6} = 16,000,$$

and the safe moment of resistance becomes $5 \times 2 \times (\%)^3 \times 16,000 = 22,500$, which, divided by 18 gives 1250 pounds as a safe working load

on the end of the spring. Let the modulus of elasticity be 30,000,000, then we may in this case put k = 5,000,000, and the deflection equals

 $\frac{1250 \times 18^3}{5,000,000 \times 10 \times (\frac{3}{5})^3} = 2\frac{3}{4}$ inches.

The factor 10 in the denominator is the total sum of the width of the leaves.

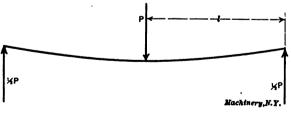


Fig. 8

It should be remarked that the deflection of such springs may vary considerably from that of the supposed equivalent triangular spring, and to get fairly correct results the factor k should be obtained by actual trial, and not from the supposed modulus of elasticity.

Fig. 8 represents a steel plate supported at both ends and a load P applied at the center. The upward pressure or reaction of each support is $\frac{1}{2}P$, and it will readily be seen that the deflection of this spring must be exactly as if it had been supported at the center and

Digitized by GOOGLE

loaded with $\frac{1}{2}$ P at each end; that is, the moment of bending at the center is $\frac{1}{2}$ Pl.

Fig. 9 represents a so-called elliptic spring, of a type used on carriages, automobiles and railroad cars. It is made of steel plates 4 inches wide and $\frac{9}{16}$ inch thick. The distance between centers is 30 inches, and there are five plates in each part. The following experimental data have been ascertained for this spring: light load = 2000 pounds; maximum working load = 7000 pounds; deflection due to a load of 5000 pounds = 3 inches. Comparing this case with that represented by Fig. 8, we take into account half of the ellipse only, and assuming the band b to be 3 inches wide we have $l = 13\frac{1}{2}$ inches, and the moment of bending for maximum load = $13\frac{1}{2} \times 3500 = 47,250$.

Moment of resistance = $5 \times 4 \times (\frac{3}{6})^3 \times c = \frac{1}{16}c$. These two quanti-

ties must be equal, therefore $47,250 = \frac{45}{16}$ c, or c = 16,800. This

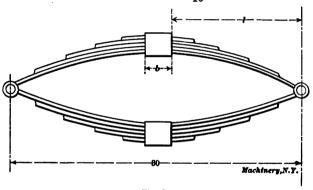
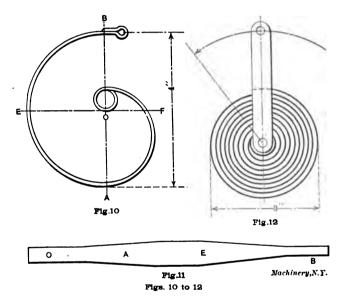


Fig. 9

value of c may correspond to a fiber stress of $6 \times 16,800 = 100,800$ pounds per square inch; but it would not be an absolutely safe assumption, for the theory of indirect molecular action is not yet fully substantiated by experimental data. The deflection of one-half of this spring is $1\frac{1}{2}$ inch for 5000 pounds load; therefore:

$$1\frac{1}{2} = \frac{2500 \times (13\frac{1}{2})^{*}}{k \times 20 \times (\frac{3}{2})^{*}}$$

that is, k = 3,888,000. Assuming the curve of deflection similar to that of a single triangular spring, we should have, approximately, the modulus of elasticity $= 6 \times 3,888,000 = 23,328,000$, but this is probably too low a figure. By using the constant factor 3,888,000, sufficiently accurate results would be obtained for similar springs of similar material.


Miscellaneous Classes of Springs

The available space for a spring may determine its shape and size. A long straight spring cannot often be used. Fig. 10 shows a spring Digitized by COSE

PRINCIPLES OF CALCULATIONS

which may be useful in a limited space. It is supposed to be made of a strip of high carbon crucible steel 1½ inch wide and 1/16 inch thick, and to be spring tempered. The moment of resistance is $1\frac{1}{2} \times (1/16)^3 \times c$, where c is supposed to be one-sixth of the allowable fiber stress per square inch, or the allowable unit-stress. For c = 15,000we have the moment of resistance = 88. At A the lever arm is 4 inches, and the permissible load at B is therefore about $\frac{88}{4} = 22$

pounds. The moment of bending varies directly as the distance from B; at E and F it is $2 \times 22 = 44$ inch-pounds. If we imagine the spring divided into a number of small parts or elements, there will, for

each of these, be a small deflection at B proportional to the square of its perpendicular distance from B. The horizontal deflection at F will be as if that element had been at O. But as the curve of the spring is longer than the straight line from A to B, and has a correspondingly greater number of elements, the entire horizontal deflection at B will be greater than that of a straight spring fixed at A. For a modulus of elasticity of 42,000,000, the deflection at B is about 1¼ inch, or about three times the deflection of a straight spring 4 inches long. A similar spring of the same thickness and width, but twice as large, would only carry 11 pounds, but it would deflect $2^{\circ} \times 1\frac{1}{4} = 5$ inches under that load. Generally, for the same thickness and same unit stress the bending deflection of similar springs of this type varies as the square of their lengths.

It will be noticed that the bending moment for different parts of this spring varies considerably, while the moment of resistance is constant.

13

Digitized by GOOGLE

At A the lever arm is greatest and the unit stress is there at the safe limit, but at other points the spring will be stiffer than necessary; we may therefore improve it by varying the width in proportion to the bending moments; for then the same unit stress is obtained at any point of the length, whereby the deflection is increased without reducing the strength. Fig. 11 shows the spring when straightened out and shaped so as to give a nearly constant unit stress. This will make the deflection at B about one-third greater.

A great deal of potential energy may be stored in a small space by coiling a strip of steel like the main spring of a watch. If the ends are fixed and guided concentrically, the moment of bending will be constant for the whole length; and as the spring can be very long, it may be very efficient in a limited space. Fig. 12 represents a spring of this kind. Let W = bending force at end of the lever, R = length of lever, S = unit stress, b = width and t = thickness of spring; then

$$W = \frac{8bt^2}{6R}$$

If the spring be made of $1 \times \frac{1}{6}$ inch spring steel and the length of the lever is 6 inches and the unit stress is 96,000 pounds, then,

$$W \doteq \frac{96,000 \times (\frac{1}{6})^3}{6 \times 6} = 42 \text{ pounds, nearly.}$$

Let l = length of spring, E = modulus of elasticity, and F = deflection or length of arc described by the end of the lever; then,

$$F = \frac{12 \ lWR^{*}}{E \ bt^{*}}$$

$$E = 28,000,000 \text{ and } l = 56 \text{ inches gives}$$

$$F = \frac{12 \times 56 \times 42 \times 6^{*}}{28,000,000 \times (\frac{1}{5})^{*}} = 18\frac{1}{2} \text{ inches.}$$

Hence the lever turns nearly one-half of a revolution. This result may be found more directly from the formula

$$U = \frac{Sl}{\pi Et}$$

where U is the deflection expressed in revolutions and $\pi = 3.1416$. By substitution as above.

$$U = \frac{96,000 \times 56 \times 8}{\pi \times 28,000,000} = 0.49,$$

or nearly one-half revolution, which agrees with the former result. From this formula it appears that the deflection for a given unit stress varies directly as the length and inversely as the thickness, and is independent of the width of the spring. If we had this spring 1/16inch thick, the lever could be turned nearly a whole revolution, but the force would be only $10\frac{1}{2}$ pounds. If we then had twice as many turns in the spiral, the lever would turn nearly two revolutions before

14

the limit of stress would be reached. Such springs may also be useful when a nearly constant pressure through a shorter motion is desired, for this can be obtained by a considerable initial deflection. The great efficiency of watch springs is due to the high elastic limit and careful treatment of the steel.

It is sometimes preferable to coil the spring in a screw-line, as shown in Fig. 13. As in the former case, the motion is supposed to be about a fixed center, and the same formulas may be used in both cases. Let there be 72 inches of $\frac{1}{4}$ inch square spring steel, and let the lever be 3 inches long, then,

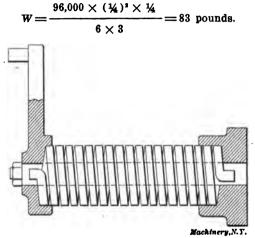


Fig. 18

We have further for this spring

$$U = \frac{96,000 \times 72 \times 4}{\pi \times 28,000,000} = 0.31,$$

or about 5/16 of one revolution of the lever, which is the maximum allowable motion for a unit stress of 96,000 pounds.

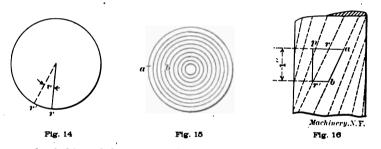
For round steel $W = \frac{S\pi t^4}{32 R} = \frac{St^4}{10 R}$, nearly. Therefore if this spring

is made of ¼-inch round steel, then,

$$W = \frac{96,000}{10 \times 3 \times 4^3} = 50 \text{ pounds.}$$

Round steel has only 3/5 of the strength of square steel of the same diameter under bending action, but the value of U is the same in both cases.

The various springs treated of here are all of uniform thickness throughout their entire length. Good results may also be obtained by varying the thickness of a spring so as to correspond with a variable bending moment; but as such springs cannot be rolled to shape and


No. 58-SPRINGS

can only receive the correct shape by skillful hand work, they are used very little. The forging down of the ends of flat springs is a simple matter and is often done. It improves the appearance of leaf springs and is preferable to blunt ends.

Torsional Springs

What really happens to the molecules of a bar when it is twisted within the elastic limit is a matter of conjecture, but all formulas for strength and deflection of torsional springs are based upon the assumption that the molecules receive a sort of lateral or sliding displacement, as if subjected to a shearing action. Whether or not this assumption is correct, it is certainly supported by experimental results. It is, for instance, known that the angle of deflection is directly proportional to the twisting force, which fact would hardly agree with other theories.

Fig. 15 represents a cross-section of a steel rod divided into a number of imaginary concentric rings of equal thickness. The torsional

strength of this rod depends on the resistance to shearing of the rings and on their respective distances from the center, which are their leverages of resistance. Ring a is twice as large as ring b and is twice as far removed from the center, and offers, therefore, $2 \times 2 =$ $2^2 = 4$ times the resistance to a twisting force. Suppose we have another rod twice as large in diameter, and divided it into the same number of rings, then each ring will be twice as thick, twice as long and twice as far removed from the center as the corresponding ring of the first rod; the torsional resistance will, therefore, be $2 \times 2 \times 2$ $= 2^{s} = 8$ times that of the first rod, provided the resistance per unit area is the same in both cases. In other words, by increasing the diameter of the rod we increase both the thickness, length and leverage of resistance of the rings in the same proportion. The torsional strength, therefore, is proportional to the third power of the diameter.

The formulas for torsional strength are.

For round bars
$$RW = \frac{\pi}{16} Zd^3 = \frac{1}{5} Zd^3$$
, nearly. (1)
For square bars $RW = \frac{1}{2} Zd^3 = \frac{1}{2} Zd^3$, nearly. (2)

d^{*}, nearly. $3\sqrt{2}$ 4

Digitized by Google

)

in which W =twisting force in pounds.

.

R =lever arm in inches.

Z = shearing unit stress of outside ring, in pounds,

d = diameter or size of bar, in inches,

For tool steel we may put Z = 80,000 pounds, and the moment of resistance of round steel = $1/5 \times 80,000 d^3 = 16,000 d^3$. This gives for a $\frac{1}{2}$ -inch rod, the safe moment of resistance = $(\frac{1}{2})^3 \times 16,000 =$ 2000. If we twist the rod with a 6-inch lever, the safe load on the

end of the lever = $\frac{2000}{6}$ = 333 pounds. A 5%-inch rod would carry

---- \times (5%)^a = 650 pounds on the end of a 6-inch lever. It will be

noticed that a small increase of diameter greatly increases the strength, and that square steel will carry about one-fourth more than round steel of the same diameter.

We will now consider the torsional deflection. Fig. 14 is an end view or section of a twisted steel rod, r and r' are imaginary radial lines, and r is supposed to be in a plane above r' and is supposed to have just covered r' before the rod was twisted, that is, a small particle directly over r' is moved horizontally a distance r'r through an angle v. Fig. 16 is an elevation of part of the rod where the dotted lines indicate the twisting of the surface much exaggerated. The planes of r and r' are supposed to be 1 inch apart and rp represents the transverse displacement of a small particle originally at p. The maximum unit stress in each transverse section of the rod is supposed to be equal to the product of this displacement and a certain constant multiplier. If the material be tool steel and Z = 80,000, the distance pr is about 1/150 inch. It varies directly as Z, and is independent of the diameter of the rod. The multiplier is in this case 12,000,000, which, according to our hypothesis, is a constant for tool steel. It is a purely hypothetical quantity, which bears no rational relation to the modulus of elasticity of the material, but we may call it the torsional modulus of elasticity, because it takes the same place in the calculation of torsional deflection as the modulus of elasticity takes in the calculation of bending deflection. It will be seen that a rectangular area in the surface of the rod becomes a rhomboid when the rod is twisted. Area rr'ba is a rhomboid, or deformed rectangle; suppose that pr' represents the unit of length, and let distance pr be the displacement caused for a torsional unit stress of one pound at the surface of the rod, then this displacement becomes the modulus or measure of deformation, which is the reciprocal of the torsional modulus of elasticity; but it will be readily inferred that such deformation does not produce a lateral or snearing stress, as if the surface had been stretched lengthwise of the rod a distance equal to pr, and that the torsional modulus of elasticity must be considerably less than the modulus of elasticity for bending. We have seen that for a given maximum unit stress Z, the moment of torsional resistance varies as the third power of the diameter; but without this limitation of stress Digitized by GOOS the mean unit stress for any given angular deflection varies directly as the diameter of the rod, and under this condition the moment of resistance, therefore, becomes proportional to the fourth power of the diameter; and the deflection will be inversely proportional to this. That the entire angle of deflection must be proportional to the length of the rod requires no demonstration. It is also directly proportional to the load.

The following are convenient formulas for torsional deflection:

r round steel
$$\begin{cases} F = \frac{32 WR^2 l}{\pi Gd^*} = \frac{10 WR^2 l}{Gd^*}, \text{ nearly.} \end{cases}$$
 (3)

$$F = \frac{6 W R^2 l}{G d^4} \tag{5}$$

For square steel {

$$F = \frac{\sqrt{2Z1R}}{Gd}$$
(6)

in which F = linear deflection at end of lever,

- W =twisting force at end of lever,
- R =length of lever,
- l =length of rod,

G =torsional modulus of elasticity,

- Z =unit shearing stress in periphery of cross-section,
- d =diameter of rod.

For spring steel G = 12,000,000 is a nearly correct mean value. The proper value of Z depends on the working conditions. A spring that is continually working should be strained less than one whose action is intermittent or irregular; and it should be observed that shearing resistance at the elastic limit is somewhat less than tensile strength at the same limit. Z = 80,000 is probably not too much, unless the spring is continually working to its full capacity. But when the construction and circumstances are such as to admit of a lower stress, it is always preferable.

As a simple example of torsional springs, take a rod of $\frac{1}{2}$ -inch round steel 3 feet long, fixed solidly at one end, and the other end so guided as to prevent lateral motion, and let there be a 6-inch lever keyed to this end. How much will it be safe to load the end of the lever if the rod is twisted 100 times a minute? The rod is not supposed to be hardened, and though its ultimate strength is considerable, the elastic limit is comparatively low. Let Z = 30,000 and E = 12,000,000. Then, substituting in Formula (1) we have:

6
$$W = 1/5 \times 30,000 \times (\frac{1}{2})^3 = \frac{6000}{8}$$
, and $W = \frac{1000}{8} = 125$ pounds

which is the admissible force on the end of the lever. The deflection for this force can easily be found from Formula (4), because the value of Digitized by COQ

Fo

Z is known. We have

$$F = \frac{2 \times 30,000 \times 36 \times 6 \times 2}{12,000,000} = 2.16 \text{ inches.}$$

If this rod were of hardened steel we might put Z = 70,000, and would then have $W = 125 \times 7/3 = 292$ pounds, and $F = 2.16 \times 7/3 = 5.04$ inches.

Steel used for springs should have a high elastic limit and preferably a low modulus of elasticity, for the deflection is proportional to Z

the quotient $\frac{-}{G}$ and the greater efficiency of torsional springs is due to

the smaller modulus of elasticity, as compared with that of bending. For the same unit stress at the surface of the rod the angular deflection will vary inversely as the diameter, which is an important rule easy to remember. But for the same load and varying diameters the deflection varies inversely as the fourth power of the diameter. The torsional deflection of a $\frac{1}{2}$ -inch rod, for instance, would only be about $\frac{2}{5}$ of that of a $\frac{1}{2}$ -inch rod under the same load.

Helical Springs

The rod would in many cases have to be very long to give the desired deflection, and a straight rod would therefore often be impracticable; but fortunately it can be bent so as to make a comparatively short spring, easy to make and easy to harden. This is obtained by bending it in the form of a cylindrical helix, or screw-line, as shown in Figs. 17 and 18. One of these springs will be compressed and the other will be stretched, but the former may, by a slight change in the connections, be used both ways. These are true torsional springs, though it may not appear so at first sight. The following analogous case will explain it. Fig. 19 shows an open ring of steel wire firmly fixed and supported at A, and a radial lever firmly attached to the free end at B. A pressure exerted on this lever at the center of the ring perpendicular to its plane will twist the wire while it pushes point B back. This will be better understood by reference to the bent wire, shown in the dotted line. At a point N is drawn a tangent and from C a perpendicular CM. There will be a bending moment at Nrepresented by line MN and a twisting moment represented by line CM: but when the curve becomes a circle with center at C the bending moment disappears and there is nothing but a twisting moment left, and this twisting moment is constant for any part of the concentric ring. We see that when the rod is coiled, the twisting lever is equal to the mean radius, and the deflection will be in line with the axis of the helix. The helical form is compact, and the weight of a helical spring of round steel is only about 5/12 of that of a leaf spring of the same capacity.

In the following are given a number of formulas for helical springs. Calculated values based on these formulas are given in MACHINERY'S Data Sheet No. 107, January, 1909.

The following formulas apply to helical springs:

$$\begin{cases} W = \frac{40 Z d^{*}}{100 (D-d)}$$
 (7)

For round steel
$$\begin{cases} F = \frac{8 W (D-d)^2}{G d^4} \\ F = \frac{314 Z (D-d)^2}{100 G d} \end{cases}$$
(8)

(8)

$$W = \frac{47 Z d^3}{100 (D-d)}$$
(10)

For square steel
$$\begin{cases} F = \frac{47 W (D-d)^3}{10 G d^4} \\ 222 Z (D-d)^2 \end{cases}$$
 (11)

$$F = \frac{222 Z (D-a)^2}{100 G d}$$
(12)

In these formulas F is the deflection of one coil, and D is the outside diameter of the coil, and the meaning of the other letters is the same as in Formulas (1) to (6). It appears from these formulas that square steel is about 17 per cent stronger than round steel, but for the same unit stress the deflection of square steel is about 30 per cent less. Round steel is, therefore, better adapted to helical springs. This may easily be perceived without any calculation, considering that when square steel is twisted, the corners cannot add very much to the strength on account of the smallness of their areas, which terminate in four points; but these points, being furthest removed from the center, will take the greatest strain, and will limit the angle of deflection as much as a full circle including the points, would do.

Fig. 18 shows a car spring of, say, 1-inch round steel, 5 inches outside diameter. How much will it carry? It must not close under the maximum static load, but it may close entirely by the jolting of the car, and we will therefore put Z = 50,000 pounds for the maximum static load, assuming the elastic limit to be above 100,000 pounds unit stress. Substituting these values in Formula (7) we have:

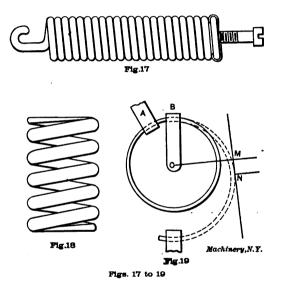
$$W = \frac{40 \times 50,000}{100 \times 4} = 5000$$
 pounds,

and assuming Z = 100,000 pounds when the spring is entirely closed, we have from Formula (9):

$$F = \frac{314 \times 100,000 \times 16}{100 \times 12,000,000} = 7/16 \text{ inch, nearly.}$$

That is, the coils should be 7/16 inch apart without load, and they will be 7/32 inch apart under maximum load.

The spring in Fig. 17 is, say, 3 inches in diameter and is made of 1/2inch round steel, and there are 24 coils. How much may this spring be extended if used on a shaft governor? As its work is intermittent,


Digitized by GOOGLE

20

and as it very seldom is fully extended, we may put Z = 70,000, and we have from Formula (9):

$$F = \frac{\frac{314 \times 70,000 \times (2\frac{1}{2})^3}{100 \times 12,000,000 \times \frac{1}{2}} = 0.23 \text{ inch.}$$

which is the allowable deflection of one coil, and $0.23 \times 24 = 5\frac{1}{2}$ inches is, therefore, the safe extension of this spring. From Formula (7) we find the maximum load to be 1400 pounds. Closed coil springs, as represented by Fig. 17, are sometimes distinguished by a considerable initial tension; that is, it takes some initial force to separate the coils, and the elongation cannot be calculated from the above formulas. The probabilities are that they are made from cold rolled wire, un-

tempered, for the initial tension would be removed by the process of tempering. Such springs are easily distinguishable by their resistance to bending before they are stretched.

It will be noticed that in the calculations of springs the supposed elastic limit is approached closer than would be judicious in the calculation of other machine parts; but the results agree with the average common practice, and there are several reasons why this is so. In the first place, springs are made of tool steel of moderate dimensions, which is a most reliable material. In the second place, the form is such that no part can be subjected to unexpected or unaccountable strains, and on account of their great elasticity springs do not suffer materially by shocks or blows.

1

There seems to be considerable uncertainty or lack of knowledge as to the proper modulus of elasticity of hardened steel. The comparatively small demand for such knowledge except for the calculation of springs is a probable reason for its scarcity. According to various

Digitized by GOOQIC

tests, the modulus of electicity of untempered steel is from 28,000,000 to 32,000,000, and it appears from calculations of bending and twisting deflection of ordinary springs that the modulus of elasticity is not increased by tempering. Still it will hardly do to overlook the figures given by Reuleaux, which appear in his "Constructor." His figures for the elastic limit and ultimate tensile strength are also interesting. In the heading, he states that the figures are mean values of numerous experiments by various experimenters on materials of different make, and in actual use.

Modulus of Elasticity	Blas tic Limit	Ultimate Tensile Strength, Pounds per Square Inch
Spring steel, tempered	71,000 to	113,700
	99,500	
Tool steel, untempered	35,500	113,700
Tool steel, spring tempered	92,000 to	142,000
· • • •	213,000	-

CHAPTER II

THE DESIGN OF HEAVY HELICAL SPRINGS*

A spring is usually specified by three dimensions, although some specifications complete the design by a fourth. The dimensions usually given are the outside diameter, free height, and diameter of bar. The fourth dimension, the solid height, is not generally given, so that the actual design of the spring is really left to the manufacturer. In some cases the number of coils or "rings" is specified, but this should never be done, as a tapered coil may be considered by one as a full coil and by another as a partial coil, thus causing confusion.

Investigation of such formulas as are found in the general textbooks, hand-books, and books of reference, indicates the need of more direct formulas to facilitate the design of springs. It is the writer's intention to present the derivation of such formulas with parallel examples, showing the ease of application. For this purpose we adopt the following notation:

- d == diameter of bar,
- D = mean diameter of coil,
- f = total deflection,
- h =solid height,
- H =free height,
- L = blunt length of bar,
- W = weight of bar, or spring,
- P =capacity of coil,
- $P_1 =$ any load less than capacity,
- $h_1 =$ height of coil under load P_1 ,
- S = maximum fiber stress,
- G =torsional modulus,
- w = weight of steel per cubic inch.

Only round bar coils will be considered.

I. Length of Bar when Solid Height is Given

Total number of coils
$$=$$
 $\frac{D}{\pi D}$

Total number of coils $= \frac{\pi}{d}$.

Hence,

$$\frac{L}{\pi D} = \frac{h}{d}.$$
$$L = \pi \left(\frac{D}{d}\right)h = 3.1416 \left(\frac{D}{d}\right)h$$

* MACHINERY, January, 1910, Railway Edition.

Example: Outside diameter == 4% inches, Bar == 7/16 inch, Solid height == 10 inches.

$$L = 3.1416 \times \left(\frac{8\frac{1}{2}\xi}{\frac{7}{18}}\right) \times 10 = 282.74$$
 inches.

II. Deflection when Solid Height is Given

Fundamentally, as given in most text-books,

$$f = \frac{LDS}{Ga}.$$

But

$$L = \pi \left(\frac{D}{d}\right) h$$

Hence,

$$f = \frac{\pi S}{G} \left(\frac{D}{d} \right)^2 h.$$

Or, for steel springs,

$$f = 0.019946 \left(\frac{D}{d}\right)^{4} h$$

Example: Outside diameter $= 4\frac{1}{4}$ inches, Diameter of bar $= \frac{3}{4}$ inch, Solid height = 10 inches.

$$f = 0.019946 \left(\frac{8\frac{1}{2}}{\frac{3}{4}}\right)^3 \times 10 = 4.34$$
 inches.

III. Ratio between Free and Solid Heights

$$H = h + f$$
$$f = \frac{\pi S}{G} \left(\frac{D}{d}\right)^{2} h$$

Hence,

$$H = h + \frac{\pi S}{G} \left(\frac{D}{d} \right)^{s} h$$
$$H = \left[1 + \frac{\pi S}{G} \left(\frac{D}{d} \right)^{s} \right] h$$

Or, for steel springs,

$$H = \left[1 + 0.019946 \left(\frac{D}{d}\right)^{*}\right]h$$

$$H$$

 $1 + 0.019946 \left(\frac{D}{d}\right)^{2}$

h == -

and

١.

24

Example 1: Outside diameter = 6 inches, Diameter of bar $= 1\frac{1}{5}$ inch, Free height = 13% inches. Find solid height h.

 $h = \frac{1}{1 + 0.019946 \left(\frac{4\frac{2}{6}}{1\frac{1}{6}}\right)^{2}}$

Example 2: Outside diameter $= 7\frac{1}{5}$ inches, Diameter of bar $= 1\frac{1}{8}$ inch, Solid height = 10 inches. Find free height H.

$$H = \left[1 + 0.019946 \left(\frac{6}{1\frac{1}{5}}\right)^{5}\right] \times 10 = 15.67 \text{ inches.}$$

IV. Deflection when only Free Height is Given

$$f = \frac{\pi S}{G} \left(\frac{D}{d} \right)^3 h$$

But

$$h = \frac{H}{1 + \frac{\pi S}{G} \left(\frac{D}{d}\right)^2}$$

Hence,

$$f = \frac{\frac{G}{\pi S} \left(\frac{D}{d}\right)^{s} H}{1 + \frac{\pi S}{G} \left(\frac{D}{d}\right)^{s}}$$
$$f = \frac{H}{1 + \frac{G}{\pi S} \left(\frac{d}{D}\right)^{s}}$$

Or, for steel springs,

$$f = \frac{H}{1 + 50.1337 \left(\frac{d}{D}\right)^2}$$

Example: Outside diameter = $5\frac{1}{2}$ inches, Diameter of bar = 1% inch, Free height = 11% inches. 119/

$$f = \frac{1194}{1 + 50.1337 \left(\frac{13}{4\frac{1}{5}}\right)^2} = 1\% \text{ very nearly.}$$

No. 58-SPRINGS

V. Weight when Solid Height is Given

Area of cross section
$$=$$
 $\frac{\pi d^3}{4}$.
Cubical contents of bar $=$ $\frac{L \pi d^3}{4}$.
Then $W = \frac{L \pi d^3 w}{4}$
But $L = \pi \left(\frac{D}{d}\right) h$
Hence, $W = \frac{\pi^3 w}{4} dDh$

>

For steel springs, where one cubic foot of steel weighs 486.6 pounds,

$$W = 0.694 \ dDh.$$

Example: Outside diameter == 3% inches, Diameter of bar == 15/16 inch, Solid height == 10 inches.

$$W = 0.694 \times \frac{15}{16} \times 2 \frac{13}{16} \times 10 = 18.3$$
 pounds.

VI. When Free and Solid Heights are Given to Determine Stress

$$h = \frac{H}{1 + \frac{\pi S}{G} \left(\frac{D}{d}\right)^3}$$

$$S = \frac{(H-h) G}{\pi h} \times \left(\frac{d}{D}\right)^{s}$$
$$S = \frac{Gf}{\pi h} \times \left(\frac{d}{D}\right)^{s}$$

For steel springs,

$$S = 4,010,700 \frac{f}{h} \left(\frac{d}{D}\right)^{s}$$

Example: Outside diameter = 4½ inches, Diameter of bar = ½ inch, Free height = 22¾ inches, Solid height = 10 inches. $S = 4,010,700 \times \frac{12.75}{10} \left(\frac{0.5}{4}\right)^{3} = 80,000 \text{ pounds.}$

Digitized by Google

ŧ

HELICAL SPRINGS

VII. When Free and Solid Heights are Given to Determine Capacity

 $P = \frac{S \pi d^3}{8 D}$

and

Hence.

$$s = \frac{Gf}{\pi h} \left(\frac{d}{D}\right)^{*}$$

$$P = \frac{G f d^{s}}{8 h D^{s}}$$

For steel springs,

$$P = 1,575,000 \frac{f d^3}{h D^3}$$

Example: Outside diameter = 2% inches, Diameter of bar = ½ inch, Free height = 14½ inches, Solid height = 10 inches.

$$P = 1,575,000 \times \frac{4.5 \times 0.5^{\circ}}{10 \times 2.375^{\circ}} = 1653 \text{ pounds.}$$

These last two formulas are very useful in ascertaining the stresses and loads of the separate coils of double and triple coil springs.

VIII. Given Free Height, Diameter of Spring and Bar, and Load Carried at Given Height. To Find Proper Solid Height

$$\frac{P_{1}}{P} = \frac{f_{1}}{f}$$

$$H = f + h$$

$$H = f_{1} + h_{1}$$
Hence, $f_{1} = f + h - h_{1}$
Then $P(f + h - h_{1}) = P_{1}f$
Hence $h = \frac{P_{1}f - Pf + Ph_{1}}{P}$

$$h = \frac{P_{1} - P}{P} \times f + h_{1}$$
But $f = \frac{\pi S}{G} \left(\frac{D}{d}\right)^{2} h$

$$h = \frac{\pi S}{G} \left(\frac{D}{d}\right)^{2} \left(\frac{P_{1} - P}{P}\right) h + h_{1}$$

Hence,

$$\hat{h} = \frac{h_1}{1 + \frac{\pi S}{G} \left(\frac{P - P_1}{P}\right) \left(\frac{D}{d}\right)^{r}}$$

For steel springs,

$$h = \frac{h_1}{1 + 0.019946 \left(\frac{P - P_1}{P}\right) \left(\frac{D}{d}\right)^2}$$

Example: Outside diameter = $5\frac{1}{2}$ inches, Diameter of bar = $\frac{3}{4}$ inch.

Free height = 18 inches.

What solid height is required for carrying 1395 pounds at 14 inches?

$$P = 2790$$
 pounds by formula $P = \frac{S \pi d^2}{8 D}$.

Then,

$$h = \frac{14}{1 + 0.019946 \left(\frac{2790 - 1395}{2790}\right) \left(\frac{4\frac{3}{4}}{\frac{3}{4}}\right)^2} = 10 \text{ inches.}$$

IX. To Determine the Quality of the Steel

The value of G is the index to the quality of the steel, and upon this value depend all properties of the spring. By transposing either the formula given in (VII) for capacity, or that for load, we find a method for ascertaining this value, *i. e.:*

$$G = \pi S \frac{h}{f} \left(\frac{D}{d}\right)^{s}$$

 $G = 8 P \frac{h D^{s}}{f d^{s}}$

Example: Outside diameter = 4% inches, Diameter of bar = 11/16 inch, Load = 1219 pounds, Deflection = 3.7 inches, Solid height = 10 inches.

$$G = 8 \times 1219 \times \frac{10 \times (4\frac{1}{16})^3}{3.7 \times (\frac{1}{16})^5} = 12,600,000.$$

General Remarks

Concentric coils, as shown in Fig. 21, are made generally of the same free and solid heights. Presuming that such coils are all made of the same quality of steel, the ratio of $\frac{D}{d}$ should be the same throughout, for the formula in (II) clearly shows that this is necessary to obtain equal stresses in all coils.

or

The formula in (I) shows that after all values of $\frac{D}{d}$ are made the same, the lengths of all bars will be the same before tapering. A study of all the formulas reveals the fact that the ratio of $\frac{D}{d}$ determines everything; this ratio might well be called the spring index.

Fig. 20. Types of Coil Springs for Railroad Cars

Fig. 21. Concentric Coil Springs for Railroad Cars

The absolutely perfect design of concentric springs is seldom possible where a scale of sixteenths inch for dimensions is used, with the customary one-eighth inch between inside diameter of one spring and outside diameter of the next. As cases of perfect design, however, the following springs are given as examples:

No. 58-SPRINGS

Spring No. 1

Outer: 5 inches outside diameter, 15/16 inch bar. Inner: 3 inches outside diameter, 9/16 inch bar. In this design $\frac{D}{d} = 41/3$. Spring No. 2 Outer: 2% inches outside diameter, % inch bar. Inner: 1% inch outside diameter, ¼ inch bar. In this design $\frac{D}{d} = 6$. In concentric coil surjuge where perfect design is inclusion.

In concentric coil springs where perfect design is impossible, the coil having the least value of $\frac{D}{d}$ will be stressed the highest, as shown

Fig. 22. Groups of Coil Springs held together by Plates at Top and Bottom

by the formula in (VI); this coil may therefore be called the governing coil, inasmuch as the motion, or deflection, of the spring as a whole depends upon this coil. To estimate the capacity of such concentric coils we have recourse to the formula in (VII), while the formula in (VI) shows the separate stresses. The load which the concentric spring will carry at any height is then found by the fact that all loads are proportional to deflection.

In actual design adjacent coils are wound in opposite directions to prevent binding, as shown in Fig. 21. Instead of using concentric coils, groups of similar coils are sometimes used which are held together by pressed steel or cast spring-plates, as shown in Fig. 22. It is customary to suspend the static load at one-half the deflection.

A helical spring for railroad service is almost invariably made of round bar spring steel. The analysis of spring steel most frequently used is known as P. R. R. analysis, and its composition is as follows: Carbon, 1.0 per cent (not under 0.90 per cent); phosphorous, 0.05 per cent (not over 0.07 per ceni); manganese, 0.25 per cent (not over 0.50 per cent); silicon, not over 0.10 per cent; sulphur, not over 0.03 per cent.

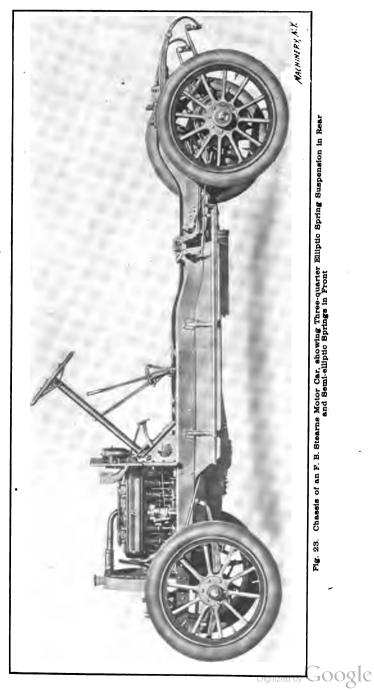
For spring steel of this character the maximum fiber stress should not be over 80,000 pounds per square inch, and the torsional modulus should be taken as 12,600,000 pounds.

CHAPTER III

THE DESIGN OF ELLIPTIC SPRINGS*

It is doubtful if scientific calculations ever entered into the design of the original forms of such springs as are used under ordinary road carriages. Satisfactory as they are, they are not engineering results, but accepted standards born long ago of the cut-and-try methods of the blacksmith shop. Their manufacture belongs to such arts as are taught by father to son, or acquired through years of experience, during which have been gathered the "tricks of the trade." The manufacturer of this class of springs does not attempt to arrive at results by mathematics. He has learned as a part of his trade that certain styles of carriages should have certain springs.

Sufficient time did not exist during the development of railroad cars for a gradual development of definite types of springs for various types of cars. It devolved, therefore, upon the engineer to design these springs; but as soon as the spring maker found that the 70,000-, 80,000-, and 100,000-pound capacity car each had its own peculiar set of springs, and that any car could be fitted with springs according to its capacity, he adopted the engineer's designs as another class of standards. Railroad cars, while resting on springs whose dimensions were originally scientifically estimated, are now, therefore, suspended largely upon springs belonging to a few fixed classes.


With the advent of the automobile came a carriage traveling fast over uneven country roads, meeting severe usage in inexperienced hands, and demanding the extreme of comfort and safety. The question of springs and spring suspension thus becomes of primary importance, so that in these carriages each particular design requires a specially designed suspension. Automobile springs are fundamentally cantilevers, the same as all leaf springs. This class of springs more readily lends itself to an easy vibration, as well as to a better general design of the machine. It is possible to carry a load on a narrowleafed elliptic leaf spring where there would not be room for a helical spring. Also, the addition of a leaf to an elliptic leaf spring adds to its capacity without changing its deflection, while the addition of a coil to a helical spring does not change its capacity but adds to its deflection.

Any leaf spring, tightly banded around the middle, should be considered as composed of two cantilevers of length l, where l is one-half the distance from center to center of the end bearings less one-half the width of the band. The length of each cantilever is then expressed (see Fig. 24):

$$l = \frac{c - w}{2}$$

^{*} MACHINERY, January, 1910, Engineering Edition.

ELLIPTIC SPRINGS

To consider a spring as a simple beam of length c, is to overlook the effect of the band. It is easily demonstrated that variations in the width of the band cause corresponding variations in the strength and deflection of the spring. The elliptic spring, graduated throughout, with but one leaf in each section extending from end bearing to end bearing, is fundamentally a cantilever of *uniform strength*; and the formulas applicable are based on the fundamental formulas of that type of cantilever. An elliptic spring with all leaves in each section extending from end bearing to end bearing is, on the other hand, a cantilever of *uniform* section, and the formulas for this type of cantilever are then applicable.

ť

The springs used in automobile practice are frequently combinations of these two forms, inasmuch as a considerable portion of the leaves extend the full length from bearing to bearing. It follows that neither of the above formulas will apply, but that the applicable formulas may be derived by combining the fundamental formulas for the

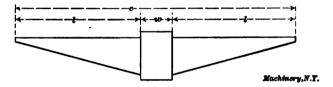


Fig. 24. Diagrammatical Sketch of Graduated Spring, giving Length Notation used in Formulas

two types of cantilevers. The load capacity of a cantilever is not affected by its form, for in either case:

$$P = \frac{S b h^3}{6 l}$$

in which P = load,

S =allowable stress,

b =width of beam,

h =thickness of beam,

l =length of cantilever.

In other words, the load capacity is equal for like conditions, such as stress, size of beam, and length of span.

A great difference exists, however, in the deflections under the same load, one being fifty per cent more than the other:

$$f = \frac{4Pt^{*}}{Ebh^{*}}, \text{ for uniform section cantilevers,}$$
$$f = \frac{6Pt^{*}}{Ebh^{*}}, \text{ for uniform strength cantilevers,}^{*}$$

in which f = deflection, and E = modulus of elasticity.

• The formula given is that for a cantilever of uniform strength, where the height λ is uniform, but the width of the section of the cantilever decreases towards the outer end; ϑ is the width at the support. Digitized by GOOG When such a difference as this exists, it is rather remarkable that many engineers calculate the properties of an elliptic spring no matter what the cantilever conditions, as though all elliptic springs were subject to the same rules and formulas; but, as a matter of fact, the proportion of back leaves, or the leaves on the longer side of the spring which commonly extends the full length, ranges from 5 to 50 per cent of the total number of leaves. It is not unusual to see attempts made through actual tests of the springs themselves to find the proper constant with which to modify the uniform strength equations so as to render them applicable to springs composed of uniform section cantilevers in combination with uniform strength cantilevers. The desired modifier, however, is a variable quantity, depending upon the relative size of the fundamental spring elements.

Lack of due consideration of this combination of different cantilevers accounts also for the different and conflicting formulas which various

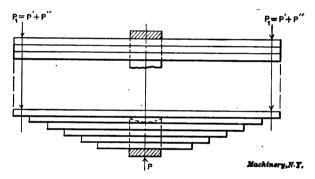


Fig. 25. Showing Division of Spring into Cantilevers of Uniform Section (Upper Portion) and Cantilevers of Uniform Strength (Lower Portion). One of the Full Length Leaves should always be considered as a Part of the Graduated Leaves

authorities advance. Thus Goodman, in "Mechanics Applied to Engineering"; Reuleaux, in his "Constructor"; and "Des Ingenieurs Taschenbuch" (Hütte), give formulas all of which reduce to uniform strength cantilevers. Molesworth and the Automotor Pocket Book base their formulas on uniform section cantilevers. Henderson, who assumed all semi-elliptic springs to contain one-fourth full length leaves, and made an approximation of the result, was the first to recognize the influence of the combination of cantilevers.

Deduction of General Formulas

For further consideration we will adopt the following notation, discussing only the semi-elliptic spring:

P = total load on spring,

 $P_1 =$ portion of load on one end of spring,

- P' =portion of load on one end of full-length leaves, or on uniform section cantilever,
- P'' = portion of load on one end of graduated leaves, or on uniform strength cantilever,

35

n = total number of leaves,

n' = number of full-length leaves,

n'' = number of graduated leaves,

$$r = \stackrel{n'}{-}$$

s = maximum fiber stress in spring,

S' = maximum fiber stress in full-length leaves,

S'' = maximum fiber stress in graduated leaves,

f =total deflection of banded leaves,

f' =total deflection of full-length leaves if unbanded,

- f'' =total deflection of graduated leaves if unbanded,
- b = width of leaves,
- h =thickness of leaves,
- l =length of cantilever,
- L = net length of spring, *i. e.*, actual distance between end bearings, less width of band,
- x = proper initial space between fundamental cantilevers before banding.

It is but reasonable to assume that the maximum fiber strain should be the same in both fundamental parts, or S' = S''

But

$$S' = \frac{6 P' l}{n' b h^{2}},$$
$$S'' = \frac{6 P'' l}{n'' b h^{2}},$$
$$\frac{P'}{P''} = \frac{n'}{n''}.$$

Hence,

In a well-designed spring there should be, at full load, a division of the work proportional to the respective number of leaves in the two fundamental parts. The fundamental formulas of the two cantilevers have shown, however, that such proportional loads would produce different deflections in their respective carriers. This difference in deflection would cause a separation of the two portions of the spring were they initially together and unbanded. Were they initially together and banded the result would be internal stress under load which would mean that a division of the load proportional to the respective number of leaves in the two fundamental parts could not exist.

It is evident that by placing a space between the two fundamental parts when unloaded and unbanded, equal to the difference between the two deflections, there will result no space between the two fundamental parts at full load; and hence if banded in this position there will be no internal stress, so that the load on each part will be proportional to the number of leaves in that part. If then the load be removed, it follows that the band alone holds the two portions together

Digitized by GOOGIC

36

and that there must exist a resulting stress upon the band and leaves. Now

$$f' = \frac{4 P' l^a}{E n' b h^a} \tag{1}$$

and

$$f'' = \frac{6 P'' l^3}{E n'' b h^3}$$
 (2)

But, as shown,

$$\frac{P'}{P''} = \frac{n'}{n''}.$$

or

$$P' = \frac{n' P''}{n''}$$

Hence $f' = \frac{4 P'' l^a}{E n'' b h^a}$, as derived by substituting in (1).

Hence,

$$f''-f'=\frac{2P''l^3}{En''bh^3}.$$

Also, since

$$\frac{P'}{n'} = \frac{P''}{n''} = \frac{P_1}{n} = \frac{P}{2n},$$

we have

$$f''-f'=\frac{P l^3}{E n h h^3}$$

Also since

$$l = \frac{L}{2},$$
$$f'' - f' = \frac{P L^{*}}{8 E n b h^{*}}$$

or

$$x = \frac{PL^3}{8Enbh^3}$$

This last expression is then a general expression of the proper initial distance between the two fundamental portions before banding, expressed in terms of total load on spring, total number of leaves in spring, and net span of spring. To find the actual working deflection of the entire spring it is only necessary now to ascertain how much either portion is deflected by the process of bending. For this purpose let us adopt the following notation:

 $P_{\rm x} =$ force exerted by band,

 $f_x' =$ deflection of full-length leaves caused by band,

 $f_{\mathbf{x}}^{\prime\prime} =$ deflection of graduated leaves caused by band.

Then,

Hence

$2P_{x}l$		$= \frac{3 P_x l^3}{2}$
$f_{x}' = \frac{1}{E n' b l}$	$$ and f_{x}'	$\frac{-}{E n'' b h^{*}}$
$P_x l^3$	$f_{x}' n'$	f _x '' n''
E b h ^s	2	3
	0.41	

$$f_{\mathbf{x}'} = \frac{2}{8} \left(\frac{1-r}{r} \right) f_{\mathbf{x}''}$$

$$f_{\mathbf{x}}' + f_{\mathbf{x}}'' = \frac{F t^2}{E n b h^2}$$

D 11

Hence

But

$$f_{\mathbf{x}''} + \frac{2}{8} \left(\frac{1-r}{r} \right) f_{\mathbf{x}''} = \frac{P l^{\mathbf{s}}}{\mathbf{E} n b h^{\mathbf{s}}}$$
$$f_{\mathbf{x}''} = \left(\frac{8r}{2+r} \right) \frac{P l^{\mathbf{s}}}{\mathbf{E} n b h^{\mathbf{s}}}$$

But

$$x'' = \frac{3 P_x P}{E n'' b h^3}$$

Hence

$$\frac{3P_{x}t^{p}}{En''bh^{s}} = \left(\frac{3r}{2+r}\right) \frac{Pt^{s}}{Enbh^{s}}$$

or

$$\frac{3 P_x l^2}{E (1-r) n b h^2} = \left(\frac{3 r}{2+r}\right) \frac{P l^2}{E n b h^2}$$

$$P_{x} = \left(\frac{r(1-r)}{2+r}\right)P$$

The expression inside the bracket in the above equation becomes zero for either extreme value of r, as would be expected, the extreme values of r being unity and zero. The formula gives the force exerted by the band, *i. e.*, the load upon the band.

The total deflection of the graduated leaves, as already developed, is,

$$f'' = \frac{3 P l^3}{E n b h^3}$$

The deflection of the graduated leaves, caused by the band, is

$$f_{\mathbf{x}^{\prime\prime}} = \left(\frac{8\,r}{2+r}\right) \frac{P\,t^{\mathbf{a}}}{E\,n\,b\,h^{\mathbf{a}}}$$

The difference is, therefore, the deflection left in the graduated leaves after banding, or the general formula sought for the deflection of such a spring:

Digitized by Google

or

38

or

 $f'' - f_{\mathbf{x}}'' = \left\{ 3 - \left(\frac{3r}{2+r}\right) \right\} \frac{Pr}{Dnbh^{2}}$

or.

$$f = \left(\frac{6}{2+r}\right) \frac{P t^{*}}{E n b h^{*}}$$

or, since $l = \frac{L}{2}$ and

$$P = 2 P_1 = 2 \left(\frac{S n b h^3}{6 l} \right)$$
$$f = \left(\frac{6}{2 + r} \right) \left(\frac{2 S n b h^3}{8 L} \right) \frac{L^3}{8 E n b h^3}$$

Hence

$$f = \frac{1}{2(2+r)} \times \frac{SL^3}{Eh}$$

This last expression is then a general formula for the deflection of all semi-elliptic springs. If all the leaves are graduated, r = 0, and

$$f = 1/4 \times \frac{SL^2}{Eh}.$$

all length, $r = 1$, and
 SL^2

If all the leaves are full length, r = 1, and

$$f=1/6\times\frac{SL}{Eh}.$$

As was to be expected, the spring composed of all graduated leaves has a deflection, according to the above general formula, 50 per cent above that of a spring composed of all full-length leaves. For values of r above zero, the deflection will be found to decrease until r equals unity.

General Remarks

The general formulas given above were first deduced by the writer in the early part of 1905, at which time they were placed before Prof. C. H. Benjamin, then of the Case School of Applied Science, with a view of making extended experiments for the preparation of a thesis. It was the intention to have springs built with initial space as deduced, and compare the actual deflections of such springs with the estimated deflections. Although these experiments were not carried out, they are mentioned because it is believed that when such experiments are made, they will prove valuable. The deduction of the formulas was published for the first time in MACHINERY, in the January, 1910, issue, engineering edition. This deduction was made in connection with certain springs which were giving very poor service, although designed by the same formulas as other elliptic springs. It was the writer's conclusion that had the springs been built with the proper initial space between the fundamental parts, these springs would not have broken, and that the omission of this space caused

89

an over-stress in the full-length leaves, and an under-stress in the graduated leaves, which caused the over-strained leaves to break, throwing an overload upon the previously under-stressed leaves which also broke when the stress became excessive. This conclusion seems to explain why springs of this type are frequently found with only the long leaves broken; the remaining leaves, all being of one type, divide the resultant overload evenly so that the over-stress is not so excessive. Perhaps the strongest indication of the correctness of the deduction lies in the well-known fact that the percentage of breakage is always much greater with semi-elliptic springs (of the combination type, usually) than with full elliptic springs. Also, it is generally found upon unbanding these springs that no initial space exists.

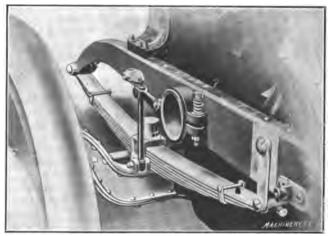


Fig. 26 Front Spring Arrangement of the 1910 Model Winton Six-cylinder Car

Comparison of deflections estimated from the above formulas, with actual deflections, has in some cases been quite satisfactory, while in other cases the actual deflections have appeared closer to those estimated by uniform strength formulas. In such cases where the writer has been able to make comparisons, however, the springs had been made to specified deflections which evidently were estimated by the uniform strength formulas. Experienced spring makers know that it is quite possible by putting a "pull" in the springs to vary the deflection and load. This trade term, "pull," is itself nothing more nor less than the introduction of an initial space between the leaves before banding.

Suspension of Automobiles

In road carriages, except in the heavier wagons, it is usual to find but two springs, one over each axle placed across the width of the carriage. In automobiles, one finds almost invariably at least the rear suspended upon two springs running lengthwise of the car, while, as is shown in the accompanying illustrations, it is the tendency_to

ELLIPTIC SPRINGS

use the same suspension in the front. Such an arrangement takes up the forward and side lunges in a manner impossible with simple transverse springs. The further use of links and shackles, and of scroll ends, adds to the comfort, allowing the car to swing upon the springs rather than to be thrown upon them. In quite a few models, the two rear springs are attached in front to the frame and in the rear to a platform spring, which is itself attached to the center of the rear cross member of the frame. The three-quarter elliptic spring lends itself to both comfort and convenience of arrangement, and is

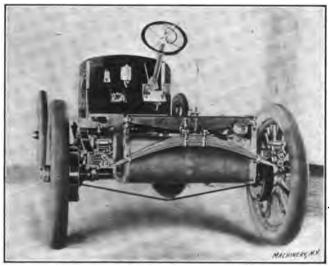


Fig. 27. Spring Support of the Lozier Motor Co.'s "Light Six" Car

rapidly coming into general use in this country, our manufacturers having apparently adopted it from foreign cars.

Steel Used in Automobile Springs

Automobile springs call for a high grade of steel, the ordinary spring steel lacking in strength and elasticity. Various grades of high carbon, silicon, manganese, nickel, chromium, and vanadium steels are used. Often such alloys are used as silico-manganese, chrome-nickel, and chrome-vanadium, the stiffening elements seeming to rank in the order given. Data as to the physical properties of such steels cannot well be given, as such properties must depend upon the proportions in the particular alloy used. Certain alloys of the vanadium group having an elastic limit of from 180,000 to 225,000 pounds per square inch, and tensile strength from 190,000 to 250,000 pounds, appear to be the most ideal steels yet produced.

Calculations of Springs

The calculation of spring properties by formulas is long and tedious. The writer appends, therefore, a table based on a modulus of elasticity

of 25,400,000 and a fiber stress under maximum safe load of 80,000 pounds per square inch. Calculations of springs made of materials having other physical properties are made by simple proportion. This table is to be used only when all leaves are fully graduated.

The safe load on one leaf one inch wide is found by dividing the constant given under P_u by the net length. The corresponding deflection is found by multiplying the constant given under f_u by the square of the net length.

Example: What is the safe load on a semi-elliptic full graduated spring of five leaves if of one-quarter by two inch steel; length between end bearings, thirty-six inches; band or seat, three inches?

Net length = 36 - 3 = 33 inches.

3333.33

Load on one leaf one inch wide = $\frac{101.01}{33}$ = 101.01 pounds.

SEMI-ELLIPTIC SPRING TABLE

Giving safe load and deflection for 1 inch wide leaves, 1 inch net length. Used only when all leaves are fully graduated

Thick- ness of Leaf	A	ſъ	Steel	Pu	ſu
-17-17-17-17-17-17-17-17-17-17-17-17-17-	52.08 208.88 468.75 838.88 1802.08 1875.00 2552.06 8888.88	$\begin{array}{c} 0.02519\\ 0.01260\\ 0.00840\\ 0.00680\\ 0.00504\\ 0.00504\\ 0.00420\\ 0.00860\\ 0.00815 \end{array}$		4218.75 5208.88 6802.08 7500.00 8802.08 10208.38 11718.75 13888.88	0.00280 0.00253 0.00229 0.00210 0.00194 0.00180 0.00168 0.00167

Load on one leaf two inches wide = $2 \times 101.01 = 202.02$ pounds. Load on five two-inch leaves = $5 \times 202.02 = 1010.10$ pounds. Corresponding deflection is:

 $0.00315 \times (33)^{2} = 3.43$ inches.

Formulas can easily be deduced making it possible to use the accompanying table for other classes of elliptic springs than those of the semi-elliptic type with all leaves fully graduated.

The formulas for the semi-elliptic spring with all leaves graduated are:

$$P = \frac{2 S n b h^2}{3 L} \text{ and } f = \frac{S L^2}{4 E h}.$$

To find the values of P_n given in the table, insert S = 80,000, n = 1, b = 1, h = the value given in the first column in the table, and L = 1. To find the values of f_n , insert in the second formula S = 80,000, L = 1, E = 25,400,000, and h = the value given in the first column in the table.

Now if the values in the table are to be used for other springs, constants can be deduced by which the table values may be multiplied.

Distant law (-C

42

ELLIPTIC SPRINGS

For a semi-elliptic spring with a portion of the leaves graduated the load P remains the same as for a spring with all leaves graduated. The formula for the deflection, however, is:

$$f = \frac{1}{2(2+r)} \times \frac{SL^3}{Eh}.$$

The values in the table, therefore, must be multiplied by the quantity 2

 $\xrightarrow{}$ X L² to find the deflection for any given combination full leaf (2+r)

and graduated spring of effective length L.

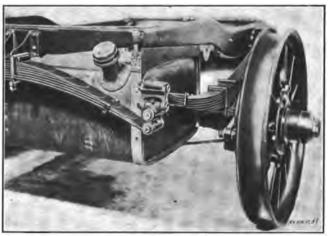


Fig. 28. Arrangement of Semi-elliptic Springs on the Lozier Motor Co.'s Four-cylinder Model

For a full elliptic spring with all leaves graduated, P still remains the same as for a semi-elliptic spring, but f doubles its value, or:

$$f = \frac{S L^2}{2 E h}.$$

The values in the table, therefore, in this case must be multiplied by $2L^{2}$.

For the full elliptic spring with only part of the leaves graduated, the load P remains the same as before, but the deflection is twice that of a semi-elliptic spring:

$$f = \frac{1}{2 (2 + r)} \times \frac{2 S L^3}{E h} = \frac{S L^3}{(2 + r) E h}$$

In this case, then, the values for the deflection in the table are to be multiplied by $\frac{4}{2+r} \times L^2$.

The flexibility of a spring is the amount of deflection as compared to the load. This may be expressed as so many inches deflection per hundred pounds, or y.

43

Example: Assume a full-elliptic, fully graduated spring, where S = 80,000, E = 25,400,000, b = 134 inch, n = 4, h = 14 inch, \cdot L = 30 inches.

Then the safe load equals:

$$P = 4 \times 1\frac{3}{4} \times \frac{3333.33}{30} = 778$$
 pounds.

And the deflection equals:

 $f = 30^2 \times 2 \times 0.00315 = 5.67$ inches.

Then,

$$y = \frac{5.67}{778} \times 100 = 0.73$$
 inch.

On the other hand, assume that the thickness and number of leaves are unknown. Then we have:

 $P = 778 \text{ pounds,} \\ s = 80,000, \\ E = 25,400,000, \\ b = 1\% \text{ inch,} \\ L = 30 \text{ inches,} \\ y = 0.73 \text{ inch.} \\ Then$

$$f = \frac{778}{100} \times 0.73 = 5.67$$
 inches.

But $f = 2 f_u L^3$, where f_u is the constant for deflection in the accompanying table.

Hence,

$$f_{\rm u} = \frac{f}{2L^2} = \frac{5.67}{.1800} = 0.00315.$$

The thickness of steel in the table which corresponds to this value of f_u is one-fourth inch.

The number of leaves is found by using P_u . Load on one leaf, one inch wide is:

 $\frac{3333.333}{30} = 111.11 \text{ pounds.}$

Load on one leaf 134 inch wide is:

$$111.11 \times 1\% = 194.25.$$

Number of leaves is then,

$$\frac{778}{194.25} = 4.$$

Digitized by Google

44

ELLIPTIC SPRINGS

The present calculation makes no allowance for the leaves of a spring varying in thickness. Where such springs are used, the deflection of the different leaves will not be uniform. Hence, in such springs also a suitable initial "pull" should exist, and such springs should be estimated by a general formula based upon a combination of different cantilevers, thus making allowance for different depths of cantilevers.

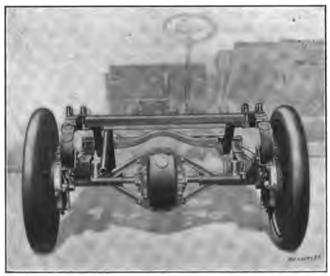


Fig. 29. Three-quarter Elliptic Spring Suspension on the F. B. Stearns Co.'s 15-30 H. P. Car

It is much better to use springs composed of but one thickness of leaves, as the combination of different thicknesses adds a complexity scarcely necessary.

Results obtained from fully graduated full elliptic springs would seem to show that the action of the friction between the leaves is not great enough to seriously affect the bending action, in that the formulas give results agreeing very closely with actual conditions.

CHAPTER IV

THE DESIGN OF SPRINGS FOR GAS ENGINE VALVES*

Springs for gas engines should be carefully designed, and if properly proportioned for the work they must do, should be just as reliable as any other part of the mechanism. While the general data for spring design are well known to engineers, yet attention may properly be given to some considerations specially applicable to gas engine valve springs. This chapter will consider compression springs of round steel wire only, as the writer knows of no valid reason for the use of any other material or section for this class of springs. It is well known that square steel is less desirable than round steel for springs, both on account of the higher cost of the springs per pound, and from the standpoint of efficiency.

The first consideration is the selection of the proper values for the fiber stress S and the torsional modulus of elasticity G. Experiments have shown that a fair value for G is 12,500,000, which value is fairly constant for the various grades and tempers of steel within their elastic limits. The safe value for S is not so easily determined, because the correct value for any given class of springs is largely a matter of experience. The highest normal value of S varies from about 120,000 pounds per square inch for 1/16-inch wire, to 90,000 pounds for %-inch wire, which includes the range of sizes generally used on valves. The term "normal value" is used to distinguish these figures from the higher values which can be reached by spring makers, and which are sometimes necessary, but should never be used for rapidly vibrating springs, or for springs where safety and long life are primary considerations, as in this class of springs. In fact, even the above normal values are far too high for gas engine springs. These values are used very generally on machinery springs, etc., but should be reduced very materially to obtain springs which will give the maximum of service in gas engine work. A value of S of from 25,000 to 30,000 pounds per square inch has been found to give best results for gas engine valves.

The third variable is the length of the spring, which should be as long as practicable in order to keep the pressure on the lever or cam which operates the valve from being higher than necessary at the extreme lift of the valve. To illustrate this point we will take a valve on which a pressure of 40 pounds when closed is desired, and which opens $\frac{1}{2}$ inch. If the spring is under $\frac{1}{2}$ inch compression when the valve is closed, and holding 40 pounds, the pressure when the valve is open will be 80 pounds. But if we use a spring under $\frac{1}{4}$ inch compression to hold 40 pounds when the valve is closed, when the valve is opened the $\frac{1}{2}$ -inch travel, the pressure will be

* MACHINERY, May, 1908.

increased to only 56 pounds. The diameter and assembled length of the spring will usually be determined by the general design of the engine. The diameter should be as large as convenient, which will lessen the tendency to buckle.

We will now design a spring for an exhaust valve, the lift of the valve being $\frac{1}{2}$ inch, the assembled length of the spring 6 inches, the pitch diameter of the spring 2 inches, and the value of S at extreme compression 25,000 pounds per square inch. We will make the spring 7 $\frac{1}{2}$ inches long, thus giving a total compression of 1 $\frac{3}{2}$ inch, and a final pressure of 56 pounds. The following formulas will be used:

$$P = \frac{11d^{4}S}{28 D}$$
(1)
$$f_{*} = \frac{22D^{2}S}{7G4}$$
(2)

in which

P =pressure at given compression,

d = diameter of wire in inches,

D = pitch diameter of spring in inches,

 $f_1 =$ deflection of one coil in inches,

S = fiber stress in pounds per square inch,

G =torsional modulus of elasticity..

The common forms of the Formulas (1) and (2) are:

$$P = \frac{8\pi d^{2}}{16R}$$

$$f = \frac{32PR^{2}l}{C\pi d^{4}}$$
(3)
(4)

In these formulas P, d, S, and G denote the same quantities as in Formulas (1) and (2), and

R = pitch radius of spring in inches,

f = deflection of the whole spring under load,

l =full length of wire in spring.

The Formulas (3) and (4) can easily be transformed to the form in (1) and (2) by writing $\pi = 22/7$, R = D/2, and $l = \pi Dn$ (*n* being the number of coils in the spring).

We use Formula (1) to determine the size of the wire. Substituting the known values, we have:

$$56 = \frac{11d^3 \times 25,000}{28 \times 2}$$
, or $d = 0.225$.

We therefore will use No. 4 Washburn & Moen gage wire, which is 0.225. To determine the deflection per coil, we will substitute the known values in Formula (2), as follows:

$$f_1 = \frac{22 \times 4 \times 25,000}{7 \times 12,500,000 \times 0.225} = 0.112 \text{ inch.}$$

Digitized by Google

47

The free length of the spring is 7¼ inches, and the length with the valve open is 5½ inches; the compression therefore is 1% inch. Then $1\% \div 0.112$ (the compression per coil) gives 15% acting coils approximately, and adding one coil on each end, for a flat bearing to be ground at right angles to the axis of the spring, gives 17% total coils. Therefore the spring will be 2 inches pitch diameter, 7¼ inches free length, No. 4 W. & M. gage wire, 17% total coils, squared and ground ends, holding 40 pounds at 6 inches long, and 56 pounds at 51/2 inches long, with a fiber stress at 51/2 inches long of 25,000 pounds per square inch.

If it is desirable that the pressure, when the valve is open, rise as little as possible above 40 pounds, we must make the spring as long as possible and still compress to the closed length given. We will assume a spring 2 inches pitch diameter, to hold 40 pounds when 6 inches long, and as little over 40 pounds as possible at 51/2 inches long. As we do not know the pressure at 51/2 inches long, we will take the fiber stress 25,000 pounds at 6 inches long, instead of at total compression. Using

Formula (1): $40 = \frac{11d^4 \times 25,000}{28 \times 2}$, or $d^4 = \frac{224}{27,500}$, and d = 0.200. We

will therefore use No. 5 W. & M. gage wire, which is 0.207. Using Form-

ula (2): $f_1 = \frac{22 \times 4 \times 25,000}{7 \times 12,500,000 \times 0.207} = 0.1215$ inch compression per

coil when holding 40 pounds. Then 51/2 inches solid length less twice 0.207 gives the length occupied by the acting coils when solid, or 5.086 inches, and 5.086 \div 0.207 = 24.5 acting coils. Further, 24.5 \times 0.1215 = 2.975 inches compression, which added to 6 inches gives 8.975 inches free length of the spring, say 9 inches. The spring therefore compresses 3 inches when holding 40 pounds, with a value of S of 25,000 pounds and at 51/2 inches long, being compressed 31/2 inches,

holds 46 2/3 pounds, with a value of S of $\frac{462/3}{40} \times 25,000$ or 29,166 2/3

pounds.

In these examples we have not corrected the values of S to allow for the variation in sizes of wire used, from the theoretical sizes obtained, as it is not necessary to do so in practice. It is interesting to note, however, the difference in this value at final compression, obtained by the above method of proportion based on 25,000 pounds at 40 pounds pressure, from that obtained by using the original formula with the final pressure at 46 2/3 pounds, and wire of 0.207 inch diameter. The first method gives 29,166 pounds, while the second method gives 26,782 pounds, this difference being caused by the difference of 0.007 in the size of wire.

No. 22. CALCULATION OF ELEMENTS OF MACHINE DESIGN.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. THEORY OF CRANE DESIGN.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys, etc.

No. 24. EXAMPLES OF CALCULATING DESIGNS.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. DEEP HOLE DBILLING.—Methods of Drilling; Construction of Drills. No. 26. MODEBN FUNCH AND DIE CONSTRUCTION.—Construction and Use of

Sub-press Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. LOCOMOTIVE DESIGN, Part I.-Boilers, Cylinders, Pipes and Pistons.

No. 28. LOCOMOTIVE DESIGN, Part II.—Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. LOCOMOTIVE DESIGN, Part III.—Smokebox; Exhaust Pipe; Frames; Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels.

No. 30. LOCOMOTIVE DESIGN, Part IV.-Springs, Trucks, Cab and Tender.

No. 31. SCREW THREAD TOOLS AND GAGES.

No. 32. SCREW THREAD CUTTING.-Change Gears; Thread Tools; Kinks.

No. 33. SYSTEMS AND PRACTICE OF THE DRAFTING-ROOM.

No. 34. CARE AND REPAIR OF DYNAMOS AND MOTORS.

No. 35. TABLES AND FORMULAS FOR SHOP AND DRAFTING-ROOM.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. IRON AND STEEL.-Principles of Manufacture and Treatment.

No. 37. BEVEL GEARING.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. GRINDING AND LAPPING.—Grinding and Grinding Machines; Disk Grinders; Bursting of Emery Wheels; Kinks; Lapping Flat Work and Gages.

No. 39. FANS, VENTILATION AND HEATING.—FANS; Heaters; Shop Heating.

No. 40. FLY-WHEELS .- Their Purpose, Calculation and Design.

No. 41. JIGS AND FIXTURES, Part I.-Principles of Jig and Fixture Design;

Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. JIGS AND FIXTURES, Part 11.-Open and Closed Drill Jigs.

No. 43. JIGS AND FIXTURES, Part III.—Boring and Milling Fixtures.

No. 44. MACHINE BLACKSMITHING .- Systems, Tools and Machines used.

No. 45. DROP FORGING.-Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. HARDENING AND TEMPEBING.—Hardening Plants; Treating High-

Speed Steel; Hardening Gages; Case-hardening; Hardening Kinks.

No. 47. ELECTRIC OVER-HEAD CRANES.-Design and Calculation.

No. 48. FILES AND FILING .- Types of Files; Using and Making Files.

NO. 49. GIRDERS FOR ELECTRIC OVERHEAD CHANES.

NO. 50. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part I.

NO. 51. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part II.

NO. 52. ADVANCED SHOP ABITHMETIC FOB THE MACHINIST.

No. 53. Use of Logabithms, and Logabithmic Tables.

No. 54. Solution of TRIANGLES, Part I.-Methods, Rules and Examples.

No. 55. Solution of TRIANGLES, Part II.-Tables of Natural Functions.

No. 56. BALL BEABINGS.—Principles of Design and Construction.

No. 57. METAL SPINNING.-Machines, Tools and Methods Used.

No. 58. HELICAL AND ELLIPTIC SPRINGS .- Calculation and Design.

No. 59. MACHINES, TOOLS AND METHODS OF AUTOMOBILE MANUFACTURE,

NO. 60. CONSTRUCTION AND MANUFACTURE OF AUTOMOBILES.

The Industrial Press. Publishers of MACHINERY

49-55 Lafayette Street

Subway Station, Worth Street New York City, U.S.A.

poogle

Digitized by Google

.

EACH PAMPHLET IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DE-SIGN AND SHOP PRACTICE REVISED AND REPUBLISHED FROM MACHINERY

No. 59

A Dollar's Worth of Condensed Information on

Machines, Tools and Methods of Automobile Manufacture

Price 25 Cents

CONTENTS

Organization and Equipment of an Automobile Factory, by C. B. OWEN	2
	ა
Machines and Tools for Automobile Manufacture, by	
C. B. Owen	15
System for the Rapid Assembly of Motor Cars, by	
HAROLD WHITING SLAUSON	35
Treatment of Gears for Automobiles, by HAROLD WHITING	
SLAUSON	4 I

Copyright 1910, The Industrial Press, Publishers of MACHINERY, 49-55 Lafayette Street, New York City

MACHINERY'S REFERENCE SERIES

This treatise is one unit in a comprehensive Series of Reference books, originated by MACHINERY, and including an indefinite number of compact units, each covering one subject thoroughly. The whole series comprises a complete working library of mechanical literature in which the Mechanical Engineer, the Master Mechanic, the Designer, the Machinist and Tool-maker will find the special information he wishes to secure, selected, carefully revised and condensed for him. The books are sold singly or in complete sets, as may be desired. The price of each book is 25 cents, and it is possible to secure them on even more favorable terms under special offers issued by MACHINERY'S circulation department and sent to any one on request.

The success of the Reference Series was instantaneous and copies are now widely distributed in machine shops and metal working plants everywhere.

CONTENTS OF REFERENCE BOOKS

No. 1. WORM GEARING.—Calculating Dimensions for Worm Gearing; Hobs for Worm-Gears; Location of Pitch Circle; Self-Locking Worm Gearing; etc.

No. 2. DRAFTING-ROOM PRACTICE.—Drafting-Room System; Tracing, Lettering and Mounting; Card Index Systems.

No. 3. DRILL JIGS.—Elementary Principles of Drill Jigs; Drilling Jig Plates; Examples of Drill Jigs; Jig Bushings; Using Jigs to Best Advantage.

No. 4. MILLING FIXTURES.—Elementary Principles of Milling Fixtures; Collection of Examples of Milling Fixture Design, from practice.

NO. 5. FIRST PRINCIPLES OF THEORETICAL MECHANICS.

No. 6. PUNCH AND DIE WORK.—Principles of Punch and Die Work; Suggestions for the Making and Use of Dies; Examples of Die and Punch Design.

No. 7. LATHE AND PLANER TOOLS.—Cutting Tools for Planer and Lathe; Boring Tools; Shape of Standard Shop Tools; Forming Tools,

NO. 8. WORKING DRAWINGS AND DRAFTING-ROOM KINKS.

No. 9. DESIGNING AND CUTTING CAMS.—Drafting of Cams; Cam Curves; Cam Design and Cam Cutting; Suggestions in Cam Making.

No. 10. EXAMPLES OF MACHINE SHOP PRACTICE.—Cutting Bevel Gears with Rotary Cutters; Making a Worm-Gear; Spindle Construction.

No. 11. BEARINGS.—Design of Bearings; Causes of Hot Bearings; Alloys for Bearings; Friction and Lubrication; Friction of Roller Bearings.

No. 12. MATHEMATICS OF MACHINE DESIGN.—Compiled with special reference to shafting and efficiency of hoisting machinery.

No. 13. BLANKING DIES.—Making Blanking Dies; Blanking and Piercing Dies; Construction of Split Dies; Novel Ideas in Die Making.

No. 14. DETAILS OF MACHINE TOOL DESIGN.—Cone Pulleys and Belts: Strength of Countershafts; Tumbler Gear Design; Faults of Iron Castings.

No. 15. SPUR GEARING.—First Principles of Gearing; Formulas for Spur Gearing; Design and Calculation of Gear Wheels; Strength of Gear Teeth.

No. 16. MACHINE TOOL DRIVES.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. STRENGTH OF CYLINDERS.-Formulas, Charts, and Diagrams.

No. 18. SHOP ARITHMETIC FOR THE MACHINIST.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. USE OF FORMULAS IN MECHANICS.—With numerous applications.

No. 20. SPIRAL GEARING.—Calculating Spiral Gears; Rules, Formulas, and Diagrams for Designing Spiral Gears; Efficiency of Spiral Gearing, etc.

No. 21. MEASURING TOOLS.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc.

See inside back cover for additional titles Digitized by GOOGIC

MACHINERY'S REFERENCE SERIES

.

EACH NUMBER IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DESIGN AND SHOP PRACTICE REVISED AND REPUB-LISHED FROM MACHINERY

NUMBER 59

MACHINES, TOOLS AND METHODS OF AUTOMOBILE MANUFACTURE

CONTENTS

Organization and Equipment of an Automobile Factory, by	
C. B. Owen	3
Machines and Tools for Automobile Manufacture, by	
C. B. Owen	15
System for the Rapid Assembly of Motor Cars, by	
HAROLD WHITING SLAUSON	35
Treatment of Gears for Automobiles, by HAROLD WHITING	
SLAUSON	41

Copyright, 1910, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City

•

.

.

•

.

CHAPTER I

ORGANIZATION AND EQUIPMENT OF AN AUTOMOBILE FACTORY*

The Leland, Faulconer & Norton Co., of Detroit, Mich., was formed in 1890 for the purpose of building machine tools and special machin-Special milling machines, a lathe center grinder, a wet tool erv. grinder, and some special machinery were built. Later the manufacture of wood trimmers for pattern shop use was undertaken; and next, during the development period of the bicycle industry, a line of machinery for making hardened and ground bicycle gears was developed. As the bicycle business declined, the company began building gas engines for motor boats, which were then rapidly rising in popularity. The natural step from the marine to the automobile type of gas engine was made in 1901 to 1902, when the motor now used in the Cadillac car was produced. In 1905 the company was united with the automobile firm building the Cadillac car to form the present Cadillac Motor Car Co. From 1902 until March, 1909, about 21,000 cars had been turned out, 17,000 of which were single cylinder 10 H. P. machines, and the rest four cylinder cars, rated at 30 H. P.

The Plant and Its Organization

The main or Cadillac plant has a double siding connected with the Belt Line Railroad, thus giving ample shipping facilities. The factory buildings are of brick and reinforced concrete construction, lighted by large windows. Heat is supplied by a live steam system. The boiler-room contains three water tube boilers, with room for another if it is needed. Light and power are furnished by electric current supplied by the Detroit Edison Co. Electric driving is used throughout the plant, with motors connected with each line shaft, and occasional installations with direct connected tools. A large compressor furnishes air at 125 pounds pressure for the pneumatic hammers in the frame department, and for use in the various assembling departments. for cleaning parts, running air drills, etc. Five large elevators in fire-proofed brick shafts convey materials and parts between the various floors. An automatic sprinkler system is installed, supplied by four tanks on the roof. These tanks are filled by a large fire pump which operates whenever the level of water in the tanks is reduced. This same system supplies water for lavatory and wash-room use. There are two large wash-rooms, each having 600 bowls and 1,000 lockers.

The old Leland & Faulconer plant comprises a foundry building of brick, steel and glass, supplied with cupolas and a hydraulic jib crane; a pattern shop and pattern storage building; a brass foundry build-

^{*} MACHINERY, March, 1909.

ing; a brick building for the case-hardening department; and a large three story brick building for the power plant and the sheet metal and brass working departments. The building is lighted by both gas and electricity, has a hot air heating system, and is provided with large wash-rooms on each floor.

The organization of the plant is divided into the following departments: First, the general manager; second, the secretary; third, the sales department; fourth, the advertising department; fifth, the purchasing department; sixth, the time-keeping and cost-keeping department; seventh, the superintendent and his assistants; eighth, the engineering and designing departments, which produce the new models, tools and fixtures, and in conjunction with the experimental department, test the new cars before placing them on the market; ninth, the foremen and their assistants in the forty-four manufacturing departments; and six other special departments, some of which will be mentioned later. While the reader will be most interested in the departments devoted strictly to manufacturing, the work of the engineering and purchasing departments is worthy of some notice.

The designing-room is separate from the general drawing room and is used by the chief engineer and two designers. Suggestions for new designs and improvements in old ones may be made by any one on suitable blanks. They are all considered and passed upon by a mechanical committee, consisting of the general manager, the chief engineer, and the two designers. When approved, such changes are made immediately on the tracings, and new blue-prints are made and sent to the departments concerned in producing those parts. This keeps the blue-prints up-to-date, and avoids loss in the carrying through of parts of obsolete design. A well-organized experimental department is provided, having the necessary apparatus for testing new designs. The work of the general drawing-room includes the detailing of new designs, and the drafting work on the necessary tools, gages, jigs and fixtures needed to produce new parts or models. Filing cabinets are provided for current drawings, as well as for those which are obsolete, of which a full record is kept.

The Purchasing Department, the Stock-rooms and the Gasoline Storage

The purchasing agent has final authority on all matters concerning the actual buying of material used in the cars, and the care of this material until it goes to the machine or assembling departments. Purchasing orders are made out in quadruplicate. One copy goes to the seller, one to the receiving office, one to the bookkeeping department, and one to the file in the purchasing office. Small commercial parts, such as nuts, rivets, etc., are stored in bins in the general stock-room, which also receives the finished and inspected parts turned out by the manufacturing departments. The stock-room record is kept on a card index system, and material is delivered by the stock-keeper only on presentation of a requisition from the foreman of the department where it is to be used. Bulky parts and materials are kept in a large

warehouse, which is also under the care of the purchasing department. A separate stock-room is required for repair parts. These are kept in stock for all models, clear back to the first one placed on the market, and they are replaced as fast as sold out.

The gasoline used in testing the cars is also considered as stock, and a very carefully planned storage system is provided for it. Four cylindrical tanks of 15,000 gallons capacity each are buried in concrete near the siding, with the tops of the tanks about five feet below the street level. They are connected at top and bottom by separate cross piping. The system of storage is such that these tanks are always full of water or gasoline, or both, so that air is always excluded, making explosion impossible. The upper cross pipe permits the free passage of gasoline between the tanks, while the lower pipe performs the same function for the water. A suitable arrangement of automatic valves lets in water as fast as gasoline is removed, or permits the escape of water as gasoline is introduced.

A notable safety provision in the outlet piping for the water positively prevents the escape of gasoline into the sewer. The outlet pipe is formed into a long U-bend, which extends vertically to a depth of 70 feet, inside of an 18-inch casing. From this it returns and discharges through a trap into the sewer. The depth of this bend is such that the column of water on the outlet side will balance a column of gasoline having a height corresponding to the head obtainable from a tank car on a grade 5 feet higher than the present siding. The water thus furnishes a permanent seal against the discharge of gasoline.

The distribution of the gasoline is also carefully safe-guarded. It is supplied to the various testing rooms and to the factory garage through piping from the storage system. It is retailed by Bowser registering pumps which are kept locked when not in use. As a further safeguard, all the piping is enclosed in concrete, and the whole system is so arranged that it may be flooded with water to a depth of five feet in case of fire in any building which might later be built over it.

Tool and Tool Supply Departments

The tool department is located on the top floor and at the north side of the building, where the best light is obtainable. It is devoted to the manufacture of the jigs and fixtures and many of the gages employed in the factory. The equipment consists largely of Reed and Hendey & Norton lathes, Hendey shapers, Brown & Sharpe milling machines, and Brown & Sharpe universal and surface grinders. The high degree of interchangeability required in the product demands a high standard of workmanship in this department. At the time Fig. 1 was taken, some manufacturing was being done here. A wire enclosure at the right contains the tool inspecting department. The tool steel stock and tool grinding rooms are at the further end of the picture.

The tool supply department is closely allied with the tool-room. Its work is principally that of caring for, sharpening and recording the various jigs, fixtures and cutting tools. All these tools are looked

No. 59-AUTOMOBILE MANUFACTURE

out for by a card index system, which shows where they are used, and what repairs, if any, have been necessary. This department orders all the small commercial tools, and keeps a debit account with each branch tool-room for the supplies furnished it, giving credit for all tools worn out in legitimate use or broken in unavoidable accidents. A perpetual inventory is thus kept of all the special and commercial tools kept on hand. A card index inventory of the machine tools is kept in the purchasing department.

Forge, Foundry and Sheet Metal Departments

It will not be possible to more than briefly mention that part of the equipment of the forty-four manufacturing departments which is concerned with the actual work on the parts. The blacksmith shop is small, owing to the extensive use of drop forgings, but it is finely

Fig. 1. A Partial View of the Tool-making Department

fitted up with Buffalo down-draft forges, a tool forge with a coke magazine, gas furnaces, water jacketed dipping tanks, and an electric welding machine. The bulk of the work consists of tool dressing, and the making of forgings for jigs and fixtures and for special car equipment. The case-hardening department has ten large Frankfort gas furnaces equipped with pyrometers, connected by a switch board with a galvanometer graduated to degrees Fahrenheit. Oil and water dipping tanks with steam and cooling water jackets are provided. These are piped to a steam pump to give positive circulation. Square and oblong pots are used for small machine parts, while round pots with central holes, to insure uniform heat, are used for the large rear axle bevel gear.

The iron foundry is provided with a large and a small cupola. The latter is used largely for heats of a special nature. The most approved methods for testing and chemical analysis are employed to keep track of the output. This is necessitated by the fact that the foundry furnishes castings for other motor car builders besides the

ORGANIZATION AND EQUIPMENT

Cadillac Company. The brass foundry furnishes the necessary castings for the bronze bushings, carburetor and lubricator parts, small valves and fittings, etc. These are finished in the brass machine shop, which is equipped with forty Warner & Swasey screw machines, besides several Fox lathes, drill presses, milling machines and several special lathes. All the lubricators, gasoline valves, carburetors and bearings used are produced here.

In the sheet metal department are made the vertical tubular radiators, gasoline tanks, dashes, fenders, etc., as well as small punchings, such as washers, clips, etc. The press-room has a complete equipment, ranging from foot presses up to 20-ton power presses, capable of cutting and forming parts up to 36 by 48 inches. Gas furnaces are used for heating the soldering irons and work when assembling the radiators. The radiators and tanks are tested by compressed air, while

Fig. 2. The Chassis Drilling and Milling Departments

submerged in water. The frame department is equipped with gas furnaces and pneumatic hammers for riveting and heading.

Equipment of the Machine Departments

For convenience in handling the work, all the engine parts are drilled and milled in two separate departments in one large room, while the similar operations on the chassis parts are performed in another room, which is shown in part in Fig. 2. The equipment of this department includes a large number of Cincinnati drill presses, Cincinnati and Brown & Sharpe milling machines, and a Beaman & Smith cylinder boring machine, arranged for handling transmission cases and axle housings. The engraving shows the large use of multiple spindle drills, quick change drill sockets and jigs.

The equipment of the motor drilling department is somewhat similar, ranging from a sensitive bench drill to a 24-spindle motor-driven Baush machine. This is used in drilling the 24 holes for studs, cap screws, etc., in the lower half of the motor frame. These holes are all drilled

No. 59—AUTOMOBILE MANUFACTURE

at one time, and have to accurately match similar holes in the upper half. This, it will be seen, requires a high grade of workmanship. The milling department for motor parts employs several Whitney hand millers, Brown & Sharpe horizontal millers of various sizes, several vertical machines of the same make, and six heavy motor-driven Cincinnati machines. There are also to be found here two milling machines built by Leland & Faulconer, which are unusual in that the table has longitudinal and cross feeds only, the vertical adjustment being applied to the spindle. High-speed steel inserted tooth cutters are in general use.

The screw machine department is one of the largest in the factory, occupying a floor space of 80 by 200 feet, and containing 62 machines, exclusive of the tool grinders. Brown & Sharpe, National, Acme, Davenport and Cleveland machines are used for making cap screws, nuts, studs and other parts up to one inch in diameter. Gridley machines are employed for larger work. Jones & Lamson flat turret lathes are used for shafts, spindles and some gear blanks. The Potter & Johnston automatic machine is employed for much of the chucking work in combination with the Gisholt and Steinle machines, which are used mostly for machines are used on certain engine parts, which have to be held in face-plate fixtures and finished largely by hand labor. The larger Acme machines are direct connected.

While most of the round parts are finished complete on the screw machine, a lathe department is necessary for some work which has to be turned on arbors. Fly-wheels and some long axle shafts are also finished here. The equipment includes Reed lathes, a Bullard boring machine for finishing fly-wheels, and two Beaman & Smith doublespindle horizontal boring machines for roughing out the cylinders. The latter are provided with turntable fixtures, so that two cylinders may be set up while two others are being bored. After the cylinders are roughed out, they are tested under hydraulic pressure and sent to the grinding department.

The grinding department finishes practically every round part on the car except the crank-shaft, which comes finished from a firm making a specialty of that work. Heavy Norton and Brown & Sharpe grinders are used for finishing long parts. Medium sized Landis and Brown & Sharpe grinders take care of work up to 3 inches in diameter and 8 inches long. Special Brown & Sharpe and Heald grinders are used for finishing the cylinders, which are held exactly as they will be on the assembled engine, so that clamping strains are duplicated. The pistons are finished in one of the heavy Norton machines. The group of Heald machines is used exclusively on internal work, and an equipment of face grinders finishes the washers and flat disks used in the cars. The square shafts which carry the sliding members of the transmission are ground to size on a group of Brown & Sharpe surface machines, fitted with suitable index fixtures. In contrast to the heavy Norton grinders with their 24-inch wheels, is a bench grinder

N -

purchased from the Waltham Watch Tool Co., for finishing internal ball races. This little machine uses a wheel about the size of a fivecent piece, and may be set to grind to a radius of $\frac{1}{16}$ inch. Careful attention is given to providing suitable racks for ground work to avoid injury in handling.

In Fig. 3 is seen a partial view of the gear-cutting department. A Gleason bevel gear generating machine is here shown at work cutting a rear axle gear. The complete equipment includes thirty standard machines, and four others of special design, besides four testing machines. The list includes fifteen Brown & Sharpe automatic gear cutters, one large Gould & Eberhardt machine, two Fellows gear shapers for internal gears, one Bilgram and three Gleason bevel gear planers, two imported French machines for special pinion work, and a Pratt & Whitney worm milling machine. One of the testing machines, that

Fig. 3. A Corner of the Gear-cutting Room

for bevel gears, is seen at the extreme right of Fig. 3. The testing machine for spur gears is provided with a vernier scale for reading center distances to thousandths of an inch.

Inspection and Assembling Departments

The inspection department consists of a chief inspector and his foremen, and the men under them, who together form a corps of over one hundred men. These men inspect commercial parts as they go through the receiving department, the output of each manufacturing department as it goes to the assembling, the final assembling of the parts in the chassis, and the finish of the completed machine on both the mechanism and the body. The inspectors are furnished with all necessary appliances for doing this work accurately. Drop forgings are examined for visible flaws, and sounded for invisible ones. Springs are tested on machines especially built for the purpose. Every machine department has its inspection bench, provided with the necessary plug and snap gages for the entire range of its output. Microm-

No. 59-AUTOMOBILE MANUFACTURE

eter calipers up to the 6-inch size are in general use. Thread micrometers are used in place of ring thread gages wherever possible. For testing turned and bored parts for concentricity, Brown & Sharpe testing centers and indicators are used. Suitable surface plates, V-blocks and height gages are provided. The inspectors in the grinding department are furnished with strong reading glasses for use on certain work. These inspectors are outside the jurisdiction of the other department-heads, and have full authority to throw out all parts and materials not up to the standard.

The work of assembling is divided between several gangs, each of which does it own particular work. One group of assemblers scrapes the crank-shaft bearings to fit, and "runs them in" by a belt on the fly-wheel. Another assembles the cam-shaft members. Still another assembles the piston, its rings, pins, connecting-rod and bearings,

Fig. 4. The Four-cylinder Engine Assembling Department

while the "cylinder gang" assembles the cylinder and cylinder head and copper water jacket. The final assembling is then done on stands as shown in Fig. 4. This consists merely in bolting the various parts together, setting the cam gears (which are marked in a jig), timing the valves, adjusting the bearings, and testing the water connections. The points of valve opening and closing are marked on the rim of the fly-wheel, and a fixed pointer shows the central position.

The Testing Department and Its Equipment

From the assembling room the engines are taken to the testing department, where they are placed on iron stands and connected with the gasoline and water supplies, and to the electrical connections for the ignition, as shown plainly in Fig. 5. The engines are run at moderate speed until they get down to work, when the speed is gradually brought up to the maximum. A brake-horsepower test of each engine is made, and those which fail to come up to the requirements are returned to the assembling department for reconstruction. As a check

Digitized by Google

on this test, stock engines are sent to the experimental department at regular intervals, and tested there by connection with a dynamo fitted with suitable electrical measuring instruments. After the testing the engines go into stock, or to the chassis assembling department.

All the parts necessary for the completed chassis are brought to this assembling department. The order of assembling is as follows: The frames are first laid on horses and the mechanism dust shield is put on. The springs and axles are next attached, and then the engine and transmission gearing are set and lined up. The engine is supported at three points, and is connected by a universal sliding joint with the transmission gearing, thus permitting "weaving" of the frame without danger of disalignment. The universal joint between the transmission and the differential gearing is practically straight when the car is loaded, and runs at a very slight angle when the car is light. The

Fig. 5. Testing the Four-cylinder Engines

exhaust pipe and muffler are next connected, and then the controlling and brake levers and the pedals. The radiator and water connections come next, followed by the steering gear. The placing of the mahogany dash in position permits the mounting of the electrical apparatus; and the bolting on of the gasoline tank and its connections completes the chassis, except for the wheels and tires. An old set of these are put on the car in the assembling department, to be used for the road test. The method of assembling is practically the same for the single cylinder car.

Two separate testing departments are provided—one for the singlecylinder cars, and the other for the four-cylinder cars. The former were given road tests for the first two years of their manufacture, until all the weak points in the construction had been eliminated. The testing room shown in Fig. 6 was then built, and the cars have since been tested here. Fifteen stands are provided. The rear wheels rest on a pair of 48-inch pulleys, mounted on a shaft which carries a fan

No. 59—AUTOMOBILE MANUFACTURE

about 72 inches in diameter by 36 inches wide, projecting through the floor in the sheet iron casing shown. In addition to the resistance thus offered by the fan, a brake is mounted on the shaft between the pulleys, controlled by the hand-wheel on the stand shown projecting through the floor at the rear of each machine. By this means it is possible to work the engine against any desired resistance, even to the extent of stalling it. The chassis are held by padded hooks, fastened by ropes or chains to the brake wheel stands. The blast of air produced by each fan is led through a sheet metal conduit and directed against the radiator of the engine, thus giving the same cooling effect that would be experienced at corresponding speeds on the road on a still day. The speed in miles per hour is read from Schaffer & Budenburg tachometers.

Fig. 6. The Single-cylinder Chassis Testing Stand, arranged for Fan and Brake Resistance

The four-cylinder testing stands are similar in principle, though somewhat differently arranged, as the fans are placed beneath the front of the machine, being connected with the driving shafts by sprockets and chains. After being run here a sufficient time to make sure of their adjustment and running condition, temporary bodies are placed on the chassis and each car given a thorough test by reliable men on the country roads outside the city. After this has been done to the satisfaction of the foreman of the department, the testing body is removed and the chassis is washed successively in water and gasoline, and dried by an air jet.

Finishing

The painting and finishing of the chassis, bodies and wheels is done in separate departments. The bodies receive one coat of rough filler, and fifteen more coats of filler color and varnish, before completion. A view of the trimming department for the bodies is shown in Fig. 7. Fenders, hoods, brackets, etc., are enameled and baked. Fig. 8 shows

some of the pipe frame trucks used to hold these sheet metal parts during the baking.

The chassis, bodies, hoods, fenders, etc., finally go to the large finishing-room on the ground floor, where the final assembling and test-

Fig. 7. The Body Trimming Department

ing of the complete car is done. Each complete car is driven out by a final inspector to make sure that all adjustments are correct. Before shipping, a detailed record is made of each car, beginning with the motor number, and giving the dates of motor assembling, motor

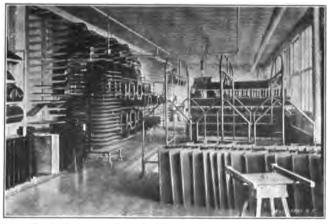


Fig. 8. Storage of Enamelled Parts, showing Wheeled Stands used in the Baking Ovens

testing, all the various painting, finishing and shipping dates, together with any information of a special kind, such as size and color of body, etc. This record has been found of the greatest assistance to the repair order department in filling poorly written orders.

Interchangeability

In connection with this subject of repair orders, mention should be made of the high degree of interchangeability attained by the Cadillac Co. This was illustrated by a test made in March, 1908, by a committee of the Royal Auto Club of England, who selected by lot three Cadillac cars of the same 10-horsepower model, disassembled them under the eyes of an inspector of their own appointment, placed the disassembled parts (721 from each car) in a pile, and mixed them up indiscriminately; 81 parts were then taken out and replaced by 81 repair parts from stock. The cars were thereupon reassembled from this mixed pile by the use of wrenches, screw-drivers, etc., but without the use of scrapers, files or even emery cloth. Only one part, a cotter pin, was injured in reassembling. These three heterogeneously reassembled cars were each given a 500-mile reliability run on the Brooklands track, at an average speed of 33 to 34 miles per hour, without developing the slightest defect.

CHAPTER II

MACHINES AND TOOLS FOR AUTOMOBILE MANUFACTURE*

The Cadillac Engine

In order to make clear the manufacturing operations which will be referred to in the following, a brief description of the Cadillac engine will here be given. The first automobile made by the Cadillac Motor Car Co., of Detroit, Mich., in 1902, was a runabout containing a 10

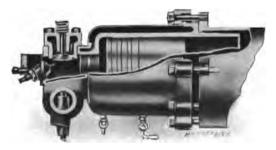


Fig. 9. Section through Cylinder showing the Water Jacket Construction

Fig. 10. The Cadillac Carburetor

H. P., single cylinder, four cycle, horizontal engine, of 5-inch bore by 5-inch stroke. This engine was found to be so satisfactory that it has been retained practically unchanged up to the present time, and its general features have been adopted, so far as possible, for

^{*} MACHINERY, March and June. 1909.

No. 59-AUTOMOBILE MANUFACTURE

the vertical four-cylinder engines of the 30 H. P. machine. A number of original features were employed on this engine which have proved their value in actual practice. One of the most interesting of these is the cylinder construction, best seen in Fig. 9. This cylinder, which is a fine-grained gray iron casting, has a flange near the forward end, which enters and fits a bored and faced seat in the frame. The copper water jacket slips over the cylinder, and is flanged to match

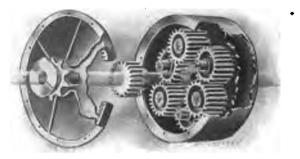


Fig. 11. Planetary Transmission used on the Single-cylinder Engine

its outer face. Both it and the cylinder are held in place by a ring which passes around the outside of the copper jacket, and is tightened down by the studs shown screwed into the frame. In this way the copper jacket forms its own gasket. The cylinder head or valve chamber is held in place by a hollow steel nut (or nipple, rather) which is threaded externally right- and left-hand, and screws into

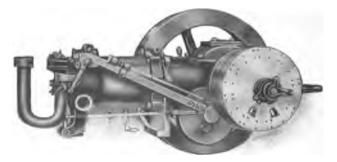


Fig. 12. The 10 H. P. Engine of the Single-cylinder Car

both the cylinder and the valve chamber. The upper end of the copper jacket is clamped between the two, and thus serves for a gasket at this joint also, forming the only packing needed. Parts are kept in alignment by a dowel, and suitable openings connect the jacket space of the cylinder and the head. Among the advantages of this construction over the usual cored jacket are lighter weight, greater water space, more uniform thickness of cylinder walls, facility in

cleaning the jacket space, elimination of trouble from freezing the cooling water, and low repair cost for broken parts.

The exhaust valve is placed in the cylinder head with its axis vertical, and it is operated from the cam shaft by a push-rod and bellcrank. The inlet valve is of the inverted type, located directly above

Fig. 13. Left Side of Cadillac 30-horsepower Engine

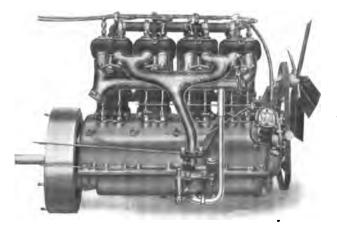


Fig. 14. Right Side of the Engine, showing Carburetor, Commutator, etc.

the exhaust valve. It is operated by a lever with a roller on its outer end which, in turn, is actuated by a push rod riding on a roller mounted on one arm of a short lever. The push-rod is connected with an eccentric on the cam shaft. The lever on which it rides is under the control of the driver, so that the timing of the valve and

the amount of lift may be varied according to the work required. The throttling is thus effected by the inlet valve gear. The carburetor (shown in Fig. 10) is formed in one piece with the inlet valve mechanism. As may be seen, the inrush of air lifts valve M and allows the escape of the oil, which falls into the wire mesh basket K, where it is vaporized. The lift of the valve may be regulated to give the desired richness of mixture.

The motor frame is made in three parts—the frame proper, and the top and bottom plates. The main shaft, which is offset, is a nickel steel, center-crank forging, finished all over by grinding. It is carried in babbitt lined bronze bearings, fitted in bored and reamed seats in the motor frame. These are held in place by cap plates, which can be adjusted without opening the motor. The cam-shaft is

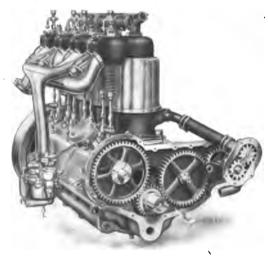


Fig. 15. Front View of the Four-cylinder Engine

carried in bronze bushings inserted in the bottom plate. This plate and the cam-shaft may be removed at any time without disturbing the crank-shaft.

The transmission of the 10 H. P. machine is of the planetary type, providing for two speeds forward and a slow reverse. As shown in Fig. 11, the gearing is all enclosed in an oil-tight casing. On the high-speed forward gear the whole transmission revolves as a unic. The driving pinion is of 40-point carbon steel and is case-hardened, as are also the idler pinions, which have bronze bushings pressed into them after hardening, and run on hardened and ground pins pressed into the gear case. Power is transmitted to the rear axle sprocket by a Whitney roller chain. An assembled view of the engine is shown in Fig. 12.

The later vertical four-cylinder engine for the 30 H. P. machine is shown in Figs. 13 to 19 inclusive. This engine has been built, as

far as practicable, on the lines of the horizontal machine. As may be seen in Fig. 17, the same arrangement is used for clamping together the cylinder, the copper jacket and the cylinder head, although a somewhat different joint is used at the lower end of the jacket. In this engine also the crank-shaft is offset; the construction of the crank

Fig. 16. The Cadillac Steering Gear

Fig. 17. The Oylinder and Piston

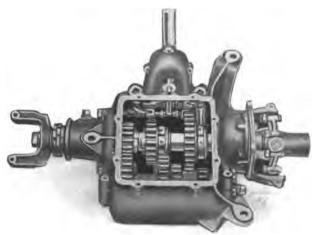


Fig. 18. Selective Type Sliding Gear Transmission

case and base is different, of course, as shown in Fig. 19. A leatherfaced cone clutch in the fly-wheel transmits power to the sliding gear transmission (see Fig. 18) which gives three speeds forward and one reverse. The gears and shafts are of oil-treated chrome-nickel steel, and are carried on ball bearings. The gear case is oil-tight, as is also the universal joint housing and the rear axle casing.

No. 59-AUTOMOBILE MANUFACTURE

The rear axle carries an oil-treated chrome-nickel steel bevel gear and pinion, and the gear mounts are adjustable for wear of the teeth. The steering gear (see Fig. 16) is of the worm and sector type, treated in the same ways as the transmission and differential gearing.

Machines and Tools for Automobile Manufacture

Upon first thought the design and construction of tools and jigs for automobile manufacture may not appear to present any problems radically different from those involved in the manufacture of any other power producing and transmitting machinery; but after a thorough consideration of the conditions under which a motor car necessarily operates, the importance of a standardized, interchangeable, simple and strong construction is realized. As one of the requirements of a car is maximum power with minimum weight, the use of nickel and other steel alloys is required, which, in turn, necessitates the use of high-speed steel in the machine tools. As an automobile engine is

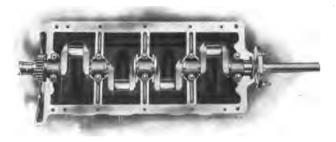


Fig. 19. Top View of Motor Case and Crank-shaft

necessarily a high-speed engine, the provisions for adjustment of wearing parts and the cheap replacement of them when worn out, are of primary importance.

As the great majority of automobile owners are not mechanically inclined and wish the greatest amount of service with the least possible attention to their cars, the necessity of simple and reliable construction is apparent; and, as the motor car is forced by road conditions to do its hardest work on the poorest roads (which are usually farthest from the best repair facilities), under which conditions breakages are most likely to occur, the advantages of interchangeable construction, the parts of which are so designed that they can *not* be incorrectly assembled, are apparent, especially when road repairs must be made by men not thoroughly familiar with the construction of all cars. These are facts that the motor car designer must have seriously in mind, and which must reflect themselves to some extent in the tool design.

It is the purpose of this chapter to show how these ideas are carried out in practice, in the factory of the Cadillac Motor Car Company, and, while space permits showing only a few of the several

Digitized by Google

thousand special tools, jigs and fixtures, it is thought that those shown will iillustrate the care taken to secure absolute interchangeability and perfect alignment of parts. As the construction of the motor includes some very interesting tools, these together with some testings jigs are shown and described.

Engine Frames

As the engine frame is in two parts, divided horizontally at the shaft center, accurate milling and drilling is required. Heavy Brown

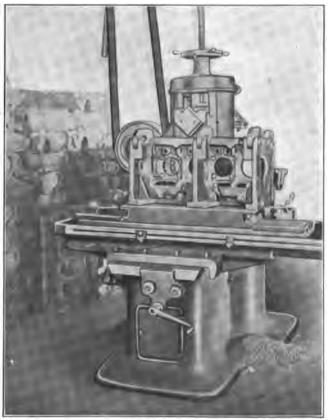


Fig. 20. Milling Engine Frames

& Sharpe, Cincinnati, and Leland & Faulconer machines are fitted with heavy jigs, and large inserted tooth cutters are used on this work. Fig. 20 illustrates the L. & F. machine milling the top face of the engine frame where the cylinders bolt on. This machine is very satisfactory for manufacturing, as the low table permits rapid handling of work, and its heavy construction, large bearing surfaces and all geared feeds and speeds provide for heavy and rapid cutting.

No. 59—AUTOMOBILE MANUFACTURE

Fig. 21 shows the method of boring the seats for the cylinders in the engine frame. This operation follows that shown in Fig. 20. The cutter heads have a floating drive and are centered by the ground pilots entering inserted bushings in the jig bosses. The whole jig slides forward, and back against a stop to facilitate inserting and removing the work.

Fig. 22 shows the lower half of the crank-case (shown in Fig. 19 with crank-shaft in place) clamped in the jig for drilling 24 holes for

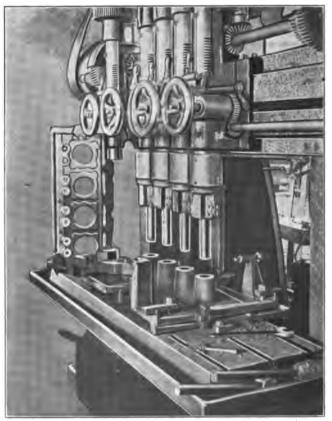


Fig. 21. Machine for Boring Frames

studs and cap-screws. The 24-spindle Baush machine drills these holes in about two minutes, including inserting and removing the work. A similar style of jig is provided for the upper half of the crank-case, which has 18 holes to be drilled in the lower face.

Fig. 23 shows the jig provided for boring the cam-shaft bearing seats in the upper half of the crank-case. These seats are indicated by the letter A, and are a very close fit for the five bronze bearings which carry the cam-shaft. The work locates over the two large

bosses in the center of the jig, and rests on hardened and ground plugs inserted in the base. The swing clamps shown bear directly over the plugs. The boring tool, which is driven by a face-plate fixture, is seen projecting through one of the guides. The B. & S. plug gage seen on the lathe carriage, allows only 0.002-inch variation in the size of the holes. A similar type of jig (not shown) is used for boring the main bearing seats in the lower half of the crank-case, and



Fig. 22. Twenty-four-spindle Machine for Drilling the Frames

an adjustable hand reamer with a very long pilot is used for finishing them. The variation in size allowed on the bearing bushings is only 0.0015 inch and only 0.001 inch on the shaft bearings.

Cam-shaft

Fig. 24 shows both the cam-shaft drilling and reaming jigs on the same machine table, for convenience. The drill jig (seen in front) is of steel with hardened bushings with an adjustable stop-screw in the end. This jig gives the correct position of the holes for the eight

cams and the drive geams. As the holes are to be reamed in pairs and each pair is 90 degrees from the others, the reaming jig is designed with a view to extreme accuracy. In operation the first hole reamed

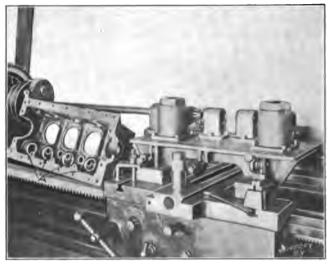


Fig 23. Fixture for Boring Cam-shaft Bearings in Engine Frame

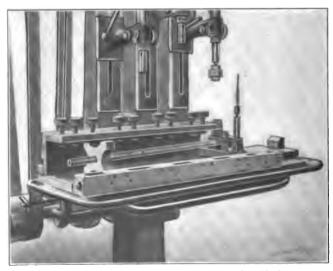


Fig. 24. Fixtures for Drilling and Reaming Cam-shafts

is the one by which the drive gear (Fig. 15, page 18) is pinned on. The taper reamer is guided by the bushing in the clamping fixture at the right, and the collars are so adjusted as to ream the hole to the

required size. The shaft is then slipped through the square, hardened and-ground steel block seen at the left in the illustration, and a master pin is inserted. The block is then slipped along in the frame of the jig and clamped by the screws seen on top of the fixture as the various holes come under the reamer. The projecting block seen at the extreme right end of the jig, forms a rest for the cam-shaft as it is passed along. As the taper holes in the cam shaft, cams and cam-gears, must bear the correct relation to each other, a set of master pins is provided for testing the depth of the reaming. These are hardened and ground tool-steel pins having two fine lines 0.020 inch apart around them at the point where they project through the hole in either the shaft, the cam or the gear. As a variation of 0.001 inch

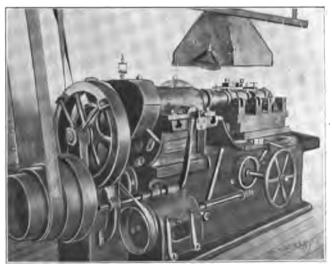


Fig. 25. Boring Cylinders

in the diameter of a standard taper pin hole permits the pin to enter 0.040 inch deeper into the hole, the accuracy of this work can be realized when it is known that no hand reaming is required in assembling the cam-shaft. The cams are drilled and reamed in similar jigs, which, in all cases, locate the cams by the eccentric portions. The inlet cams are alike and interchangeable, as are also the exhaust cams. The cams are of selected steel, hardened and finished by grinding on the working surfaces in correct relation to the pin holes.

Cylinders

Fig. 25 illustrates the method of boring the cylinders in a double spindle Beaman & Smith machine, with a turn-table fixture whereby two cylinders may be changed while two others are being bored. As the cylinder castings are very uniform in size, the boring leaves the walls very uniform in thickness. After being bored and reamed, the cylinders pass to the testing bench where water pressure of 700 to

No. 59—AUTOMOBILE MANUFACTURE

800 pounds per square inch is applied to test them for leakage. Those passing the test are taken to the screw machine department and put on an expanding arbor in a large Potter & Johnston machine for facing and tapping the top and turning the portion of the cylinder which enters into the crank-case of the motor. The machine and tools for these operations are seen in Fig. 26. The turret tools in the foreground are those used in roughing out and boring the upper end of the cylinder for the cylinder head nipple. The heavy overhanging turret tool finishes the fiange on the cylinder for the copper water jacket. The rear cross slide carries the tools for roughing this fiange and also the fianges through which the studs pass for fastening the cylinders to the engine frame, while the forward cross-slide tools fin-

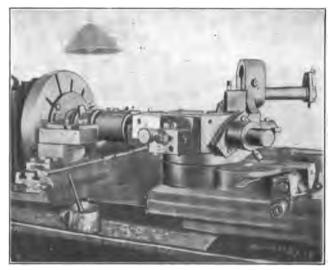


Fig. 26. Turning Cylinders

ish the stud flanges and a portion of the cylinder where it enters the bored seat in the engine frame.

The cylinders are finished by grinding in Brown & Sharpe and Heald machines. A heavy angle-plate fixture, bored and faced to a very close fit on the cylinder diameter, is fitted to the table of the machine as shown in Fig. 27. The cylinder is clamped to this fixture exactly as it is held later in the assembled motor. Cooling water is supplied to the outside of the cylinder, and the air tube seen at the extreme right conveys the particles of metal and emery to a suction fan at the rear of the machine. The "Go" plug gage seen on the machine table, is 4 inches in diameter and the "Not Go" gage is 4.002 inches in diameter.

Pistons and Rings

The second operation of roughing off the pistons in a Gridley automatic turret lathe is shown in Fig. 28. The first operation is not

shown, as it consists only in chucking and roughing off the outer diameter of the head end for about an inch to permit the steadying roll passing over the end. The upper roll has but a slight travel, as it

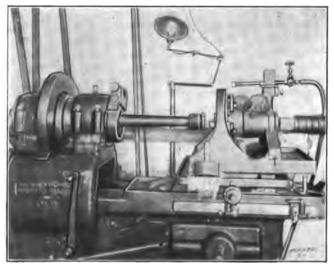


Fig. 27. Grinding Cylinders

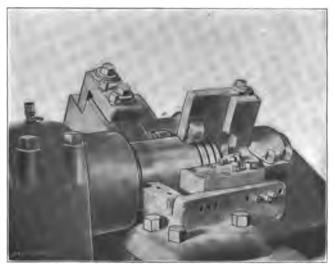


Fig. 28. Turning Pistons

forms a part of the end facing tool. The heavy turning tool is carried in the rear tool holder, which also carries another roller; this roller supports the piston against the side thrust on it, caused in cutting the ring grooves. The view shows the very heavy character of

No. 59-AUTOMOBILE MANUFACTURE

the tools, and the provisions for adjustment. The piston is held by an internal draw-in fixture, thus permitting the turning tool to travel its entire length. The finish is by grinding in heavy Brown & Sharpe and Norton machines, as illustrated in Fig. 29. The greatest variation in size permitted is 0.002 incb. A finishing cut is taken from the open end of the piston in a special reaming fixture just before grinding, which prevents any possible distortion of the piston due to changes in the metal after the open end has been machined. The piston pin hole is bored in box jigs and 0.001 inch is left for hand reaming previous to assembling the piston and connecting-rod. A final light finishing cut is taken from the piston ring grooves after the piston is ground.

Fig. 29. Grinding Pistons

The piston rings are of a special close-grained iron mixture and are turned and bored on Gridley machines, and finished by grinding. The ring joint is the standard 45-degree angle joint, which has always given good results in practice.

Connecting-rods

The connecting-rods are drop forgings of H-section, having a pressedin bronze bushing bearing for the piston-pin, and a hinged cap carrying babbitt-lined bronze half-bushing bearings for the crank-pins. While the machining of the rods requires a set of very complete and accurate jigs and tools, limited space prevents their illustration. Two of the fixtures for testing the alignment of the assembled rods, however, are shown in Figs. 30 and 31. Fig. 30 shows the method of locating the piston-pin bushing central with the crank-pin bearing, which is held in the hinged end of the rod by large brass dowels. A plug is placed between the half bearings. and the adjusting screw

tightened down sufficiently to hold them tightly in place. The pistonpin bushing having been pressed in approximately central and hand reamed, is then slipped on the ground arbor which is pressed into the casting and positively held by a large hexagon nut. The knurled nut A is then screwed on the outer end of the arbor, thus holding the piston-pin bushing against a ground shoulder on the fixed arbor. The micrometer screw is then brought up until it touches the edge of the crank-pin bearing, a reading taken, and the screw backed away. The nut A is then loosened, the connecting-rod slipped off, turned over and replaced on the arbor and another reading of the micrometer screw is taken. The difference in the two readings thus indicates the amount the two bearings are out of line with each other. For

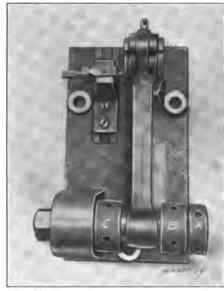


Fig. 30. Fixture for Testing the Relative Lateral Positions of Connecting-rod Bearings

overcoming this variation, the two knurled nuts B and C are provided. Nut B is internally threaded to fit a threaded portion of nut A, and in use screws up against the face of the connecting-rod forging for pressing it farther onto the bronze bushing. Nut C which is internally threaded to fit a portion of the fixed arbor, operates to move the rod forging in the opposite direction. When the rod is thus centralized, a dowel of brass tubing is put in, which prevents disalignment and also conveys oil to the piston-pin bearing.

For testing the parallelism (both vertical and horizontal) of the rcd bearings, the fixture shown in Fig. 31 is provided. In operation, two ground arbors which are tight-fits in the rod bearings, are inserted, and the rod laid in the fixture as shown. A pair of flat springs A press the smaller arbor against the inserted hardened and ground

No. 59—AUTOMOBILE MANUFACTURE

plugs opposite them. A similar pair of plugs are seen at the other end of the fixture; between these and the arbor is inserted the taper strip seen in the foreground. The taper is such that the cross lines which are about $\frac{1}{16}$ inch apart each give a reading to 0.001 inch. The two flat strips attached to the lower end of the fixture are so placed for convenience in reading any variation in the position of the taper strip. As all four horizontal surfaces on which the ends of both the

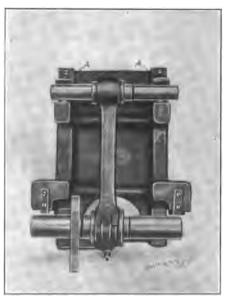


Fig. 31. Fixture for Testing the Parallelism of Connecting-rod Bearings

arbors lie are ground to the same plane, any "wind" in the connectingrod is seen by the failure of all four points to touch at the same time.

Bevel Gear Templet Milling Machine

A pair of bevel gears are used to drive the short vertical commutator shaft from the cam shaft of the motor, and as the relative positions of the commutator to the cam-shaft and main shaft of the motor must be accurately maintained, the necessity of correctly cut and carefully mounted gears is apparent. For producing these gears, a specially designed machine is employed, which is shown in Fig. 32. The machine is one of the templet type, whose templet or form (seen on the arm at the top of the machine) is primarily developed by rolling contact with a rack. This produces a magnified tooth form which is mathematically correct, and even if it contained any errors these would be reduced in the actual work in the same proportion which the gear tooth bears to the form. Hence, very accurate bevel gears

may be cut on this type of machine, and a brief general description of its main features may be of especial interest.

The machine consists of two principal parts: the work spindle and its driving and indexing mechanism, and the cutters with their driving mechanism. The cutters are driven by round belts, at a high speed, and are mounted on geared spindles which are carried in two vertical slides, which, in operation, have a reciprocating motion on

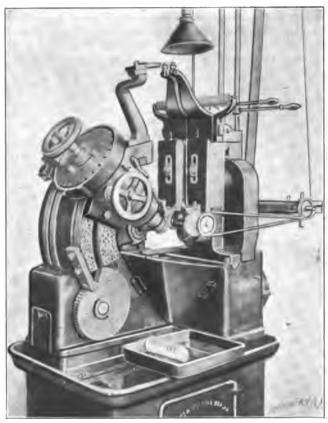


Fig. 32. Bevel-gear Milling Machine of the Templet Type

lines divergent from the cone center of the gear to be cut. The cutting edges of the cutters are thus always traveling along lines which become the clearance lines of the gear tooth. The gear blank is roughed out on a special gashing machine as the templet milling machine is not intended for roughing.

The work spindle is carried in the head, which has a working range of 75 degrees between the horizontal and vertical planes. This head is locked to the movable graduated quadrant, which is pivoted at a point coincident with the center of the gear. The work spindle

No. 59—AUTOMOBILE MANUFACTURE

32

has an end movement of several inches, for convenience in changing the gear blank, and has a draw-in arbor attached to the hand-wheel seen above the index plate, for locking the gear blank in position. The index plate is seen at the top of the work spindle. The index trip is set at the desired position on the rear slot of the stationary quadrant. In operation the large cam under the work spindle raises the pivoted quadrant to which the work spindle is locked, and gradually feeds the work forward between the two cutters, which are gradually forced to change their position by the action of the large tooth form entering between the two rolls on the cutter slide arms.

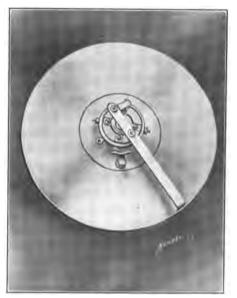


Fig. 33. Fixture for Testing the Accuracy of Commutator Contact Points

The indexing is, of course, automatic, and occurs at the position of the cam shown in the engraving. This cam has, as shown, an edge consisting of a series of small steps, rather than a gradual curve, and is so geared to the cutter spindle mechanism that the work is fed into the cutters at the ends of the stroke of the cutter slides, rather than during a cut. The index mechanism shows careful thought in its design, in that the index pin enters the slots in the index plate in such a manner as to have no sliding contact on the master edge of the slot. An automatic trip stops the machine when the gear is finished. This machine is one of a series which was built by this company (then the Leland & Faulconer Manufacturing Company) in 1898-1899, for producing either soft or hardened and ground bevel gears, the machine being designed to produce finished soft gears, or semi-finished gears for hardening.

Commutator Testing

Fig. 33 shows a fixture employed for testing the accuracy of the spacing of the contact points of the commutator. This fixture consists of a central portion carrying the commutator shaft, and of an outer graduated steel disk movable on the central part of the fixture. In operation, a commutator is slipped on over the stationary shaft and the bearings adjusted. The commutator brush is then placed on the shaft and locked in place, leaving the commutator body free to be revolved. A battery and coil which are a part of the fixture, indicate the electrical contact by the buzzing of the coil. The pointer is then put in place and clamped, and the commutator turned until a contact is indicated. The large outer disk (about 18 inches in dia-

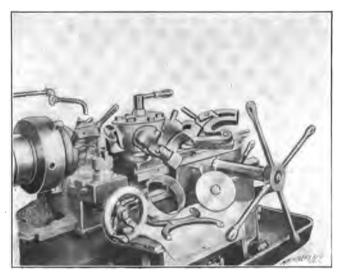


Fig. 34. Turning a Spherical Ring

eter) is then turned around under the pointer until one of the 90 degree graduations are directly under the pointer. The commutator and pointer are then turned to bring the other contacts to the brush, and their variation read on the large disk, which is graduated in degrees at four equi-distant points around its edge. The requirement is that the commutator contacts be spaced 90 degrees apart, and the variation allowed is only one-half a degree, as the relation of the firing to the piston and valve movements must be very exact.

Fig. 34 illustrates a nice piece of screw machine work in the brass shop. The ring seen leaning against the machine is of bronze. The diameters of these rings range from 6.497 inches to 6.500 inches and the bore from 5.878 inches to 5.880 inches. The outside is spherical in shape, and the ring forms a part of the rear universal joint housing which swivels on the rear axle driving shaft casing, and also slides

No. 59-AUTOMOBILE MANUFACTURE

in to compensate for the rear spring action. Slight variations in size and a fine finish are necessary to make this point oil tight. A casting is seen in the machine, and a roughing cut is being taken from the outside. It has already been rough bored, enough metal being left for a fine finishing cut to be taken after the outside is finished. The castings have heavy flanges for inside chucking, so that little trouble is experienced by their springing after being parted. The illustration shows the construction of the spherical turning tools, and two of the gages used.

CHAPTER III

SYSTEM FOR THE RAPID ASSEMBLY OF MOTOR CARS*

From a mere corner in the machine shop in the days when the automobile was built in lots of but two or three at a time, the assembling room has grown to such an extent that, in many factories where the output is large, it occupies an entire floor of the main building, and has come to be considered as one of the three or four most important departments of a modern motor car factory. A corresponding increase in responsibility has attended the growth in size and importance of the assembling room, and to-day, unless well managed and equipped with the most up-to-date devices for the convenient and rapid handling of parts, it can easily "eat up" the profits on a whole year's output of low or medium-priced cars. Without requiring the services of an excessive number of men, it must take care of the parts from the machine shop and the parts-assembling room as they are turned out, and not allow a great number of finished pieces to accumulate at any time in the stock room. The work of assembling must also be done thoroughly, so that, when tested, the complete car need not be sent back for overhauling and readjustment of parts. In short, the assembling room must work in harmony with each of the other departments in doing its share toward producing a car of maximum quality at minimum cost of production—and that share is by no means small. But not alone are the best systems and business management, proper interior arrangement and most up to date devices necessary, but the highest class of skilled mechanics must be employed as well. A motor and transmission may be composed of the best of materials and have bestowed upon them the most skilled workmanship available, but unless they are placed together in the completed car with each shaft lined up, each bearing scraped and fitted and each gear in position to mesh properly, all this expensive material and labor may count for naught. The assembling room cannot, to any great extent, compensate for poor machining, but it can absolutely ruin the best products of the machine shop.

That the leading automobile manufacturers have been brought to a realization of the importance of the use of the best systems, equipment and labor in their assembling rooms is particularly well exemplified in the factory of the Chalmers-Detroit Motor Car Company at Detroit, Mich. Probably the most convincing proof of this statement will be found in the fact that, for the 3,000 complete cars turned out by this company last year, not more than 30 men were employed at any one time on the assembling room floor. More remarkable than

• MACHINERY, October, 1909.

this, however, is the high record established for a day's work. In ten hours, the 30 men in this department assembled 35 complete cars! Of course this does not include the assembling of the small parts of the motor, transmission and rear axle, as these are taken care of in other departments, but when it is remembered that the chassis assembly *does* include the installation of all these parts in the frame, the adjustment of each to its new position, the attaching of all springs, wheels, running-boards, foot-rests, steering gear, and the wiring and piping of the motor, it will be realized that the system and equipment employed in this department must be perfect in every respect, in order to turn out this amount of completed work.

The headquarters of the assembling department may be said to lie in the finished stock room, which occupies a large section of the floor of the main factory on which the assembling room proper is located. To this finished stock room come all finished parts such as nuts, bolts, screws, front axles, springs, and wheels, and the previously assembled motors, transmissions, steering gears, and rear axles. These are all classified and placed by themselves, the smaller parts being kept in bins which extend in long rows down one end of the room. Lists pasted in conspicuous places along these bins show the exact number of each size and kind of bolts, nuts and other pieces required for the various models of cars made here, and hand trucks having bodies divided into compartments are drawn down past the bins and filled with the necessary number of small parts for two cars. In the larger divisions of the truck box or body are placed the axles, steering gear, running boards, foot rests, and other bulky parts of the car. Each truck is filled with a sufficient number of the proper parts for the complete assembly of two cars and is then rolled into the assembling room, adjoining the stock room, and placed between two pressed steel frames which form the foundations, as it were, of the two chassis to be assembled. Having received the required number of parts of the proper kind, three men now devote their entire time to assembling the two chassis—and it is here that the advantages of "team work" are exhibited. Having become accustomed to this method of assembling, each man knows just what he is to do, and always has the other chassis at hand to which he can turn his attention when he is liable to interfere with the work of his two companions. It is highly specialized work, each team of three men devoting their whole time and energy to the installation and adjustment of the various parts of two cars until they are ready for the road test. As the three men finish the first two chassis, another truck is brought in containing parts for two additional cars, and the team then devotes its attention to cars three and four. The motors are not included in the quota of parts comprising the truck load, but are carried in separately by differential hoists which travel on overhead tracks and pass in two lines down the sides of the assembling room in front of the two rows of chassis. When the frame is ready for the installation of its motor, the latter is lowered in place. This system renders each car independent of the stock room after the truck load of parts has been received.

36

ASSEMBLING

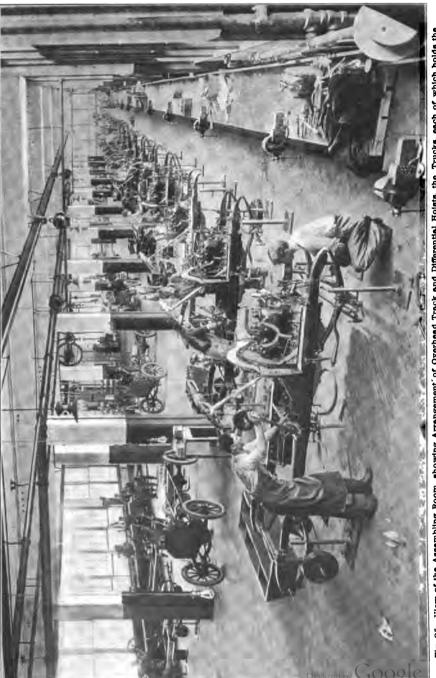


Fig. 35. View of the Assembling Room, showing Arrangement'of Overheed Track and Differential Holsta, the Trucks, each of which holds the Parts for Two Cars' and the Adjustable Frame Supports

37

•

and the work bench, vise and kit of tools near every chassis reduce to a minimum the number of steps necessary to be taken by each workman.

The arrangement of the rests for holding the frames rigidly in place is very ingenious and entirely does away with the use of saw-horses or other movable and bulky supports. There are four of these supports for each frame, as shown in Fig. 35, and when not in use, one or all may be let down into the floor. Each of these supports consists merely of a vertical iron rod, bent at right angles at its upper end and forged into the shape of a hook. A corner of the frame rests on this horizontal portion of the rod, while the hooked-shaped ends of the two opposite supports prevent lateral motion in either direc-

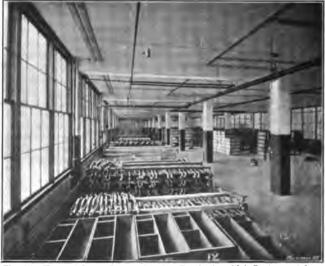


Fig. 36. View of Stock Room, showing Trucks in which Parts are taken to the Assembling Room

tion. Each rod is supported by a pin passing through it at the proper distance from the end, which rests across the top of the base-plate which is bolted to the floor and through which the end of the rod passes. By giving a partial turn to the rod, the pin is allowed to pass through a slot in the base-plate, and the whole support is thus dropped until its top is flush with the floor. In order that the supports may accommodate themselves to various lengths of frames, the rear pair of every set of four base-plates is made with four sets of holes, in any of which the rods may be placed. The sets of supports are placed at such intervals along the floor that sufficient space between the frames is allowed to enable two teams of men to work on adjoining cars without interference. While it may seem a small matter, the facility with which these supports may be put in place, adjusted or removed from the floor helps to make possible, in no uncertain degree, the record for the rapid assembly of cars of which this factory can boast.

ASSEMBLING

Although not a part of the assembling room proper, the department in which the pressed-steel frames of channel-section are prepared for the chassis, has an important part in facilitating quick assembling. When the frames arrive at the factory, forty or fifty holes must be drilled for the various parts which are to be attached, such as the gear shift, brake levers and their supports, the motor, transmission, running boards, fenders, lamp brackets, springs, and the like. Most of these, with the exception of the motor and transmission, are riveted in place before the frames reach the assembling room. These operations are performed in the frame riveting room, which contains several unique and ingenious arrangements that, so far as efficiency is concerned, bring this department on a par with the assembling

Fig. 37. Room in which the Frames are drilled and riveted by Pneumatic Tools

room. The frame is first placed on a set of supports similar to those used in the assembling room, except that a tension rod and turnbuckle connect both pair of rods for the purpose of holding the frame more rigidly in place. A single track over this set of supports carries a differential hoist, from which is suspended a large jig (see Fig. 37) containing a guide hole corresponding to every hole necessary to be drilled in the sub-frame, which carries the motor and transmission. This jig is clamped securely in place and the holes drilled by means of pneumatic drills connected to flexible piping. When all the holes are drilled in this manner, the frame is removed to another set of supports a few feet distant, where it is held rigidly in place in the same manner as that before described. Above this second set of supports is an oval track of the same length and width as the frame. From the traveler on this track is suspended a cable terminating in a single pulley through which passes a chain. On one end of this

No. 59-AUTOMOBILE MANUFACTURE

chain is a heavy, penumatic riveter, which is counterbalanced by an iron weight attached to the other end of the chain. This enables the tool to be placed at any height desired without unnecessary exertion. A small forge (not shown in the illustration) in one corner of this room heats the rivets before they are driven into the frame. Bv means of the oval track and pulley, any vertical or horizontal plane bounded by the frame may be reached with the riveter, and four or five men in this department are usually able to keep the assembling room supplied with the required number of frames. After being finished in this department, however, the frames in all cases are taken directly to the finished stock room, from which they are drawn out to the assembling room as needed. This stock room, in facts, acts as a sort of clearing house for the whole factory, and no part ever reaches the complete car until it has been inspected, checked and entered in the stock room records.

The keynote of this system is specialization. Every man knows what he has to do—and he does it. There is no overlapping of departments. It is scarcely ever necessary for the men in the assembling room to step into the stock room, and the men in the stock room are supposed to keep the men in the assembling department supplied with the necessary parts for the cars that have been ordered to be finished that day. Each team in the assembling room follows its two cars through until they are ready for the road test, and it is then easy to place the responsibility for any defect where it belongs. When this system is supplemented with such labor and space saving devices as are used in the assembling and frame riveting rooms, and when, at the head of it all is able, efficient and experienced management, one can begin to understand the conditions which allow the immense increase in production and the reduction in cost of the American-made motor car of to-day.

CHAPTER IV

TREATMENT OF GEARS FOR AUTOMOBILES*

There is probably no part of an automobile that is subjected to more use or greater abuse than the transmission. Carrying as it does practically all of the power developed by the motor, and, receiving at the hands of a careless driver the strains imparted by a suddenly

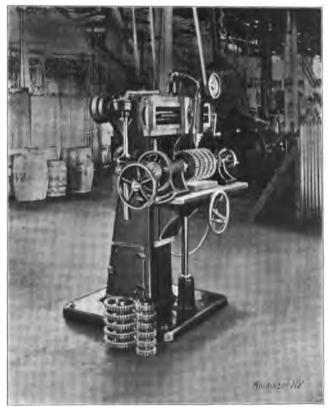


Fig. 38. Chamfering the Teeth of Spur Gears in the Winton Factory

applied load or a too rapid shifting of the speeds, it is small wonder that the gears of the transmission must be made of the highest grade of materials, and that the care and workmanship bestowed upon each must be of the best. The ordinary automobile transmission consists of a series of different sizes of spur gears mounted on two parallel

* MACHINERY, October, 1909.

No. 59-AUTOMOBILE MANUFACTURE

shafts with means for sliding the gears on one shaft into mesh with those on the other, as desired. In this manner various speed ratios are transmitted from the motor to the main driving shaft, although on the majority of automobiles the high speed drives the car direct, without the interposition of any of the gears of the transmission.

As a saving in weight is an important factor to be considered in the design of a transmission, the gears must be made as small as possible and yet be sufficiently strong to carry suddenly-applied loads with no attendant danger of breaking. Owing to the methods by which the speeds are changed, and the clashing and "bruising" which take place when the gears are shifted, the transmission must also be made of a material which is hard as well as tough. Different kinds of steel have been used and each has been treated by various methods in an effort to discover the perfect gear material, but although this

Fig. 39. Gear Case-hardening Room in the Premier Factory

is yet to be found, the transmission of a modern, well-made automobile, when intelligently handled, will last nearly as long as the car itself. Of the various kinds of carbon steel which have been employed for transmission gears, nickel, chrome-nickel and silico-manganese seem to have more adherents among the leading builders than any other materials. In most factories the gears are case-hardened after being cut, and in this manner the combination of toughness with the desired hard surface is obtained. Gears which have been treated in this way have been taken out of cars after having been run many thousands of miles, and in some instances, the original tool marks on the faces of the teeth were still visible.

Methods employed for cutting gears in automobile factories do not differ in any essential features from those used in any well-equipped machine shop or manufacturing concern. Most of the automobile makers purchase their transmission gear blanks outside and cut and finish them in the factory. Many of these blanks of special steel are

imported from France, but a few of the leading factories have laboratories of their own in which experiments on high-quality materials for transmission purposes are continually in progress. Six or seven spur gear blanks of the same size are generally placed on the mandrel of the cutter at once. A continous cut extending throughout the width of all these blanks is then taken for each tooth, and in this manner six or seven gears are finished at once and are made absolutely uniform.

After the teeth have been cut, the gears are taken to the heat treating room to be case-hardened. In the Middle West, and a few other sections, many of the case-hardening ovens are heated by natural gas obtained from near-by wells. In the Maxwell factory, at Newcastle, Indiana, a special machine has been installed for the manufacture of gas from "distillate"—a hydro-carbon obtained from the oil refineries. This machine is set up in the power house connected with the factory, and the gas is stored in a tank located in the same building. It is conducted from here to the heat-treating ovens in which it is used for case-hardening, tempering and annealing, Still another method for obtaining heat for the ovens is in use at the Ford factory, in Detroit. Petroleum, or crude oil, is vaporized and forced by air pressure into a series of special burners located under the ovens. By regulating the amount of air or vapor or both, the ovens can be kept at a uniform temperature, or the amount of heat generated may be varied at will between almost any limits. The temperatures of the ovens are indicated by an electric pyrometer connected with each. and pieces to be case-hardened are kept at a heat of 1,600 degrees F. for a length of time which depends on the depth below the surface to which it is desired to carry the treatment.

In several factories the final operation bestowed upon the gear, before assembly in the transmission or the motor, is the sand blast which serves to scour off any roughness or stains which may have been left on the surface during the cutting or the heat treatment. In the National factory, at Indianapolis, this operation is conducted in a small building separated from the remainder of the shop. The sand is kept in a bin in one corner and is sucked up by a centrifugal blower and forced by the air pressure through a pipe which terminates in a nozzle. The sand, being forced out at high velocity by the air pressure, may be directed at all parts of the pieces to be cleaned. This is one of the most efficient methods of polishing and finishing a gear and does not injure the hard metal surface in any way.

As silence of operation of all moving parts is one of the principal requisites for a motor car of to-day, it is necessary that the teeth of all gears shall be made to mesh perfectly and smoothly with all of those on the other gears with which they come in contact. In order to obtain silence of operation, the gears are run with each other for some time and each tooth is worn to a more perfect fit. The first few weeks of operation by the customer would wear the gears in properly, but, in order to produce a perfect car, this is done before it leaves

No. 59-AUTOMOBILE MANUFACTURE

the factory. Most of this "running in" of the gears can be accomplished by the thorough road test to which the whole car is subjected before leaving the shop, but many of the leading factories supplement this with additional methods for obtaining the required wear on the transmission. A special frame is used in the Marmon factory, in Indianapolis (see Fig. 40), in which the transmission, driving shaft, differential, and rear axle and wheels are set up. An idler and a driving pulley, with a belt shifter, are attached to the front end of the transmission shaft and connected by belt to a countershaft driven from the main line shafting. When the power is applied and the different speeds of the transmission are thrown into mesh by the shifting lever, every gear of the whole car, with the exception of those

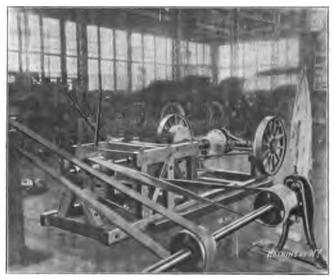


Fig. 40. Running in the Transmission and Differential Gears in the Marmon Factory

used on the motor, will be set in motion. The gears of the engine are worn in when it is operated under belt power before installation in the chassis. Somewhat the same method is pursued in the Packard factory, in Detroit, the only difference between the two being that here, instead of allowing the wheels to run free, a brake is attached to the end of the driving shaft by means of which a variable load may be applied to the gears in mesh. A section of the testing room is devoted to this purpose, and as the transmission and rear axle are assembled, they are brought in, placed on special frames provided for the purpose and connected by belts to the overhead shafting. As the gears of the transmission and differential are run in, the loads are increased until all are worn perfectly smooth.

Before their final installation in the motor and transmission, all of the spur gears for the Winton cars, made in Cleveland, are set up

Digitized by Google

TREATMENT OF GEARS

in a special case and run in under belt power. The bearings in these special cases are set at the proper distances apart to accommodate the various gears of a train, thus wearing in the gears so that all of those for similar parts are absolutely interchangeable. The case is made oil tight and a mixture of finely powdered emery and lubricating oil is fed through an opening in the top so that this grinding material will come in contact with all the teeth of the gears in mesh in the train. This grinding is continued until each tooth has been worn perfectly smooth and to an accurate fit with the teeth of the other gears with which it comes in mesh. For the gears used in the front of the motor to drive the cam, pump and magneto shafts—gears which always occupy the same relative position in regard to each other a tooth of each is marked when in the grinding case with the corresponding teeth of the others with which it meshes. This is done so

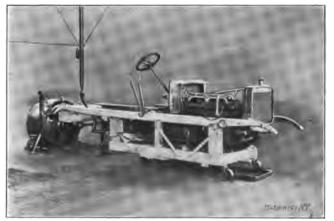


Fig. 41. Preliminary Run of Engine and Transmission to wear in the Parts

that each gear of the train may set up in the motor in the same corresponding position as that occupied while being worn to a perfect fit with the others in the case. It is evident that every tooth cannot be of exactly the same size and shape, and if each tooth is allowed to mesh with those with which it came in contact while being ground, more perfect rolling contact will take place and less friction and noise will result. The marks made on the gears are also useful for timing the magneto and valve cam shafts when an occasion arises necessitating the removal of any of these parts from the motor. Of course, it is impossible to carry this practice to the transmission, for most of the gears on one shaft revolve independently of those on the other, and it is very seldom that the same teeth of two gears will come into mesh on succeeding occasions. This practice, however, may be applied to the bevel gears of the driving shaft and rear axle and the pinions of the differential. As a further means of wearing the gears of the transmission to a perfect fit, the motor, transmission and driving shaft are installed in the chassis as shown in Fig. 41, and

the motor is run while the various speeds of the transmission are thrown into mesh in order to wear in every gear thoroughly. During this run an electric dynamometer, by means of which a variable load may be applied, is connected to the end of the driving shaft.

An ingenious device for testing the accuracy of gears is used in the factory of the Grabowsky Power Wagon Co., of Detroit. This consists of a standard having three pins or bearings set in it on which the gears of the transmission are placed as shown in Fig. 42, thus forming a replica of the planetary transmission as used in the car. The middle upright bearing is stationary while each of the other two is movable in a horizontal direction and is connected to a micrometer at either end of the base of the instrument. A master gear is set on one of these bearings, while the pinions to be tested are placed on the other two. When the two movable bearings have been so

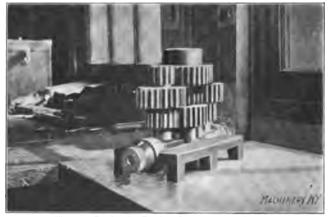
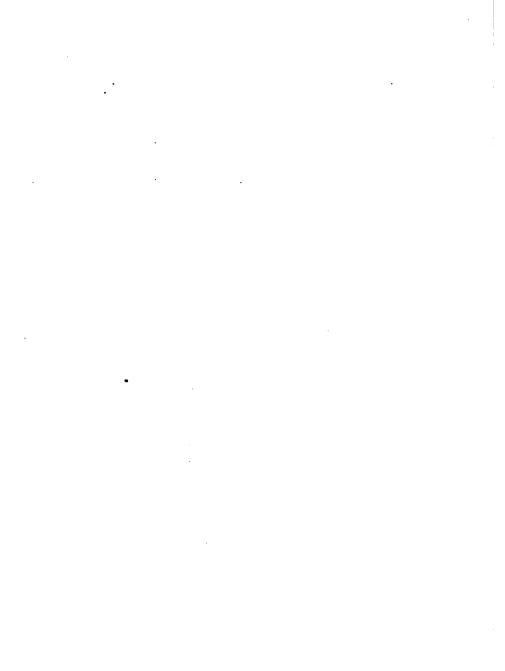


Fig. 42. Device for Testing the Accuracy of Gears


adjusted that all of the gears mesh perfectly, the readings of the two micrometers may be observed and the amount, in thousandths of an inch, by which the gears are "off" may thus be determined accurately. Certain limits of variation are necessarily allowed, but if any gear is below one or above the other, it is thrown out. Inasmuch as the distance between the centers of the gears must be constant in the transmission case, this instrument is useful in determining just what gears are acceptable without the necessity of installing them in the case.

Many of the gears used in the forward end of the motor for driving the cam, pump and magneto shafts are made of manganese-bronze. The Premier car, however, made in Indianapolis, employs a laminated gear for the magneto shaft, built up of alternate layers of bronze and fiber. These layers are pinned firmly together and the gear is then cut by the usual methods. This makes an exceedingly quiet-running gear, as the layers of fiber or rawhide cushion the impact of the teeth as they meet, and the whirring or grinding sound familiar in many

TREATMENT OF GEARS

all-metal gears is practically eliminated. It has been found by means of a series of exhaustive tests conducted in this factory that the silent running of this gear is brought about by a slight rounding or "bulging" of the face of the rawhide sections caused by the absorption of the lubricating oil in the pores of the fiber and the pressure against its sides. This, as mentioned above, effectually cushions the impact of the teeth, but if this bulge becomes too great, the teeth will not mesh properly, there will be a tendency to "jam" and more friction will be set up than would be the case were an all-metal gear used. Of course the wider these fiber sections are, the greater will be the bulge to each, and it has been found as a result of these experiments that laminated gears composed of layers of rawhide about 1/6 of an inch thick, alternating with bronze disks of the same dimensions, give the best service for this purpose. When sections of this thickness are used, a sufficient bulge is formed to cushion the impact satisfactorily, and yet this is not great enough to change the shape of the teeth materially. These experiments are still in progress at the factory in question in order the more accurately to determine other facts and figures concerning the best form of laminated gears, and this is only one of the many instances which give evidence to the fact that the American motor car. manufacturer is now fully awake to the importance of paying attention to the most minute details of design.

No. 22. CALCULATION OF ELEMENTS OF MACHINE DESIGN.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. THEORY OF CRANE DESIGN.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys, etc.

No. 24. EXAMPLES OF CALCULATING DESIGNS.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. DEEP HOLE DRILLING.—Methods of Drilling; Construction of Drills. No. 26. MODERN FUNCTI AND DIE CONSTRUCTION.—Construction and Use of Sub-press Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. LOCOMOTIVE DESIGN, Part I.-Boilers, Cylinders, Pipes and Pistons.

No. 28. LOCOMOTIVE DESIGN, Part II.—Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. LOCOMOTIVE DESIGN, Part III.—Smokebox; Exhaust Pipe; Frames; Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels.

No. 30. LOCOMOTIVE DESIGN, Part IV .- Springs, Trucks, Cab and Tender.

No. 31. SCREW THREAD TOOLS AND GAGES.

No. 32. SCREW THREAD CUTTING .- Change Gears; Thread Tools; Kinks.

No. 33. SYSTEMS AND PRACTICE OF THE DEAFTING-ROOM.

No. 34. CARE AND REPAIR OF DYNAMOS AND MOTORS.

No. 35. TABLES AND FORMULAS FOR SHOP AND DRAFTING-ROOM.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. IBON AND STEEL.—Principles of Manufacture and Treatment.

No. 37. BEVEL GEARING.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. GRINDING AND LAPPING.-Grinding and Grinding Machines; Disk

Grinders; Bursting of Emery Wheels; Kinks; Lapping Flat Work and Gages.

No. 39. FANS, VENTILATION AND HEATING .- Fans; Heaters; Shop Heating.

No. 40. FLY-WHEELS.-Their Purpose, Calculation and Design.

No. 41. JISS AND FIXTURES, Part I.—Principles of Jig and Fixture Design; Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. JIGS AND FIXTURES, Part II .- Open and Closed Drill Jigs.

No. 43. JIGS AND FIXTURES, Part III.-Boring and Milling Fixtures.

No. 44. MACHINE BLACKSMITHING .- Systems, Tools and Machines-used.

No. 45. DROP FORGING.-Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. HARDENING AND TEMPERING .- Hardening Plants; Treating High-

Speed Steel; Hardening Gages; Case-hardening; Hardening Kinks.

No. 47. ELECTRIC OVER-HEAD CRANES .- Design and Calculation.

No. 48. FILES AND FILING .- Types of Files; Using and Making Files.

NO. 49. GIRDERS FOR ELECTRIC OVERHEAD CRANES.

No. 50. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part I.

No. 51. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part II.

NO. 52. ADVANCED SHOP ABITHMETIC FOR THE MACHINIST.

No. 53. Use of Logarithms, and Logarithmic Tables.

No. 54. Solution of TRIANGLES, Part I.-Methods, Rules and Examples.

No. 55. Solution of TRIANGLES, Part II.-Tables of Natural Functions.

No. 56. BALL BEARINGS .- Principles of Design and Construction.

No. 57. METAL SPINNING.-Machines, Tools and Methods Used.

No. 58. HELICAL AND ELLIPTIC SPRINGS .- Calculation and Design.

No. 59. MACHINES, TOOLS AND METHODS OF AUTOMOBILE MANUFACTURE.

No. 60. Construction and MANUFACTURE OF AUTOMOBILES.

The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street ^{Subway Station}, New York City, U.S.A.

EACH PAMPHLET IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DE-SIGN AND SHOP PRACTICE REVISED AND REPUBLISHED FROM MACHINERY

No. 60

A Dollar's Worth of Condensed Information on

Construction and Manufacture of Automobiles

Price 25 Cents

CONTENTS

By RALPH E. FLANDERS

Design and Construction of a High-g	grade	Mo	tor (ar	-		-	3
Automobile Manufacturing Methods	-		-	-		-		18
Manufacturing Equalizing Gears	-	-	-		-		-	31

Copyright 1910, The Industrial Press, Publishers of MACHINERY, 49-55 Lafayette Street, New York City

MACHINERY'S REFERENCE SERIES

This treatise is one unit in a comprehensive Series of Reference books, originated by MACHINERY, and including an indefinite number of compact units, each covering one subject thoroughly. The whole series comprises a complete working library of mechanical literature in which the Mechanical Engineer, the Master Mechanic, the Designer, the Machinist and Tool-maker will find the special information he wishes to secure, selected, carefully revised and condensed for him. The books are sold singly or in complete sets, as may be desired. The price of each book is 25 cents, and it is possible to secure them on even more favorable terms under special offers issued by MACHINERY's circulation department and sent to any one on request.

The success of the Reference Series was instantaneous and copies are now widely distributed in machine shops and metal working plants everywhere.

CONTENTS OF REFERENCE BOOKS

No. 1. WORM GEARING.—Calculating Dimensions for Worm Gearing; Hobs for Worm-Gears; Location of Pitch Circle; Self-Locking Worm Gearing; etc.

No. 2. DRAFTING-ROOM PRACTICE.—Drafting-Room System; Tracing, Lettering and Mounting; Card Index Systems.

No. 3. DBILL JIGS.—Elementary Principles of Drill Jigs; Drilling Jig Plates; Examples of Drill Jigs; Jig Bushings; Using Jigs to Best Advantage.

No. 4. MILLING FIXTURES.—Elementary Principles of Milling Fixtures; Collection of Examples of Milling Fixture Design, from practice.

No. 5. FIRST PRINCIPLES OF THEORETICAL MECHANICS.

No. 6. PUNCH AND DIE WORK.—Principles of Punch and Die Work; Suggestions for the Making and Use of Dies; Examples of Die and Punch Design.

No. 7. LATHE AND PLANEB TOOLS.—Cutting Tools for Planer and Lathe; Boring Tools; Shape of Standard Shop Tools; Forming Tools.

No. 8. WOBKING DRAWINGS AND DRAFTING-ROOM KINKS.

No. 9. DESIGNING AND CUTTING CAMS.—Drafting of Cams; Cam Curves; Cam Design and Cam Cutting; Suggestions in Cam Making.

No. 10. EXAMPLES OF MACHINE SHOP PRACTICE.—Cutting Bevel Gears with Rotary Cutters; Making a Worm-Gear; Spindle Construction.

No. 11. BEABINGS.—Design of Bearings; Causes of Hot Bearings; Alloys for Bearings; Friction and Lubrication; Friction of Roller Bearings.

No. 12. MATHEMATICS OF MACHINE DESIGN.—Compiled with special reference to shafting and efficiency of hoisting machinery.

No. 13. BLANKING DIES.—Making Blanking Dies; Blanking and Piercing Dies; Construction of Split Dies; Novel Ideas in Die Making.

No. 14. DETAILS OF MACHINE TOOL DESIGN.—Cone Pulleys and Belts; Strength of Countershafts; Tumbler Gear Design; Faults of Iron Castings.

No. 15. SPUE GEABING.—First Principles of Gearing; Formulas for Spur Gearing; Design and Calculation of Gear Wheels; Strength of Gear Teeth.

No. 16. MACHINE TOOL DRIVES.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. STBENGTH OF CYLINDERS.-Formulas, Charts, and Diagrams.

No. 18. Shop ABITHMETIC FOR THE MACHINIST.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. USE OF FORMULAS IN MECHANICS.-With numerous applications.

No. 20. SPIRAL GEARING.—Calculating Spiral Gears; Rules, Formulas, and Diagrams for Designing Spiral Gears; Efficiency of Spiral Gearing, etc.

No. 21. MEASURING TOOLS.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc. See inside back cover for additional titles

MACHINERY'S REFERENCE SERIES

EACH NUMBER IS ONE UNIT IN A COMPLETE LIBRARY OF MACHINE DESIGN AND SHOP PRACTICE REVISED AND REPUB-LISHED FROM MACHINERY

NUMBER 60

CONSTRUCTION AND MANUFACTURE OF AUTOMOBILES

By RALPH E. FLANDERS

CONTENTS

Design and Construction of a High grade Motor Car	-	3
Automobile Manufacturing Methods	-	18
Manufacturing Equalizing Gears	-	31

Copyright, 1910, The Industrial Press, Publishers of MACHINERY 49-55 Lafayette Street, New York City Digitized by GOOG

Digitized by Google

•

.

CHAPTER I

DESIGN AND CONSTRUCTION OF A HIGH-GRADE MOTOR CAR*

The following description of a 40 H. P. automobile, built by the Stevens-Duryea Company, of Chicopee Falls, Mass., may, except for certain important details which will be specifically mentioned, be taken as typical of the design of high grade cars in general. In Fig. 1 is shown a side view of the "Model Y," 40 horsepower, six-cylinder machine, with 36-inch wheels and 142-inch wheel-base. An automobile may be divided into two parts—the body and the "chassis." The former is the product of the carriage-maker's art, the latter of the mechanic's

Fig. 1. Stevens-Duryea "Big Six" Motor Car, 1910 Model

and engineer's. The chassis of this machine is shown in Figs. 2 and 3, to which reference will now be made.

The mechanism and body of the car are supported by a frame whose side members, of chrome-nickel steel, are shown at A. These are connected by four cross pieces, and are supported on the front and rear axles by the spring connections shown. The cross pieces are also pressed from chrome-nickel steel, and are hydraulically riveted to the side frames. A platform spring suspension is used at the rear, hung on connecting shackles designed to overcome the side roll met

* MACHINERY, October, 1909.

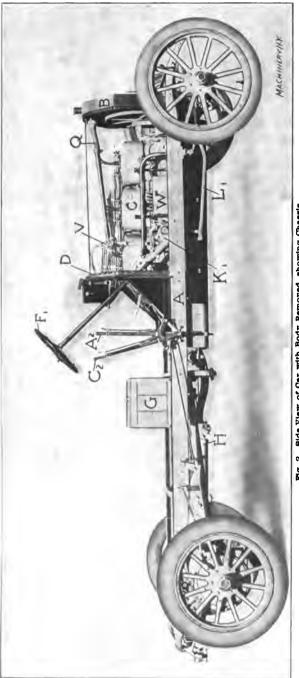
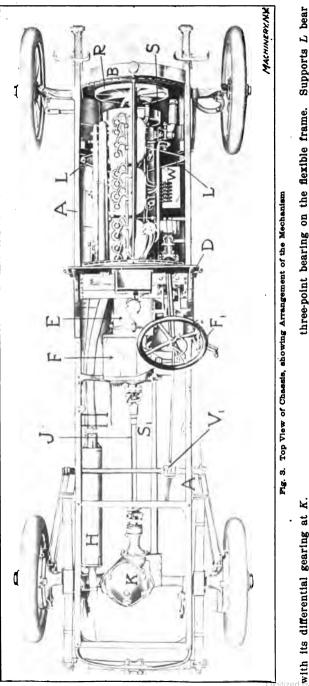
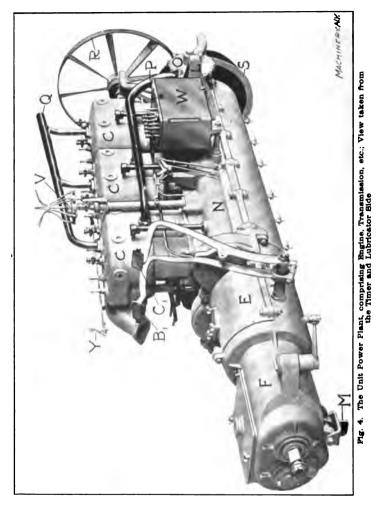



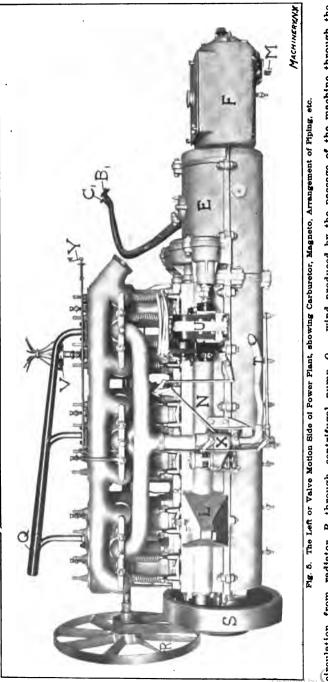
Fig. 2. Side View of Car with Body Removed, showing Chassis

The springs are made from steel selected after careful tests of both American and imported materials. The cost of the brand selected was far in excess of that of the nearest competitor, but it gave an endurance under repeated shock and reversal $_{\odot}$ when rounding curves in large and fast cars. of stress not met with in any other make.


ogle

On the chassis frame are mounted, first the radiator B, next the engine C, then the dash-board D with its steering and controlling mechanism, the clutch and speed change mechanisms at E and F respectively, the gasoline tank G, the muffler H for the exhaust, the propeller shaft J for transmitting the power to the rear axle, and the rear axle

The engine is shown more clearly in Figs. 4 and 5, which show the "unit power plant" form of construction, one of the important original features of the design. This pecudarity consists in mounting the engine, clutch, and transmission casings as a single rigid member, supported by a


three-point bearing on the flexible frame. Supports L bear on the two side frames, while pivot M is riveted to one of the cross pieces. This allows the whole of the contained mechanism to run without distortion or bending, even on roads which rack the frame severely, and thus results in less friction and lighter structural parts, giving a high

available horsepower per hundredweight of load. It also permits the power plant to be assembled as a whole and to be bolted in place without fitting. This construction, which is the distinctive point in the design of this motor, has been successfully followed by the builders for the last five years, and it is one of the things which serve to give an attractive mechanical appearance to the whole mechanism. Only one double set of universal joints is required, that connecting the propeller shaft with the transmission gearing at one end, and the differential gearing at the other.

The cylinders are grouped in three two-cylinder castings C, bolted to the crank case N. As is common with internal combustion engines in ordinary practice, they are water jacketed, there being a continuous

Circulation from radiator B through centrifugal pump O and pipe P to the water jackets, thence back again through the return pipe Q to the top of radiator B. Here the heated water is cooled by passing through sheet metal channels, having a large radiating surface exposed to the draft of

wind produced by the passage of the machine through the air. This draft is increased by an aluminum fan R beited to the pulley on the outside of flywheel S. An automatic tightening arrangement is provided for the belt. It should be mentioned that the placing of the flywheel

7

DESIGN OF A HIGH-GRADE MOTOR CAR

No. 60-AUTOMOBILE CONSTRUCTION

at the forward end of the crank-shaft, as here shown, is unusual, the common construction being to locate it between the crank-shaft and the clutch. It tends, in particular, to bring more of the weight onto the front wheels, off from the heavily loaded rear wheels of the machine, and permits the reducing of the clearance over the roadbed in the center of the chassis, where there is the greatest danger of striking on high water-bars, railroad crossings, etc. It will be readily seen that more clearance is required at the center of the machine than at the axles, when crossing a hump in the road.

Lubrication, Ignition, etc.

Two shafts mounted in the crank casing, one on each side, above and parallel to the crank-shaft, are driven from it by enclosed gearing.

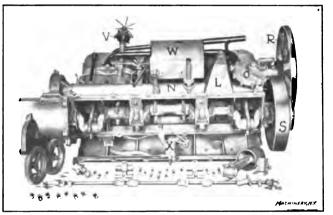


Fig. 6. View of Engine from Beneath, showing Removal of Piston, Camand Lay-shafts, etc., without Dismantling

The one at the side shown in Fig. 5 is the cam-shaft and is provided with twelve sets of cams for operating the six inlet and six exhaust valves, whose stems and closing springs are plainly shown in the engraving. The driving gear of this cam-shaft is also connected with a pinion on the armature shaft of the magneto, whose function will be described later. The shaft on that side of the machine shown in Fig. 4, is known as the lay shaft. Its office is the driving of the timer V, which controls the ignition, the driving of the forced lubrication mechanism at W, and of the water jacket circulation pump O.

The lubricator gives a forced oil supply with sight feed, and is always in operation when the engine is in motion. The six-throw crank-shaft is mounted in four bearings in the crank case, with two cranks between each pair of bearings. The boxes at these points are connected with the lubricator W. The lower half of the crank case forms a reservoir for the oil escaping from the main bearings. The connecting-rod splashes into this and thus supplies the pistons, connecting-rod bearings, etc., with the necessary lubrication.

The ignition in each cylinder is effected by either of two systems, the one by storage or dry battery and induction coil, and the other by means of a magneto U connected by gearing with the crank-shaft. The battery and spark coil is used in starting, while the magneto is used for regular running. The spark coils and switches are located on the dashboard. A lever on the steering wheel, as will be described, is connected with the commutator or timer V, which distributes the current to the six cylinders in such a way as to enable the operator to advance or retard the spark at will.

The Carburetor and Fuel Supply

An important and rather delicate piece of apparatus essential to the operation of the gasoline engine, is the carburetor, shown at X in

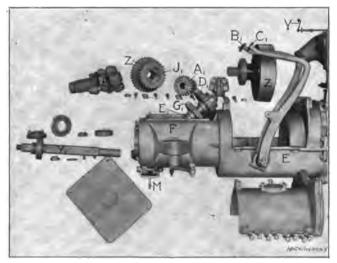


Fig. 7. Clutch and Transmission Gear Members Dismantled to show Construction

Fig. 5. This receives a supply of gasoline through a feed pipe from the tank G (see Fig. 2), a supply of air through T heated by the exhaust gas for vaporizing the gasoline, and a supply of fresh air to furnish the oxygen for the charge. The gasoline is received in a float chamber, where the level of the liquid is maintained by a suitable float and valve. An automatic valve provides for a constant proportion of oxygen and fuel at widely-varying speeds. The carburetor is provided with a throttle which controls the needle valve connection in the feed pipe, together with the butterfly valve in the suction to the cylinders, thus providing the driver with means for varying the amount of charge furnished the machine; this controls the speed without shifting the gears in the transmission case. The automatic air valve is controlled from the seat by a handle Y on the dash-board, which permits the obtaining of a proper mixture for the starting. A button at the front of the radiator, where the machine is cranked for starting, also provides means for flooding the carburetor with fuel for a send-off. The throttle is controlled from a lever on the steering wheel, concentric with the spark control lever, or from an "accelerator pedal" on the foot-board.

The gasoline supply tank G is located under the front seat. It contains a partition near the bottom which saves about three gallons out of its twenty gallons' capacity, for use in emergency. By the manipulation of cut-off valves passing through the left side frame of the chassis, it is possible to use this reserve supply after the tank has been otherwise exhausted. This provision is a great comfort to the motorist at critical times.

The Clutch and the Transmission Gearing

In casing E is mounted the clutch Z (Fig. 7) connecting the engine with the transmission to the driving wheels. This is of the multiple.

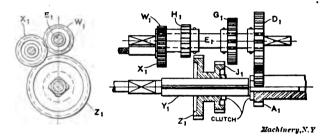


Fig. 8. Sketch showing Arrangement of Gears in Transmission Case

disk type, with alternate disks keyed to the driving and driven members. The driving disks have a wired asbestos facing which makes a superior friction surface, and gives a high resistance to heat as well. This construction obviates, and in fact makes impossible, the use of oil in the clutch. The friction surfaces are held in engagement by a spring, and are released by a pedal B_1 , which projects through the foot board at the driver's side of the machine. The spring is so proportioned as to give a smooth, easy engagement, entirely out of the control of the driver, who thus finds it impossible to start the machine with a sudden shock. The second foot lever, C_{11} , is connected with the rear wheel brakes, as will be described. The driven member of the clutch is connected with the driving shaft in the transmission case or speed box F. Contained within it is a mechanism which, by the aid of the sliding gears, clutches, etc., permits of the obtaining of three forward and one reverse speed.

The operation of this gearing will be understood from the sketch shown in Fig. 8. Gear A_1 receives its movement from the clutch. It meshes with gear D_1 keyed to the secondary shaft E_1 , which is thus in motion whenever the engine is running and the clutch is engaged. This shaft carries also gears G_1 , H_1 , and W_2 , the latter of which drives, in turn, the idler X_1 . Squared shaft Y_1 is directly connected by means

Digitized by Google

of propeller shaft J (Fig. 3) and the universal joints with the rear axle. On Y_1 is mounted the double sliding gear Z_1 . Clutch teeth are provided in the faces of the gears A_1 and J_1 .

In the position shown in Fig. 8, the transmission is in the neutral position, so that the motion from the clutch is not transmitted to the axle. The right-hand end of shaft Y_1 lies loosely in the revolving gear A_1 . When the sliding gear is thrown to the extreme right, the clutch faces of A_1 and J_1 are engaged, so that shaft Y_1 is driven directly, and at the highest speed, from the clutch. By shifting it a step to

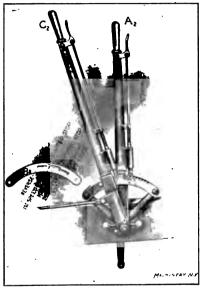


Fig. 9. The Speed Gear Control and Emergency Brake Levers

the left, J_1 is thrown into mesh with G_1 , thus giving a lower rate of speed through the back gear shaft E_1 . A still further movement to the left, past the neutral point shown in the engraving, brings Z_1 into engagement with H_1 , giving the lowest forward speed. A final movement to the left engages Z_1 with idler X_1 , thus reversing the drive.

The shifting of gears Z_1 and J_1 is effected by a forked lever connected with lever A_2 (Fig. 9) at the side of the machine, which thus controls the speed changes. This lever is provided with a latch connected with a pin in the slot of the quadrant B_2 , operating in a manner easily understood from the engraving. It will be seen that it is possible to move between the reverse and the lowest speed, or between the second and the high speed, without touching the latch, and it is possible to make all the movements rapidly and precisely by the sense of touch without looking at the quadrant at all.

The Differential Drive

Propeller shaft J leads from the transmission case F to differential case K on the rear axle. The bevel gear M_1 (Fig. 11) is connected with the two rear wheels by a differential mechanism, whose function it is to give an equal tractive force to each of the two wheels, but at the same time to permit either of them to run ahead or lag behind the other as may be required in rounding curves, riding over obstructions, etc. The principle of this mechanical movement will be understood by referring to Fig. 10.

Referring first to the sketch at the left, N_1 is the pinion on the propeller shaft and M_1 is the driven bevel gear, concentric with the axle.

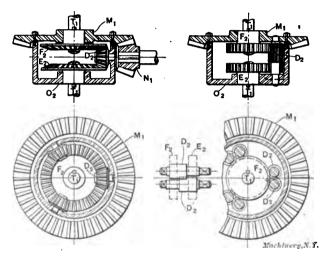


Fig. 10. Sketch showing Principle of the Bevel and Spur Gear Types of Differential Gearing

This gear and shell O_2 to which it is bolted, revolve freely on the hubs of E_2 and F_2 . Within the shell are mounted radial pivots on which revolve, loosely, bevel pinions D_2 . These engage with bevel gears E_2 and F_2 , connected respectively with the right- and left-hand axle shafts T_i . It will be seen that under ordinary conditions the rotating of gear M_1 carries gears E_2 and F_2 along with it, by the pull exerted on them by the bevel pinions D_2 , which are stationary; thus the two rear wheels are driven at the same rate of speed. Suppose now that the right-hand wheel be held from turning, so that gear E, is stationary, then the rotation of bevel gear M_1 will roll pinion D_2 about on E_2 with a compound action, which will give F_2 twice the rate of speed it had before. In the same way, F_2 can be held from revolving, in which case E_2 will have twice its normal speed, or either of them may be slowed down, in which case the other is speeded up correspondingly. The driving force on both wheels, however, is always the same.

DESIGN OF A HIGH-GRADE MOTOR CAR

An alternative form of this device is shown at the right of Fig. 10, in which each of the bevel gears D_2 is replaced by a pair of spur pinions D_1 and D'_2 , meshing with each other and with spur gears E_1 and F_2 as shown. A little study will show that the action of this device is identical with that shown in the sketch at the left of the figure, the only change being the employment of spur gearing in place of bevel gearing. The differential used on the Stevens-Duryea machine is of the second or spur gear type.

The Full Floating Type Rear Axle

The differential gearing is contained in the casing O_{i} , which forms the central member of the axle. Tubular extensions to both sides

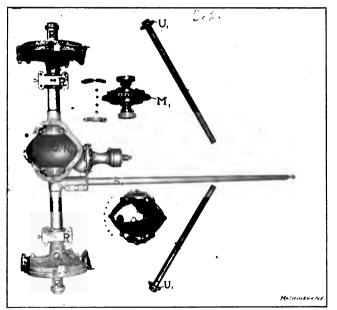


Fig. 11. The Full Floating Type Rear Axle, Differential Gearing, etc.

carry the spring supports P_1 on which the weight of the car rests. The brake flanges Q_1 and the wheel bearings at R_1 , all of which are solid with each other, are non-rotating. The rear axle, however, is permitted to rock in spring supports P_1 . The torque rod or tube S_1 , which is fast in case O_1 , extends toward the center of the chassis, where it is hung in a spring supports as seen in Fig. 3 permitting a limited vibration up or down, with a constant force urging it toward a central position. This construction furnishes the resistance against the climbing of pinion N_1 on bevel gear M_1 . In case of sudden starting or stopping, a limited amount of climbing either way is permitted, the torque rod being raised or lowered against the spring pressure to correspond. This greatly decreases the danger of gear breakage. The construction just described belongs to what is known as the full floating type axle. The wheels are mounted on ball bearings on stationary journals R_1 . Shafts T_1 are provided with squared driving ends engaging sockets in the differential gearing in casing O_1 at one end, and similar sockets cut in driving dogs U_1 at the other end. These latter members have driving slots engaging dove-tails in the hubs of the wheels, to which the power is thus transmitted. The squared ends of shafts T_1 are rounded to permit a slight rocking movement in their sockets in the differential gearing and driving dogs U_1 . This permits the springing of the rear axle under the load without cramping the driving mechanism.

To allow for the springing of this axle under the load, the two sections of tubing on either side, between members O_1 and Q_1 are held in bored seats which point downward at an angle of $\frac{1}{2}$ degree from the horizontal on each side. Thus the rear axle wheels point in toward each other at the bottom at an angle of $\frac{1}{2}$ degree from the vertical, giving a much better appearance than would be the case if they should by some mischance point the other way. It would take a load in excess of any which would ever be applied to spring the axle and bring the wheels into the vertical plane. It is stated that when the wheels are exactly vertical, they have the appearance of being sprung out at the bottom, into the position occasionally seen in a vehicle of the "one-horse-shay" type.

The Brakes

The brake mechanism of the automobile is of the utmost importance, as is realized by anyone who has had anything to do with these machines whether as driver, passenger or pedestrian. It is usual to provide two complete sets of braking machanism, one for regular use and the other for emergency. That for regular use is controlled by the foot lever C_1 (see Fig. 4), which is connected with a reach rod leading to double cranks on a transverse rock-shaft at V_1 (Fig. 3). One section of this rock-shaft is connected with the brake at the right side of the machine, and the other at the left. An equalizing lever between the two insures an even pressure on each of these two brakes, even though one be much more worn than the other. The brake is of the band type, applied to the outside of a brake rim fast to the hub of the wheel. The emergency brake is operated by lever C_2 (Fig. 2). This, by means of a second rock-shaft concentric with V_1 , controls internal expanding ring brakes in the hubs of the wheels.

The Control of the Machine

The steering gear will be best understood from Figs. 2, 3 and 12. The wheel F_1 is mounted on a tubular shaft which carries at its lower end a worm engaging the segment of a worm-wheel G_2 in casing K_1 . To the hub of this segment is connected a bell crank H_3 which, through the operation of the steering rod L_1 (see Fig. 2) and suitable connecting cranks and links, turns the front wheels to the right or left as may be required. Spring cushions are provided at the ends of steering rod L_1 so that sudden shocks and twists of the wheels are

not transmitted to the worm-gearing and the steering wheel, even when traveling at a high rate of speed. As most mechanics doubtless know, the center line of the pivots about which the wheels are swiveled meets the road at about the point where the tire touches it. This makes it possible to turn the wheels easily when standing still, and decreases the danger of accident while running, as well.

As previously stated, the throttle control and the timing of the spark are effected from levers placed at the hub of the steering wheel.

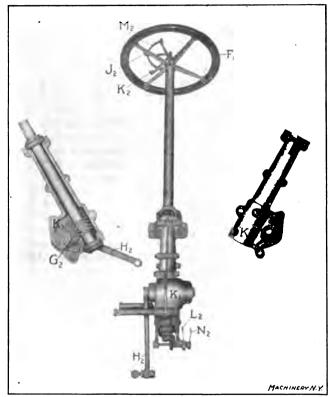


Fig. 12. The Steering Post, with its Throttle and Sparking Connections

Lever K_2 controls the throttle. This is mounted on a tube passing through the steering wheel tube and connected at its lower end by bevel gear segments with a bell crank L_2 , which is, in turn, connected by suitable rods and levers with the carburetor. Inside of the throttle lever tube is still another fixed tube on which is mounted the segment M_2 , which is thus held stationary. This is provided with notches for locating lever K_2 , and lever J_2 as well, which latter controls the timing of the spark. This is mounted on a rod which passes through the center of the system of tubes and is connected by bevel segments with lever N_2 leading to the commutator or timer V.

It may be well to recapitulate as to the functions of the levers, etc., used in the control of the machine. At the front of the radiator is the crank by which the motor is turned, for starting. By the side of it is a button connected with the carburetor, for flooding the latter at starting to obtain a rich mixture on the first stroke. On the dashboard is mounted a lever Y. for setting the automatic air valve to supply the proper amount of oxygen for starting. Beside it is a switch for throwing the ignition spark from the battery to the magneto when the machine is changed from the starting to the running condition, and vice versa. On the dashboard are also mounted the spark coils. Through the foot board project the two pedals B_1 and C_1 controlling the clutch and the operating brake respectively, as described. Hand lever C_1 and A_2 control the emergency brake and the speed changes respectively.

Two small pedals are also provided on the foot board. One of these is connected with the throttle in such a way that this may be controlled by the foot instead of by the hand if required. It is called the accelerator. By its use, when the hand throttle lever has been set to a certain point, the valve may be opened clear out to the maximum, as desired, by the foot, thus giving immediate control under varying conditions of traffic. The other pedal operates a valve which cuts out the muffler. This is occasionally done to make the exhaust audible, for finding out how the engines are working, and also for removing the back pressure, and thus giving every ounce of power possible on critical occasions.

These levers, pedals, etc., with the main and supplementary gasoline supply valves previously mentioned, give the driver complete control of a powerful, swift machine, if he has the knowledge, experience and nerve to use them properly.

General Considerations in Automobile Design

A glance at the illustrations will serve to show that the chassis of the modern high-power automobile is a rather complicated, highly specialized, and carefully designed piece of mechanism. It is within the memory of the child in kindergarten when this was not the case, and the writer has painful memories of his duties as consulting physician to one of the best of the machines in existence six years ago. At that time, the mechanism of the automobile did not have the homogeneous, appropriate structure that the successful machines of the present day possess. It had a gasoline engine, an epicyclic speed change mechanism, a jack-in-the-box differential gear, and chains leading to the rear wheels of a "horseless carriage." Over the mechanism thus described wandered a maze of levers, braces, pipes, wires, etc., supported at intervals at any part of the mechanism which happened to be in convenient reach. That, however, was before the automobile "found itself." The present development has been the result of the experience of many men with break-downs and failures, as well as of an enormous amount of theoretical work in the matter of testing of materials and analysis of conditions. These theoretical and practical results have been combined on the drawing board, and the

resulting machine has the appearance of having been designed rather than simply built.

The guiding principles in the design of the automobile relate to strength, power, lightness, durability, accessibility, and economy in operation. The matter of economy in construction and materials is about the last thing to be thought of, instead of the first, as with many other classes of machinery. The severe and often reckless usage received by one of these machines demands special treatment in the design and construction which should not ordinarily be necessary.

As an illustration of what has been said in this respect, attention may be called to the method of connecting the driving members of this machine, from the engine through to the wheels. In no place throughout the length of the chassis are keys used for this work. Reliance is everywhere placed on square joints or dovetailed flanges. The crank-shaft is connected with the driving member of the clutch by a square taper socket. The driving member of the clutch is connected by a square socket with the driving shaft of the transmission gearing. The sliding gears of this mechanism are mounted on square shafts, and the same squared drive is used for the universal joints, propeller shafts, pinion shafts, etc., through the intermediate pinions in the differential gearing at M_1 in Fig. 11, and through driving shafts T_{1} , to the driving dogs on the wheel hubs. These latter, as well as the side plates of the differential gearing, drive or are driven by the engagement of dovetailed teeth. The possibility of the shearing of keys, always present in machine parts subject to shock, is thus avoided. The makers believe themselves to be the only firm employing a complete drive of this kind.

In the matter of accessibility, a study of Figs. 6 and 7 will be found interesting. By removing the lower crank chamber casing and turning the crank-shaft to the proper position, the piston and piston rod may be removed without further trouble, and without removing cylinders or cylinder heads. The same is true of the eam- and lay-shafts. The covers provided for the clutch and transmission casings give evidence of care in providing easy means for inspection and removal of all parts likely to need attention. With a well-designed machine the man on his back under the motor car is a mere figment of the imagination.

CHAPTER II

AUTOMOBILE MANUFACTURING METHODS*

The subserviency of manufacturing considerations to considerations of strength, durability, accessibility, etc., mentioned in the preceding chapter, results in the design of parts which require special and interesting provisions for their economical production. Only a few of the operations particularly noticed in the Stevens-Duryea factory will be described here. They will serve, however, to give an idea of the general practice in such work, and will illustrate the ingenuity required for the solution of some of the problems.

Operations in the Machining of Cylinders

In Fig. 13 is shown a Beaman & Smith combined horizontal and vertical milling machine engaged in surfacing the base, exhaust and

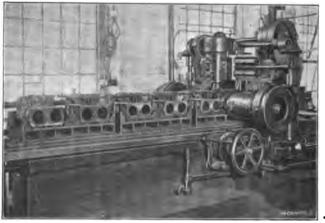


Fig. 13. Gang Milling Operation. Surfacing Cylinder Sides and Ends

inlet flanges, and the spark plug bosses of a series of cylinder castings. The work is mounted in gangs according to the most approved methods. The picture is chiefly interesting in that it shows that the builders take advantage of wholesale manufacturing methods even in the building of a \$4,000 machine. Of course, an extensive use of jigs and fixtures, besides reducing the cost of manufacture, results in a greater uniformity in the product, and thus gives the advantage of an easy renewal of worn or damaged parts.

Fig. 14 shows a Beaman & Smith boring machine with fixtures mounted on the rotating table for holding four double cylinder castings. This table can be rotated and adjusted across the bed of the machine.

[•] MACHINERY, October, 1909.

MANUFACTURING METHODS

On each side of the table, double boring heads may be fed in along the bed, one carrying roughing and the other finishing cutters, the feeds and speeds of the two heads being independent. A set of two castings being in place on the roughing end, the head is fed into them and one hole in each casting is roughed out. The work-table is

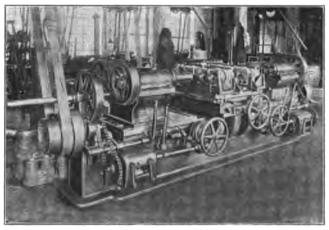


Fig. 14. Four-cylinder Boring Machine with Revolving Table

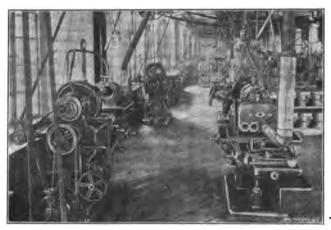


Fig. 15. Grinding the Cylinders. Note Connections for Exhausting the Dust and the Use of the Water Jacket for Cooling

then shifted, by means of the hand-wheel, against suitable stops, and the other bore of each cylinder is roughed. The table is then indexed to bring these castings to the finishing side, where the same operation is repeated, the boring being here carried to size for grinding. This rotating of the table, in turn, brings a new set of the cylinders up to be rough-bored. The process is continuous, the work being removed from the finishing side and new cylinders clamped in, while the rough boring is being completed.

For setting out the cutters in the boring bars, the construction shown in Fig. 16, at the left, is used. It will be seen that a taperheaded screw is used for forcing the blades out simultaneously. The cutters B bottom on this taper-headed screw C; fillister head screws Dserve to keep the blades forced down to their bearing on C, and so draw them firmly against the side of the slot. By this means two or more blades may be set out simultaneously for regrinding to exact size. A similar arrangement (see view at the right of Fig. 16) is used for cutters in the middle of long boring bars, except that the taper point of a screw tapped into the bar from the side, is used in place of the corresponding taper-headed screw in the first case.

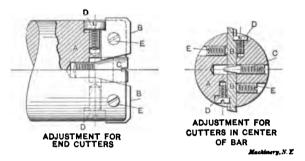


Fig. 16. Adjustment used for Boring-bar Blades

The bore of these cylinders is finished in Heald internal grinding machines especially built for this work. These are of the type in which the work remains stationary while the axis of the spindle is revolved about the center line of the bore and parallel with it, on such a diameter as to bring the outer periphery of the wheel in contact with the inner surface of the bore. The grinding spindle is fed out so as to rotate in a larger circle as the diameter of the bore is increased. An interesting feature shown in Fig. 15 is the provision of a flexible suction tube for drawing out the dust of the grinding through the inlet and exhaust ports, and also the provision made for water cooling. The water is not applied directly to the wheel, as in an ordinary external grinder, but is forced instead through the regular water jacket of the cylinder casting. This reproduces, in a measure, the conditions met with in actual use, and so tends toward accurate work.

Machines and Fixtures for Grinding and Lapping

There are other operations of interest in the grinding department besides that of finishing the bore of the cylinders. Extensive use is made of the Pratt & Whitney face grinding machine for finishing flat surfaces; in fact, it has largely displaced the vertical milling machine for this work, on parts in which the surface to be finished is clear of projections or obstructions to the sweep of the wheel. The faces of

MANUFACTURING METHODS

the various casings, covers, inlet and exhaust pipes, etc., are finished on this machine. In the past most of these parts have been made from castings on which 3-16-inch of stock had been left, in accordance with the usual practice of milling. The castings come true enough to shape, however, to permit of this finish being reduced to 1-16 of an inch, or

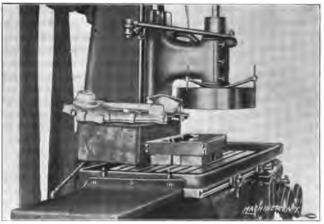


Fig. 17. The Acme of Simplicity in Fixture Making. Face Grinding the Steering Gear Casing

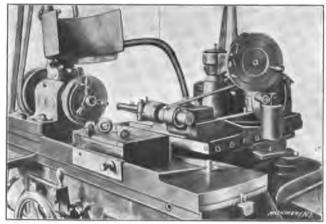
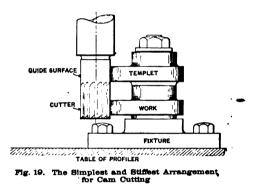



Fig. 18. Grinding the Bore of the Cams Concentric with the Cylindrical Surface

thereabout, when finished by grinding, thus materially reducing the time required. Even when removing 3-16-inch of stock the grinding machine has proved its superiority to the milling machine in the matters of cost, finish and accuracy. The foreman of the grinding department discovered that a little experimenting and investigating along the line of the grading of wheels made a tremendous difference in their durability and effectiveness in removing metal. For aluminum work a vitrified carborundum wheel of about No. 24 grain and grade H hardness is used, a soda compound being employed for cooling.

The cover side of the steering gear casing is one of the parts surfaced on the face grinder. An exceedingly simple fixture is used for holding it. This fixture, as may be seen in Fig. 17, is nothing more or less than a mass of lead melted and poured around a sample casting as a form. The work is set into the bed, thus prepared to receive it, and is supported on the table by its own weight, no fastening being necessary. The castings come uniform enough so that they fit well in this device, except at certain points around the gates and sprues, where it is found necessary to relieve the form slightly to allow for these variations. It may be mentioned that the other or main member of the steering gear casing has a boss projecting above the finished

surface of the joint, making it necessary to mill that surface. The joint is thus formed of one ground and one milled surface.

In Fig. 18 is shown the operation of grinding the holes in the cams. It is quite important that the cylindrical portion of the cam shall be exactly concentric with the cam-shaft to prevent shock or jar during the period when the valves are supposed to be closed. To make sure that this surface is concentric, the cam is located by it in the grinding fixture as shown. After the fixture has been mounted on the faceplate of the machine, the gripping surfaces of the two jaws at the right are ground out by the internal grinding attachment, to the radius of the cydindrical dwell of the cam. The cam is clamped against the surface thus prepared, by the lever, which forces a wedge across and down upon the cam, holding it firmly into the corner in both directions.

It will be seen that this car does not employ the integral cam shaft. By giving careful attention to the locating of the cams on the shaft and by being careful to obtain a strong drive fit between them, the difficulties of loosening and dislocation, which the integral construction is expected to cure, have been avoided. It is thus permitted to cut the cams in a way which gives the best chance for producing accurate shapes and smooth finish. The obvious scheme shown in the

MANUFACTURING METHODS

sketch, Fig. 19, is followed, the operation being performed on a profiling machine. The connection between the forming cam and the work is so close that the difficulties of springing and chattering, met with in the construction of the more elaborate machines required for integral cam-shafts, are avoided.

Another faceplate fixture for internal grinding is shown in Fig. 20, where it is employed for grinding the hole in the hardened nickel steel sockets used for the universal joints (see Fig. 7, Chapter I). The socket is held in the same way as when in use, by a nut screwed onto its threaded shank. It is also located in the same way, a pin in the fixture engaging a slot in the flange as shown. A limit of 0.0005

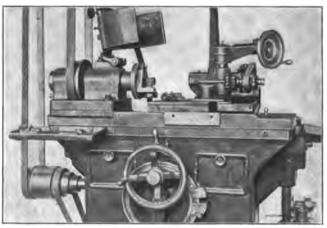


Fig. 20. Grinding the Holes in the Universal Joint Pivots

inch only is permitted in this operation, and an allowance of about 0.003 inch for the depth of the hole is the maximum, just enough being permitted for proper lubrication by the grease supply provided. This fixture is kept in place on the machine practically throughout the season. If at any time it is necessary to remove it, however, it can again be trued up by clamping a model socket in place, inserting a plug in the ground hole, and truing up the plug. These studs are held in the same way in the screw machine for roughing out the hole preparatory to grinding. The form of internal grinding spindle used should be noted. One of them is shown detached in Fig. 18, lying on the table of the machine. These spindles and their bearings are selfcontained, interchangeable and adapted to work in holes of various sizes. The clutch drive provided rotates the spindle without side pressure on the bearings.

Machining the Members of the Squared Drive

As previously mentioned, the use of keys is eliminated in the drive of the Stevens-Duryea machine, their place being taken by square sockets throughout. A tapered square drive is used to connect the

crank-shaft with the driving member of the clutch. The method of machining this is shown in Fig. 21. It has been found advisable to keep the milling machine set up for this work, continuously, owing to the difficulty of making a good taper square fit. When the machine has once been set, it is kept so throughout the season. An ordinary dividing head is used, as shown, tipped up to the angle of the taper. To the faceplate of this dividing head is clamped the fly-wheel flange of the crank-shaft. The outer end of the crank-shaft is supported in a suitable steady-rest as shown. For shorter lengths of erank, filling pieces are employed, having flanges bolted to the faceplate at one end, and to the work at the other. The use of filling pieces permits machining of the full line of crank-shafts without disturbing the adjustments.

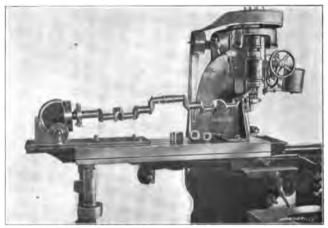


Fig. 21. A Vertical Milling Machine set up for Milling the Tapered Square Drive on the Crank-shaft

The automatic cross-feed is employed in feeding the work past the end mill in the vertical milling attachment. The table has to be so far overhung that an out-board support is provided as shown, which permits this cross-feed. This consists of a sliding guide, supported by two standards, reaching to the floor and provided with jack screw adjustments for careful leveling.

The squared holes of the drive are finished on a La Pointe broaching machine in the usual manner. The further machine shown in Fig. 23 is engaged in finishing taper square holes in the clutch driving flange, this being the member into which the taper squared end of the crank-shaft shown in Fig. 21 fits. The hole is first reamed out to a taper a little larger than the distance across the flat of the finished hole. The work is then mounted on a broaching machine on the fixture shown in place. As may be seen, the broach cuts one corner of the square hole, and one-half way up each of the two adjacent sides, into the relief formed by the taper hole. A dog is fastened to the hub of the work, and the latter is mounted on a taper plug fitting the hole, with the tail of the dog located by a pin in the faceplate of the fixture,

the latter being mounted on the faceplate of the machine at an angle as shown, to agree with the angle of the corner of the tapered sides.

One pass of the broach finishes one corner of the tapered hole. The broach is then returned to the starting position, the work is drawn off the taper plug, the dog indexed to the second pin on the faceplate, the work is put in position and the second corner broached. This operation is repeated until the four corners have been machined, and the square hole finished, the work being centered on the taper plug of the fixture throughout the whole operation. A taper square gage is shown lying on top of the broach in the engraving. This is used for testing the fit of the holes and the accuracy of the work, and a most accurate fit is made on this by no means easy operation. In the machine in the foreground, another operation is being done—that of

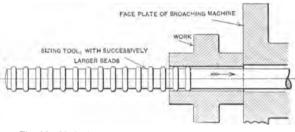


Fig. 22. Method of Sizing Phosphor-bronze in the Broaching Machine by Compression

broaching the driving slots in the driving clutch members for the multiple disks.

Sizing Round Holes in the Broaching Machine

Another unusual operation for which the broaching machine is here used, is that of sizing holes in hard phosphor-bronze bushings. This material, as any mechanic who has had any experience with it knows, is as hard on a finishing reamer as anything well can be. It is tough, elastic and slippery, and the less there is to ream the more difficult becomes the operation. Instead of reaming such holes, the tools shown in Fig. 22 are used in this shop. It will at once be seen that the operation is that of compressing the metal in the sides of the hole, until it has been enlarged to the finished size. The tool is drawn through the work. Each of the rounded rings or beads is a little larger than its predecessor, thus gradually compressing the metal the desired The finished hole springs to a size smaller by some few amount. thousandths than the diameter of the largest ring on the tool, so that the size of the latter has to be determined by experiment. This allowance varies slightly also, as may be imagined, with the thickness of the wall of metal being pressed. In such a part as that shown in Fig. 22, for instance, after drawing through the sizing tool in the broaching machine, it will be found that the hole will be somewhat larger in the large diameter of the work than in the hubs. It has been found that this difference in size can be practically avoided by passing the

sizing tool through the work three or four times. Few pieces of this kind are found, however. The operation is a rapid one as compared with reaming.

An Adaptable Lapping Machine

The machine shown in Fig. 24 was built mainly in the factory, use being made, however, of the adjustable columns of a Taylor & Fenn

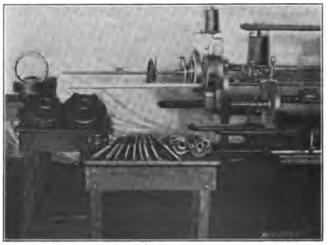


Fig. 23. A Set of Interesting Broaching Operations

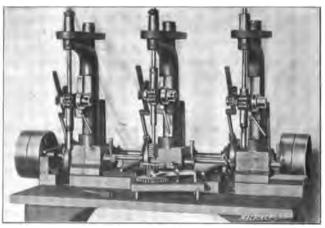


Fig. 24. Machine for Circular and Square Lapping Operations

sensitive drill press. This special machine is intended for lapping out the square holes of the drive, but is provided also with a rotary movement in addition to the vertical movement thus necessary, so as to provide for cylindrical lapping as well. The driving pulley at the right gives the reciprocating motion, while the pulley at the left rotates the spindles through the medium of the regular geared speed

MANUFACTURING METHODS

drive. The sprocket wheels shown, driven from the right, are loose on the driving shaft, and carry eccentrics whose rods are extended to form racks engaging, through a suitable clutch connection, the pinion shafts by which the spindle quills are fed up and down. It is thus possible to give a rotating and reciprocating movement to the spindles, either together or separately.

Separating Piston Rings

Another milling operation is shown in Fig. 25. It is a common practice to make piston rings on an automatic machine specially rigged up for the purpose, separating the rings from the finished casting by means of a series of parting or cutting off tools, each of

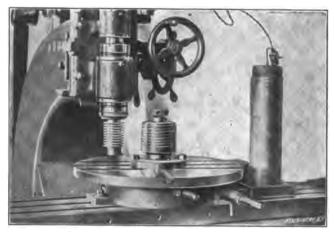


Fig. 25. Cutting out Piston Rings in the Vertical Milling Machine

which is set a little in advance of the other so that the rings will cut off in regular succession. The parting tool, however, especially when used in severing cast iron work like this, having an eccentric bore, leaves a considerable burr. In the method of severing the rings shown here, the eccentric cylinder is first finished complete on the turret machine. Then it is mounted on an internal expansion chuck on the faceplate of the cylindrical attachment of the Becker vertical milling machine, as shown. This chuck is provided with clearance grooves for the gang of saws shown in the engraving. These are sunk into the cylinder, and then the work is rapidly revolved, cutting out the eight rings at once. The saws are permanently mounted on their arbor, with separating collars ground to the proper thickness.

Examples of Fixtures Used for Drill-press Operations

The drilling department seems unusually small, when compared with the size of the whole plant, and gives the appearance of being worked at high pressure. The large output required is evidently maintained by the universal use of highly developed jigs for all

manufacturing operations. Multiple spindle drill presses are used to almost the entire exclusion of the single spindle type.

Fig. 26 is interesting as showing the development of the jig for a comparatively simple operation—that of drilling the cotter pin hole in a headed cylindrical stud. In the first apparatus employed (not shown) the stud was pushed into a hole up to its head, and held there by a lever, one piece being done at a time. This rigging had two faults. One piece at a time is held, and trouble with chips and burrs was experienced, as might be imagined. An improvement on this device is shown in the two jigs at the right, where a base with a set of V's is provided in which several of the pins may be placed, their heads being pressed up against the end of the V-block by

Fig. 26. Interesting Drill Jigs for a Simple Operation

springs. The cover being clamped down on the work, the parts are thus held for the drilling operation. This, however, was not quite easy enough to clean to suit the ideas of the tool designer, so the fixture shown at the left was used for the next tool of this kind that had to be made. Here hinged sides are used instead of springs as in the previous case. These sides fold up and press the heads of the work against the edges of the V-block. When they are turned down and the cover of the V-block is raised, the top surface of the V-block is all clear, so that the presence of chips shows inexcusable carelessness on the part of the operator. When the sides are folded up against the work and the cover is brought down, the latter, by means of wedge surfaces, presses the sides in, holding the heads of the work firmly in place and clamping them down on the V-block at the same time.

The jig shown at work in Fig. 27 is used for drilling and reaming the connecting-rod holes. It is of the "four-legged table" variety, with suitable clamps and hook bolts for taking the strain of the cut without permitting noticeable deflection and consequent inaccuracy in the

MANUFACTURING METHODS

work. A feature of the construction which is, perhaps, old enough, but probably new to many, is the provision made for both drilling and reaming with a fixed bushing, thus avoiding the use of slip bushings of different diameters. For drilling, the jig is used as shown in the engraving, with the work clamped beneath the plate and the jig bush-

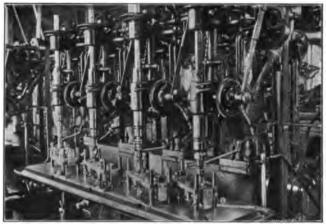


Fig. 27. Gang Drill used in Drilling and Reaming Connecting-rod Ends

Fig. 28. An Unusual Array of Automatic Chucking Machines; Thirty-one are used in this Department

ings above, guiding the drills. For reaming, the jig is reversed and a reamer is used having a pilot, which passes through the work into the jig bushing (now on the under side of the plate) by which it is guided.

Fig. 28 shows what is by long odds the largest aggregation of automatic chucking machines the writer has ever seen. There are thirty-

one of the Potter & Johnston type. Practically every turned part not made in the screw machine from the bar is produced on these machines. That old standby, the engine lathe, appears to be about the rarest machine tool in the shop.

Fig. 29 shows a section of the engine assembling room. It will be noted that machine tools are few and far between, the only ones in

Fig. 29. The Engine Assembling Department

sight being a drill press, speed lathe, and two or three grinding stands for sharpening tools. This shows that the manufacturing operations have been performed with great exactness. The question of assembly is simply one of bolting and screwing the separate parts together. The engines here shown are of the four- and six-cylinder type. The overhead trolley lines should be noted.

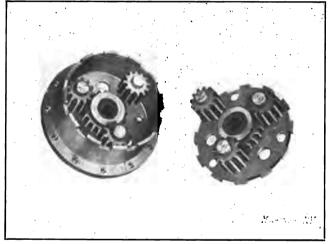
CHAPTER III

MANUFACTURING AUTOMOBILE EQUALIZING GEARS*

The present chapter deals with operations which do not present any especially unusual or spectacular features, yet they have a value derived from the fact that they are closely related to the operations which produce the bulk of the product of the machine shops of the country; for that reason they should attract the attention of mechanics interested in accurate and economical work. The operations for making a complete, compact machine unit—a differential or equalizing gear for automobile use, is described from beginning to end. The completeness of the job gives it a suggestive value that would not be



Fig. SO. The Equalizing Gear Complete, with Bevel Gear and Pinion


offered by a series of miscellaneous operations, however interesting. The value of this description, however, does not depend on its completeness alone, as many of the specific shop operations give evidence of a high degree of manufacturing ability.

Description of the Equalizing Gear

Figs. 30, 31 and 32 show assembled, dismantled and detail views, respectively, of an equalizing or differential gear, designed by Mr. A. A. Fuller, of the Providence Engineering Works, Providence, R. I. The determining feature of this design is the necessity for getting a maximum of strength and effectiveness in a minimum of space—coupled,

* MACHINERY, December, 1909.

of course, with reasonable cost of manufacture. This problem was attacked by scientific analysis. It was possible, without great difficulty, to obtain reasonable strength in the casing which contains the equalizing gearing. The crucial point was in the design of the equalizing gears themselves. In determining the proportions of the gears, curves were drawn showing the strength of the teeth for lay-outs of varying pitch and number of teeth, arranged to be contained within a casing of a given diameter. The strength and bearing area of the pivots, and the strength of the pinions as limited by the thickness of the shell between the bottom of the tooth and the bore, had also to be reckoned with. The tooth shapes were not confined to standard forms, but various pressure angles and heights of addendum were

, Fig. 31. A Small Size of Equalizing Gear Dismantled to show Construction

investigated. By comparing the curves for various possible designs, a certain pitch, number of teeth and shape of tooth for the various gears were found for each diameter of casing, so proportioned that if any of the dimensions were changed, the mechanism became weaker instead of stronger. These proportions, worked into a design satisfactory in other particulars, have been adopted as standard, and the makers feel confident that it is impossible to enclose in the same space gears of greater strength than they are offering in the design illustrated herewith. As this confidence is based on mathematical calculations and has been further tested by many months of experience, it seems reasonable that they should hold to it.

Referring particularly to Fig. 32, the mechanism is contained within case B and covers A and A'. It revolves in the rear axle gear casing on ball bearings, mounted at the ends of casings A and A', and the driving bevel gear is carried on the periphery of case B, to which it is clamped by hexagon-head screws H. The pivots E are riveted into

Digitized by GOOGLE

MAKING EQUALIZING GEARS

the flanges of covers A and A', three in one side and three in the other. These pivots carry pinions F and F' meshing with gears C and O'; the latter run in bronze bushings D and D' forced into the two covers, and are provided with broached square holes by which the floating wheel shafts are driven. As will be seen in Fig. 31 in connection with Fig. 32, gear C meshes with pinion F', which also meshes with pinion F, the latter in turn engaging gear O'. Thus, when gear O is turned, gear C' is revolved in the opposite direction, and vice versa, thus forming a spur gear differential mechanism.

Attention may be called to some of the features which make for strength in this design. It will be seen, for instance, that the gears have teeth of special shape and of very coarse pitch and few numbers of teeth. The pinions have eight teeth and the gears sixteen each. In

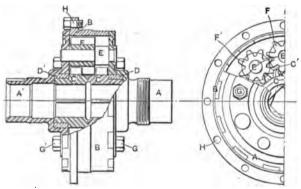


Fig. 32. Details of Construction of the 7-inch Equalizing Gear

designing the mechanism by analysis, as described, it was found that this construction was necessary for strength. Older designs of this kind, more commonly met with, in which the pinions are smaller in proportion to the gears, have repeatedly proved their weakness by breakage.

Mention should also be made of the solid way in which the parts composing the casing are fastened together. The casing B is provided with tongues locking into the grooves cut in covers A, so that the strain of transmission is taken on these interlocking members and is not taken by the bolts, dowel pins or similar parts. So far as this torsional strain is concerned, the casing is as strong as if it were made of solid metal—an impossible construction, of course. Through bolts and nuts G and G' clamp the whole casing firmly together.

The proper meshing of the bevel gears can be controlled by shifting the whole casing axially in its bearings. Nuts are mounted, for this purpose, one on the threaded diameter of A and the other at the same point on A'. By loosening one and tightening the other the teeth of the gears can be brought more closely into contact, or vice versa.

The provisions for oiling should be noted. The casing on the rear axle is provided with a bath of oil in which the bevel gears run. Three

holes cut in the exterior of B (not shown in Fig. 31, but visible in the detail views of the operations in Fig. 33, and at the right of Fig. 34, where these holes are being drilled) admit oil from this bath into the interior spur gears. Pivots E and pinions F are grooved, as are also gears C and C' permitting a flow of oil through the whole structure, kept in constant motion through the revolving of the parts.

In describing the manufacture of this device we will take up each part in turn. The manufacture of the bevel gears will not be described

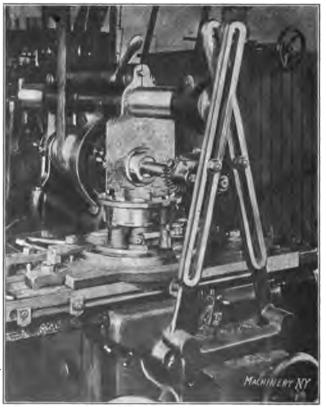


Fig. 33. Milling the Drive Tongues in the Gear Case-Second Operation

in detail, as their design is determined by the maker of the car in which the device is to be installed. The first part to be considered will be the gear case, shown at B in Fig. 32.

Operations in the Manufacture of the Gear Case

The case is made from a malleable iron casting on which the first operation, naturally, is that of snagging to remove fins, gates, etc. The second operation is performed in the Jones & Lamson flat turret lathe, of which large use is made in this shop. The casting is placed in the

. 34

MAKING EQUALIZING GEARS

chuck of the machine with the flange outward. In this operation the hole is finished to size, the flange is turned, and the projecting end is faced. The regular equipment is used for this purpose, the only special tools being gages for the inside diameter of the hole and the outside diameter of the flange.

In the third operation, performed in the same machine, the part is grasped by the finished flange in special soft chuck jaws, which have been turned in place to fit the diameter they are to receive. This gives assurance that the work done in this operation will be true, within reasonable limits, with the cuts previously taken. Regular flat turret lathe equipment is used for this operation as well, suitable gages of

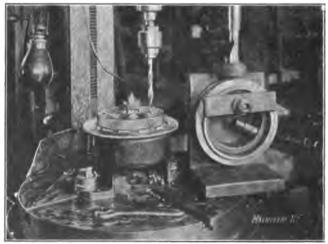


Fig. S4. Drilling the Three Oil Supply Holes in the Case (see Fixture at the Right), and Drilling the Bolt and Pivot Holes in the Cover

simple construction being provided. The next operation, shown at the right of Fig. 34, is drilling the three holes which admit oil to the interior of the case. This jig is of the simplest possible construction, consisting of a knee with a turned seat on which the work is placed, and an overhanging lug carrying a drill bushing. A clamp provides for holding the work, and a plug, entering a suitably located hole in the seat, provides means for indexing the second and third holes drilled, from the one previously completed. The other operation shown in this engraving will be described later on.

The tongues which interlock with the grooves in covers A and A' (see Fig. 32) have next to be milled. The fixture for doing this is shown in use in Fig. 33. It consists of a base provided with an index plate and a revolving table, by means of which the work may be indexed step by step to cut the various tongues. These are shaped by straddle mills which form the opposite sides of the tongues parallel, so that they fit into corresponding grooves milled into the covers by a straight-sided cutter. In the operation illustrated, tongues have been cut on one side

of the casing, which is located in its seat in the fixture by the interlocking of these tongues with grooves provided to receive them as shown. This assures alignment of the cuts on each edge of the case. In the first operation the uncut edge of the work is simply set down onto

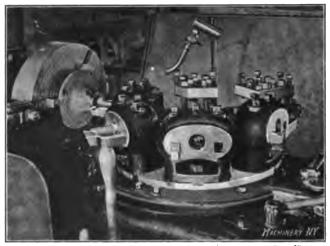


Fig. 35. The First Turret Lathe Operation in Finishing the Gear Case Oovers

Fig. 36. Second Operation on the Flat Turret Lathe using Special Jawa

this seat. It is held down by three clamps, provided with noses which enter the three holes drilled to admit oil to the interior of the mechanism.

It is interesting to see the expertness with which the operator cuts out these tongues. The automatic feed is set at the highest point

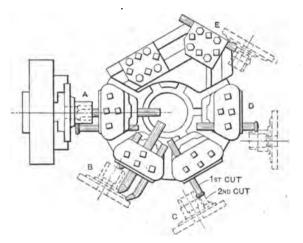
Digitized by Google

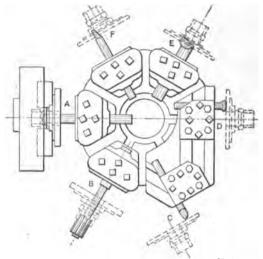
MAKING EQUALIZING GEARS

practicable when cutting the full depth. As this would be less than the maximum possible when the cutter is entering the work, he begins with a hand-feed at a considerably higher rate, throwing in the automatic feed when the cutter gets down to work. Although the machine is of modern construction, the workman feeds in all the belt can handle. The gear casing is now complete except for certain operations performed on it in assembling, as described later.

Operations on the Gear Case Cover

The gear case covers are made from machine steel drop forgings. After the snagging, the first operation is the simple one of putting a 1¹/₂-inch hole through the center of the forgings. This is a drill press operation and is merely done to remove stock, it being, of




Fig. 87. Layout of Tools on the Flat Turret Lathe for the Operation shown in Fig. 85

course, impracticable to form the hole in the forging. It is next clamped by the rim with the hub projecting, in the chuck of the flat turret lathe. This first turret lathe operation is shown in Figs. 35 and 37, the latter diagram indicating the arrangement of the tools.

The first cut is shown at A. An outside turning and boring tool, acting in conjunction, rough turns the hub and rough bores the hole. At the next station, B, three tools simultaneously face the end of the hub and the two surfaces of the fiange. Two cuts are taken with these, one for roughing and one for finishing. A third cut is taken with the same tools fed axially against the work to form the two grooves in the face of the fiange, as most plainly shown in Fig. 32. At the third station O, another turning tool removes the stock on two diameters of the hub, two cuts being taken. At D a finishing cut is taken over the smaller diameter, while at E a form tool shapes that portion of the hub extending from the threaded diameter to the fiange. This operation is completed in about 18 minutes.

37

In the second operation (see Figs. 36 and 38), the completed end of the piece is grasped in soft jaws turned to fit the surface they grasp, assuring true running of the surfaces made in the two operations. The tool at A bores out the large diameter of the hole, which is for clearance only. The reamer at B finishes the small diameter to size. The tool at C faces the flange, taking two cuts, one to rough out stock and the second to bring it to size. A flat-nosed tool at D finishes the flange. The tool at E roughs out the counterbore, while that at F finishes it. This latter tool is fed directly in, boring the diameter of the counterbore to size until the bottom is reached, when the sliding head is fed outward, so that the same tool faces the bottom of

Machinery, N.Y.

Fig. 38. Layout of Tools in the Operation shown in Fig. 36

the counterbore. The finishing is thus done by turning cuts instead of forming cuts, giving a higher degree of accuracy. Work of this kind shows the flat turret lathe to very good advantage. In the layout of tools shown in Figs. 37 and 38, there were probably no special tools of any kind required, with the exception of the form tool E, the rest being stock turning tools of the kind which form the regular equipment of the machine. It may have been necessary in some cases to give the tool a knock of the hammer on the blacksmith's anvil to bend it in one direction or the other, but nothing more would be needed. The cross sliding head and the multiple stops come into play in such operations as those at B and C in Fig. 37, and F in Fig. 38, giving each separate tool a wide range of usefulness, especially when it is so made that it can be used for both turning and facing jobs.

Of course there are all sorts of opinions about such matters, but in the question of hand versus automatic machines, this company

MAKING EQUALIZING GEARS

believes that the conditions favor the use of the hand turret lathe in its work. The simplicity of the tooling is an important factor on contract work. The management can never be sure of the long continuance of any job, so that anything approaching costliness or elaboration is prohibited. Furthermore, it is reasonably certain that one hand machine will turn out more work than one automatic, particularly when, as in this shop, there is an inducement, such as the premium system, for the workman to get the very most out of his machine. He is constantly changing his feeds and speeds as the varying diameters, depth of the cut and condition of the tool require. He is thus able to take heavier cuts without injuring his cutting edges than would be possible without constant personal supervision.

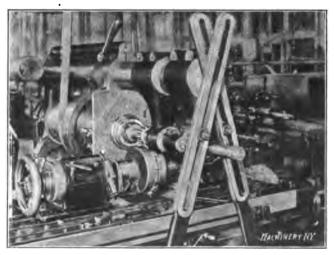


Fig. 89. Milling the Driving Slots in a Pair of Gear Case Covers

Probably three or four changes are made in each operation to one that would be made on an automatic machine. As another advantage, this greater production of the machine means a much less capital outlay per dollar of output.

It certainly does keep the operator busy to get the most out of one of these lathes. There is no possibility of his running more than one machine, on this particular work at least. Cuts are taken very rapidly and changes of feed and speed follow each other in constant succession. There is a line of demarkation at the point where the intensity of production on the part of the hand machine and the lower capital charge on machines, buildings, stock, etc., balance the higher output per man and the consequent lessened labor cost for the automatic machines. In accordance with their judgment, some shop managers will draw the line at one point and some at another. It is fortunate for the builders of both types that all men do not come to the same conclusion when reasoning from the same premises.

In Fig. 39 the milling machine is shown rigged up to cut the driving slots in a pair of the gear case covers. The two are mounted together face to face on a special iron arbor, having a driving tail cast integrally with it in place of the usual separate dog. A formed cutter is used which shapes the bottom of the slot to the true radius of the inside diameter of the casing B (see Figs. 32 and 33) assuring a tight fit. This operation and that shown in Fig. 33 have to be done to close limits with good indexing plates, only 0.001 inch variation being allowed on the thickness of the slot and the tongue. This means that in order to make a good fit the dividing must be very accurate. In the cases the writer has seen assembled, these parts drove together with a very little gentle urging from a lead hammer. Not much of

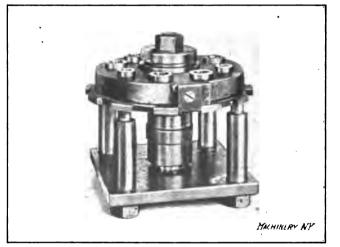


Fig. 40. Jig for Drilling the Bolt and Pivot Holes in the Gear Case Covers. Another Jig for the Same Operation is shown at the Left of Fig. 34

anything else seemed to be required. In Fig. 40 is shown a jig for drilling the bolt and pivot holes in the gear covers. It is of simple construction, the cover being supported on four legs and located by a central spindle over which it is dropped and by which it is clamped, an open side collar and nut being used as shown. The bushing plate set over the work is located to bring the holes in right relation with the slots, by a tongue entering the latter. In the next operation the covers are mounted on a special faceplate, as shown in Fig. 41. This faceplate is surfaced true in place and is provided with an expansion mandrel centered integrally with it. The gear case is slipped on over this mandrel and tightened in place by turning on a wedge screw. While thus held the countersink in the outer end of the hub, the seat for the ball bearing, and the threaded diameter are turned. The thread is also cut. This is done by the Rivett-Dock threading tool, shown in operation. These operations of countersinking, turning and threading, altogether, average about eight minutes time for each piece. When the turning was in progress, the writer timed the lathe

Digitized by Google

MAKING EQUALIZING GEARS

and found it was making 250 revolutions per minute, which gives about 150 surface feet per minute for the cutting speed.

A fixture and mill of obvious construction are used for cutting the keyway by which the inner race of the ball-bearing is made fast to the hub.

Equalizing Pinions, Studs and Gears

Studs E, Fig. 32, are made on the Gridley automatic turret lathe with the regular tools and equipment, the job being, of course, one of the everyday variety for this machine. Oil grooves are milled, and then the burrs are removed by hand. The equalizing pinions are drilled, reamed and turned on the flat turret lathe. The ends are squared accurately to length in the engine lathe.

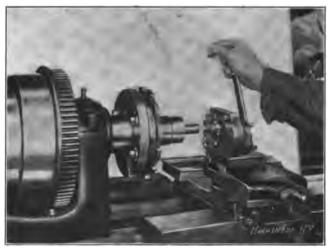


Fig. 41. Threading the Gear Case Covers with a Rivett-Dock Threading Tool

The equalizing gears are cut off to length from the bar stock (all gears and pinions are made of chrome-nickel steel) and are bored, reamed, faced and filleted at the large end in the Jones & Lamson machine. The hole is reamed accurately to size so as to furnish a guide for the broach in forming a square hole. This is done on the La Pointe machine at a single pass of the broach, which is a long one, having some 24 inches or thereabouts of cutting length. The outside surfaces of the gear are then rough turned on a square expansion chuck somewhat similar to that shown in Fig. 41 for the gear case cover, except, of course, that it is mounted on a square surface instead of a round one. In the next operation it is finish turned all over.

The spur gears and pinions are cut in a triple head indexing device which is one of the standard attachments on the Brown & Sharpe milling machine. Three cutters operate on three gangs of work simultaneously. By giving special shapes to the gears and by being very careful, both in centering the cutters and setting them to the

proper depth, first-class results have been obtained—better than are needed in fact, since normally these gears are stationary or nearly so, being in operation only when rounding corners, in the case of a defiated tire on one side, or the slipping of a wheel in the mud. After removing the burrs by file and reamer, the gears and pinions are hardened by the regular process recommended by the makers of the steel (the Carpenter Steel Co.), with such modifications as the blacksmith of the shop has found advisable.

The equalizing gear bushings D and D', Fig. 32, are cut from a bronze bar in the flat turret lathe, being turned and bored complete to size. A stack of them are placed on the Mitts & Merrill keyseater for cutting the internal oil grooves. The radial oil groove is cut on the

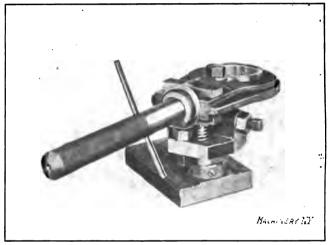


Fig. 42. A Special Fixture for Cutting Oil Grooves in the Equalizing Gear Bushing

interesting tool shown in Fig. 42. This device is a modification of the principle used in attachments for slotting screws with a saw held in the speed lathe. The knurled handle shown controls three motions. By screwing it in or out the bushing is tightened or released in the jaws by which it is held. Tripping it up or down drops the bushing away from or brings it up toward the revolving cutter, while springing it to one side brings the bushing out from under the cutter where it can be removed without interference. A wire finger locates the work with relation to the internal groove previously cut.

Assembling

The operation of assembling the parts to make the complete mechanism includes some operations worthy of notice. In Fig. 43 is a case assembled with its two covers, and dropped into a cast-iron reaming stand, where it is held from revolving by the projecting pin shown, which enters one of the three holes in its periphery. A line reamer is used, giving assurance that the two bearings in each cover will be

true with each other. After this line reaming the covers are marked, numbered and burred so that the same parts will be reassembled together.

Studs E are next riveted to the covers, three on one side and three on the other, a hand hammer being used for this purpose. The ends of the rivets are cupped to facilitate this operation. The pinions are assembled on the studs, three on each side. The bushings are pressed

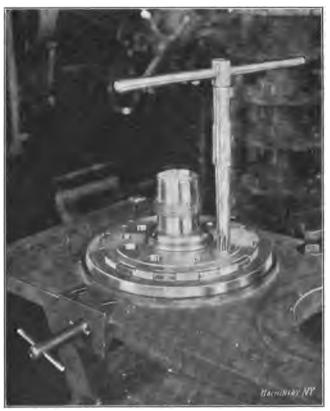


Fig. 43. Line-reaming the Pivot Holes in the Assembled Gear Cases and Covers

into the covers under the arbor press, and burred. The equalizing gears C and C' are dropped into place and the whole structure is then assembled. A square wrench inserted through the bore into the squared hole in C, permits the gears to turn until they are all engaged. Three bolts and nuts G and G' are now passed through, binding the whole solidly together.

It is of extreme importance in the quiet running of an automobile that the bevel gears run true. For this purpose the bevel gear seat on the outside diameter of the casing is not finish turned until it has been assembled as described. To do this, the mechanism is

mounted on the lathe on large centers, bearing on the countersinks in A and A'. These countersinks, being formed in the same operation with the ball bearing seats and the threads, are true with them. After this turning and facing, a jig fitting on this accurate seat is used for drilling the fiange holes through which screws H pass to fasten the bevel gear to the casing.

The gear is pressed into place in its seat by a simple contrivance which illustrates the demand for conveniences created by the prem-

Fig. 44. A Convenient Fixture for Assembling the Gears on the Gear Case

ium system. On the bench in front of the workman is a cast-iron seat (Fig. 44) in which the bevel gear is placed face downward. The complete differential mechanism is then placed over the gear in a position to be forced down into it. The workman now reaches up above his head and brings down the hand-wheel, clamping screw and clamp shown, which is suspended by a counterweight so as to move freely up and down and remain stationary in any position. Entering the screw in the nut in the base of the device and turning the handwheel, forces the casing down into the gear and thus completes the

assembling. The tap bolts are now put in and are wired through holes drilled through their heads, to prevent them from turning. This completes the making of the equalizing gear.

A Good Tapping Record

While the making of the bevel gear has not been described, it will not do to pass over one of the operations met with. This is the operation of tapping the holes by which the gear is held to the flange. These holes are 5-16 inch in diameter and 13-16 inch deep and are

Fig. 45. A Tapping Operation and Operator with a Remarkable Record— 75,000 Blind 5-16-inch Holes in Chrome-nickel Steel without breaking a Tap

blind, being tapped to a bottom and not through. The tapping is done in a Cincinnati drill press (Fig. 45), using an Errington friction chuck. Tapping in chrome-nickel steel by power is, it will be agreed, no "fool of a job." One of the difficulties met with is the tendency of the metal to seize the tap and break it when backing out.

The operator shown broke many taps in becoming familiar with his job, but since he has gotten into the swing of it, he has tapped 75,000 of these blind holes in chrome-nickel steel without breaking a tap.

The credit of this record must be divided between the man, the machine, the chuck and the tap, but there is enough to make a respectable showing for all four. The operator's increase of efficiency was obtained with practically no change in the tools or methods, being due simply to the training of his judgment in the feeling of the tap, and in the use of excellent tools. It might be said that a firm of the highest

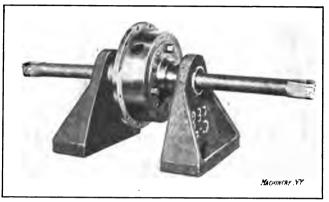


Fig. 46. A Completed Equalizing Gear Set up for Testing to Destruction

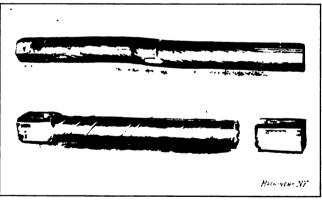


Fig. 47. Condition of Shafts Broken in Tests shown in Fig. 46; the Gears were Uninjured

reputation for accuracy and for skill in manufacturing had asked ten cents a hole for the job. This operator runs two taps in each of the twelve holes in a gear, twenty-four holes in all, in from 15 to 18 minutes.

Tests on the Finished Casings

Of course, the object that was aimed at in designing these equalizing gears for sale to manufacturers of automobiles, was to give them such strength that some other part of the machine would break first. In order to find out whether or no this result had been obtained a

MAKING EQUALIZING GEARS

number of tests were made in the laboratory of the engineering school of Brown University. In Fig. 46 the casing is shown as mounted in brackets for a torsion test, the power being applied through 1-inch, 3½ per cent nickel-steel shafts, specially treated. These failed at 20,300 inch-pounds, twisting through 800 degrees before rupture. Samples of broken shafts are shown in Fig. 47, and give some idea, in combination with the figures just given, of the excellence of the material used in these shafts. No damage of any kind was found inside the gear casing, the mechanism being unbroken and running as easily and smoothly as before.

No. 22. CALCULATION OF ELEMENTS OF MACHINE DESIGN.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. THEORY OF CRANE DESIGN.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys, etc.

No. 24. EXAMPLES OF CALCULATING DESIGNS.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. DEEP HOLE DBILLING.—Methods of Drilling; Construction of Drills. No. 26. MODERN FUNCH AND DIE CONSTRUCTION.—Construction and Use of

Sub-press Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. LOCOMOTIVE DESIGN, Part I.—Boilers, Cylinders, Pipes and Pistons. No. 28. LOCOMOTIVE DESIGN, Part II.—Stephenson Valve Motion; Theory,

Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. LOCOMOTIVE DESIGN, Part III.—Smokebox; Exhaust Pipe; Frames; Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Driving-wheels.

No. 30. LOCOMOTIVE DESIGN, Part IV.-Springs, Trucks, Cab and Tender.

No. 31. SCREW THREAD TOOLS AND GAGES.

No. 32. SCREW THREAD CUTTING .- Change Gears; Thread Tools; Kinks.

No. 33. SYSTEMS AND PRACTICE OF THE DRAFTING-ROOM.

No. 34. CARE AND REPAIR OF DYNAMOS AND MOTORS.

No. 35. TABLES AND FORMULAS FOR SHOP AND DRAFTING-ROOM.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. IRON AND STEEL .- Principles of Manufacture and Treatment.

No. 37. BEVEL GEARING.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. GRINDING AND LAPPING.—Grinding and Grinding Machines; Disk Grinders; Bursting of Emery Wheels; Kinks; Lapping Flat Work and Gages.

No. 39. FANS, VENTILATION AND HEATING .- Fans; Heaters; Shop Heating.

No. 40. FLY-WHEELS .- Their Purpose, Calculation and Design.

No. 41. JIGS AND FIXTURES, Part I.—Principles of Jig and Fixture Design; Drill and Boring Jig Bushings: Locating Points: Clamping Devices.

No. 42. JIGS AND FIXTURES, Part II.-Open and Closed Drill Jigs.

No. 43. JIGS AND FIXTURES, Part III .- Boring and Milling Fixtures.

No. 44. MACHINE BLACKSMITHING .- Systems, Tools and Machines used.

No. 45. DROP FORGING.-Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. HARDENING AND TEMPERING .--- Hardening Plants; Treating High-

Speed Steel; Hardening Gages; Case-hardening; Hardening Kinks.

No. 47. ELECTRIC OVER-HEAD CRANES.—Design and Calculation.

No. 48. FILES AND FILING.-Types of Files; Using and Making Files.

No. 49. GIRDERS FOR ELECTRIC OVERHEAD CHANES.

No. 50. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part I.

No. 51. PRINCIPLES AND PRACTICE OF ASSEMBLING MACHINE TOOLS, Part II.

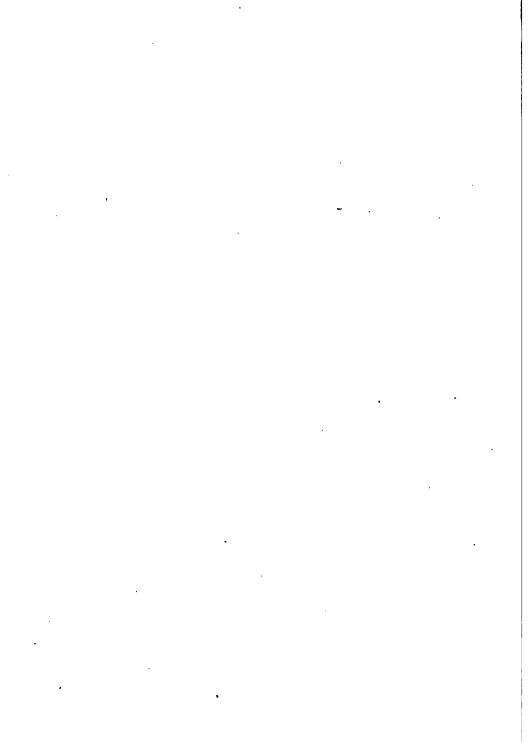
No. 52. Advanced Shop Arithmetic for the Machinist.

No. 53. Use of Logabithms, and Logabithmic Tables.

No. 54. SOLUTION OF TBIANGLES, Part I.-Methods, Rules and Examples.

No. 55. Solution of TRIANGLES, Part II.-Tables of Natural Functions.

No. 56. BALL BEARINGS .- Principles of Design and Construction.


No. 57. METAL SPINNING.-Machines, Tools and Methods Used.

No. 58. HELICAL AND ELLIPTIC SPRINGS.—Calculation and Design.

No. 59. MACHINES, TOOLS AND METHODS OF AUTOMOBILE MANUFACTURE.

NO. 60. CONSTRUCTION AND MANUFACTURE OF AUTOMOBILES.

49-55 Lafayette Street Street New York City, U.S.A.

2

•

Digitized by Google

89081501496

This book may be kept

FOURTEEN DAYS

from last date stamped below. A fine of TWO CENTS will be charged for each day the book is kept over time.

18 Mr 33		*	
2.4 06 33 27 Mr 35			
27 MA 35			
APR 171	935		
april			
SEP 4			
31 Ja'49			
	1	1	
N. Contraction			
			1

10 ¹

NTS WR

ŧ

K.F. WENDT LIBRARY UW COLLEGE OF ENGR. 215 N. RANDALL AVENUE MADISON, WI 53706
