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CHAPTER I

THE DESIGN OF BEARINGS*

The design of journals, pins, and bearings of all kinds is one of the
most important problems connected with machine construction. It is
a subject upon which we have a large amount of data, but, unfor-
tunately, they are very conflicting. The results obtained from the rules
given by different mechanical writers will be found to differ by 60
per cent or more. Many of our best modern engines have been designed
in deflance of the generally accepted rules on this subject, and many
other engines, when provided with what were thought to be very liberal
bearing surfaces have proved unsatisfactory. This confusion has
largely been the result of a misconception of the actual running con-

ditions of a bearing.
Friction of Journals

A journal should be designed of such a size and form that it will run
cool, and with practically no wear. The question both of heating and
wear is one of friction, and in order for us to understand the princi-
ples upon which the design of bearl.ngs sbould [+ bagﬁd. we must first
understand the underlying prh‘ktples’ of: trirﬁdn ‘F'rittion is defined
as that forcet acting between” two ’boales at thelr sutface of contact,
when they are pressed together, whirh "znds fc prevent their sliding
one upon the other. The energy used® m’mefebmlng this force of
friction, appears at the rubbing’ surfu2ed ad, Eéat, ‘and 1s ordinarily
dissipated by conduction through the twic bcmés’ .The force of friction,
and hence the amount of heat generated under any given circumstances,
can be greatly reduced by the introduction of an oily or greasy sub-
stance between the rubbing surfaces. The oil or grease seems to act
in the same way that a great number of minute balls would, reducing
the friction and wear, and thus preventing the overheating and conse-
quent destruction of the parts. On this account, bearings of all kinds
are always lubricated. Thus the question of journal friction involves
the further question of lubrication. .,

For the purpose of understanding as far as possible what goes on
in a bearing, and the amount and nature of the forces acting under
different conditions, several machines have been designed to investi-
gate the matter. In general they are so arranged that a journal may
be rotated at any desired speed, with a known load upon the boxes.
Suitable means are provided for measuring the force of friction, and
also the temperature of the bearing. Provided with such an apparatus,
we find that the laws of friction of lubricated journals c¢iffer very
materially from those commonly stated in the text-books as the laws
of friction. A comparison of the two will prove interesting.

* MACHINERY, December, 1906 ; January and February, 1907.

tFriction. ¢ * * Resistance to motion due to the contact of surfaces.—
Btandard Dictiomary.—Force. ®* * * Any cause that produces, stops, changes,
or tends to produce, stop, or change the motion of a body.—Standard Dictionary.
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dotted lines, which does no harm, although it is unnecessary. The best
way to oil a crank-pin is through the pin itself. In the case of over-
hung pins, a hole is drilled lengthwise of the pin to its center. A
second hole is drilled from the surface of the pin to meet the first one.
A shallow groove should now be cut in the surface of the pin, parallel
to its axis, and reaching almost to the ends of the bearing, as shown

Mackinory, N.}

. 8. of sh o1 a
Tg. Dmhpmo‘,&p, ﬂg:hc Grooving an

fn Fig. 5. No grooves should be cut in the boxes, but the edges where
they come together should be counterbored.

As much care and attention should be given to the ofl grooving as
to the size of a bearing, yet it is a matter often left to the fancy of
the mechanic who fits it. The purpose of the grooves, to distribute the
ofl evenly, should ever be kept in mind, and no groove should be cut
which does not accomplish this purpose, except it be to return waste

Hacrinary, N. Y.
Fig. 3. Development of Lower Half of Outboard Bearing

oil to a place where it may again be of use. Most commonly, bearings
have too many grooves. So far from helping the lubricants, they
generally drain the oil from where it is most needed. Use them

sparingly.
Calculating the Dimensions

The durability of the lubricating film is affected in great measure
by the character of the load that the bearing carries. When the load
is unvarying in amount and direction, as in the case of a shaft carry-
ing a heavy fly-wheel, the film is easily ruptured. In those cases
where the pressure is variable in amount and direction, as in railway
journals and crank-pins, the film is much more durable. When the
journal only rotates through a small arc, as with the wrist-pin of a
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steam engine, the circumstances are most favorable. It has been
found that when all other circumstances are exactly similar, a car
journal, where the force varies continually in amount and directionm,
will stand about twice the unit pressure that a fly-wheel journal will,
where the load is steady in amount and direction. A crank-pin, since
the load completely reverses every revolution, will stand three times,
and a wrist-pin, where the load only reverses, but does not make a
complete revolution, will stand four times the unit pressure that the
fly-wheel journal will.

The amount of pressure that commercial ofls will endure at low
speeds without breaking down varies from 500 to 1000 pounds per
square inch, where the load is steady. It is not safe, however, to
load a bearing to this extent, since it is only under favorable circum-
stances that the film will stand this pressure without rupturing. On
this account, journal bearings should not be required to stand more
than two-thirds of this pressure at slow speeds, and the pressure
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Fig. 4. Face of Cross-head Blipper

should be reduced when the speed increases. The approximate unit
pressure which a bearing will endure without seizing is as follows:
PK
= (5)

DN+K
where p is the allowable pressure in pounds per square inch of pro-
jected area, D is the diameter of the bearing in inches, N is the num-
ber of revolutions of the journal per minute, and P and K depend upon
the kind of oil, manner of lubrication, etc.

The quantity P is the maximum safe unit pressure for the given
circumstances, at a very slow speed. In ordinary cases the value of
this number will be 200 for collar thrust bearings, 400 for shaft bear-
ings, 800 for car journals, 1200 for cank-pins, and 1600 for wrist-pins.
In exceptional circumstances, these values may be increased by as
much as 50 per cent, but only when the workmanship is of the best,
the care the most skillful, the bearing readily accessible, and the ofl
of the best quality and unusually viscous. It is only in the case of
very large machinery, which will have the most expert supervision,
that such values can be safely adopted. In the case of the great units
built for the Subway power plant in New York by the Allis-Chalmers
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Co. the value of P in the formula given on page 10 for the crank-pins
was 2,000—as high a value as it is ever safe to use.

The factor K depends upon the method of oiling, the rapidity of
cooling, and the care which the journal is likely to get. It will be
found to have about the following values: Ordinary work, drop-feed
lubrication, 700; firstclass care, drop-feed lubrication, 1,000; force-
feed lubrication or ring-oiling, 1,200 to 1,600; extreme limit for perfect
lubrication and air-cooled bearings, 2,000. The value 2,000 is seldom
used, except In locomotive work where the rapid circulation of the
alr cools the journals. Higher values than this may only be used in
the case of water-cooled bearings.

Formula No. 6§ is in & convénient form for calculating journals.
In case the bearing is some form of a sliding shoe, the quantity 240 Vv
should be substituted for the quantity D N in the equation, V being
the velocity of rubbing in feet per second. There are few cases
where & unit pressure sufficient to break down the oil film is allow-

Dt

T
Maskinery, N.Y,
Fig. 5. Internally-ofied Oranks Fig. 6. Bection showing the Bend-
pin, Passages and f & Orank-pin and Consequent
- 0!1'.. d oﬂ'noqusl me ofthe Box

able. Such cases are the pins of punching and shearing machines,
pivots of swing bridges, and so on. The motion is so slow that heat-
ing cannot well result, and the effects of scoring cannot be serious.
Sometimes bearing pressures up to the safe working stress of the
material are used, but better practice is to use pressures not in excess
of 4,000 pounds per square inch.

In general, the diameter of a shaft or pin is fixed from considera-
tions of strength or stiffness. Having obtained the proper diameter,
we must next make the bearing long enough so that the unit pressure
shall not exceed the required value. This length may be found
directly by means of the equation:

w K
L=——(N+-—-) ®)
PE D
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20 Wy N :
L=——£—. (4]

PK .
where all the quantities are the same as in the preceding equations.
Having found the approximate length by the use of the above equa-
tion, the diameter of the shaft or pin may be found by any of the
standard equations given in the different works on machine design.
It is next in order to recompute the length from formula No. 6, taking
this new value if it does not differ materially from the one first as-
sumed. If it does, and especially if it is greater than the assumed
length, take the mean value of the assumed and computed lengths and
try again.

Bxamples of Calculating Dimensions for Bearings

A few examples will serve to make plain the methods of designing
bearings by means of these principles. Let us take as the first case
the collar thrust bearings on a 10-inch propeller shaft, running at 150
revolutions per minute, and with a thrust of 60,000 pounds. Assuming
that the thrust rings will be 2 inches wide, their mean diameter wili
be 12 inches. From equation No. 6 we will have for the allowable

200 X 700
bearing pressure —————————, or 66 pounds per square inch. This
12 X 150 + 700

will require a bearing of 60,000 + 56, or 1070 square inches area.
Since each ring has an area of 0.7854 (14— 10%), or about 75 square
inches, the number of rings needed will be 1070 <+ 75, or 14. In case it
was desirable to keep down the size of this bearing, the constant K
might have had values as high as 1000 instead of 700.

Next, we will take the main bearing of a horizontal engine. We
will assume that the diameter of the shaft is 15 inches, that the weight
of the shaft, fly-wheel, crank-pin, one half the connecting-rod, and any
other moving parts that may be supported by the bearings, is 120,000
pounds, and that two-thirds of this weight comes on the main bearing,
the remainder coming on the outboard bearing. The engine runs at
100 revolutions per minute. In this case, W = 80,000 pounds, P = 400
pounds per square inch, and K depends upon the care and method of
lubrication. Assuming that the bearing will be flushed with ofl by
some gravity system, and that, since the engine is large, the care will
be excellent, we will let K = 1500. This gives us for the length of
the bearing from formula No. 6:

80,000
(100

1600
+ )=26’,§ inches (about).
400 X 1500 15
It 18 to be noted that, in computing the length of this bearing, the
pressure of the steam on the piston does not enter in, since it is not
a steady pressure, like the weight of the moving parts. The only
matter to be noted in connection with the steam load is that the pro-
jected area of the main bearing of an engine shall be in excess of
the projected area of the crank-pin.
For another example we will take the case of the bearings of a
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100,000-pound hopper car, weighing 40,000 pounds, and with eight 383-
inch wheels. The journals are 514 inches diameter, and the car is to
run at 380 miles per hour. The wheels will make 307 revolutions per
minute when running at this speed, and the load on each journal will
be 140,000 =- 8, or 17,500 pounds. Although the journal will be well
lubricated by means of an oil pad, it will receive but indifferent care,
80 the value of K will be taken as 1,200. The length of the journal
will then be

L=——— 307+ —): 955 inches (about).
800 X 1,200 6.6

As a last example, we will take the case of the crank-pin of an
engine with a 20-inch steam cylinder, running at 80 revolutions per
minute, and having a maximum unbalanced steam pressure of 100
pounds per square inch. The maximum, and not the mean steam press-
ure should be taken in the case of crank- and wrist-pins. The total
steam load on the piston is 31,400 pounds. P will be taken as 1,200,
and K as 1,000. We will therefore obtain for our trial length:

20 X 31,400 X /80
L= =4.7, or, say, 4% inches.
1,200 X 1,000

In order that the deflection of the pin shall not be sufficient to de-

stroy the lubricating ilm we have

D=0.09}/ WL"*
which limits the deflection to 0.003 inch. Substituting in this equa-
tion, we have for the diameter 3.85, or say 374 inches. With this diam-
eter we will obtain the length of the bearing, by using formula No.
6, and find

17,600 ( 1,200

—— |80 + —— ) =8.85, say 9 inches.
1,200 X 1,000 3%

The mean of this value, and the one obtalned before is about 7
inches. Substituting this in the equation for the diameter, we get
53% inches. Substituting this new diameter in equation No. 6 we have
31,400 1,000
———(80 + —— } =17.1, say 7 inches.
1,200 X 1,000 651

Probably most good designers would prefer to take about half an
inch off the length of this pin, and add it to the diameter, making
it 6% X 61% inches, and this will be found to bring the ratio of the
length to the diameter nearer to one-eighth of the square root of the
number of revolutions.

31,400 1,000
L= ( 8

L=



CHAPTER II

CAUSHES OF HOT BHARINGS*

In our modern high-speed steam and gas engines, turbines and the
like, hot bearings are of more frequent occurrence than is genmerally
supposed. Very often a new plant, just put into service, has to be shut
down on this account. It not infrequently happens that the engine
which has run “hot” is one of several, identical in design and con-
struction, the bearings in the others having operated without trouble.
Apparently there is no cause for this particular engine to give trouble,
but in order to remove the difficulty, various makes of babbitt metals
and bronzes are tried, sometimes with good results, sometimes without.
Again, it occurs that a machine or engine operates at the beginning
with perfect satisfaction, but after a time one or more of the bearings

¥ig. 7. One-piece Bearing' Babbitt just Poured. Both Shell and Babbits
at the Bolidifying Temperature

begin to run “warm,” and finally “hot,” so that relining becomes neces-
sary. As a general rule it is then simply accepted as a fact that the
bearings “ran hot”; seldom does anyone think it worth while to seek
out the fundamental causes for the trouble. That there is always the
element of doubt in regard to bearings, is evidenced by the fact that
our modern engine builders usually deliver an extra set of bearings
with the engine, so that, in the event of trouble, a new set is at hand.
The following may be of some assistance towards discovering and

*MACHINERY, November, 1907,
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eliminating, in a scientific manner, and along technical and metak
lurgical lines, the real causes of hot bearings.

Investigation will show that the main reasons for hot bearings are:

1.—Shrinkage or contraction of the babbitt.

2.—Shrinkage strains set up in the babbitt metal liner by the un.
equal distribution of the babbitt metal over the shell.

3.—A lack of contact between the babbitt metal liner and the cast
iron or cast steel shell.

4.—The lubricant becomes partially deflected into the wrong place.

Shrinkage or Contraction of the Babbitt

a. Shrinkage in a diametral direction. As an illustration of this
point, one may take the simple example of an iron ball and ring. If
this ball, when cold, will just pass through an iron ring, it will not

__-Contraction ares

0*=Contraction of Irom

C= [ ¢ Babbit
Maekinery, N. Y.
Fig. 8. Same Bearing as shown in Fig. 7 Cooled Down to Normal

Temperature

do 80 when somewhat heated and expanded. After cooling down, how-
ever, it will again pass through the ring. A similar action takes place
in a bearing. .

In Fig. 7 of the accompanying illustrations the babbitt liner may
be considered to have been just poured in, and the metal to be still
liquid. At the exact solidifying point the babbitt will have filled all
the interstices and be in good contact with the cast iron or cast steel
shell, provided the babbitt itself has sufficlent fluidity to enable it to
penerate the smallest spaces. From this solidifying point om, the
babbitt will contract according to its coeficient of contraction. Now,
if the coeflicient of contraction of the babbitt were the same as that of
the material out of which the shell is made (usually cast iron or cast
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steel), and provided that the shell had acquired the same temperature
as the babbitt, the shell and the babbitt liner would them contract
equally, and a fairly good contact would resuilt, and there would be
nothing to set up counter strains during shrinkage. But, as the co-
eficient of contraction of almost all babbitt metals is approximately
two or three times higher than that of cast iron or cast steel, a shrink-

wisible shrinkage

[
¥
! ]

Mu-r,. L2 O

Fig. 0. Babbitt nummz:: gg;lec-:sﬂod Grooves or other
age or loosening of the babbitt liner from the shell must absolutely
take place after the solidfying point of the babbitt is reached. Fig. 8
shows this contraction as it would appear if magnified. The fact that
most bearings are “split” does not, of course, change this result. If
the babbitt is secured in the shell by means of dove-tailed grooves, or
other ancnoring devices, so that the actual visible contraction from the

/

\\\\\\\\\\\\\\\\\\\\W

Mackinery, N. ¥,

Fig. 10. Same Bearing as shown in Fig. 9, but with Dove-tailed Grooves.
Visible Shrinkage Prevented, but Shrinkage Strains Produced
shell i8 lessened or minimized, then an unavoidable consequence of
these grooves or other devices is shrinkage strains, set up while the
babbitt cools down, as explained further on.

b. S8hrinkage in an axial direction. With regard to shrinkage in the
axial direction, it may be obscrved that the same results take place.
Fig. 9 illustrates how the babbitt metal shrinks in a cast iron or cast
steel shell in the axial direction, when there is no anchoring device
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good pouring, or peening, or dove-tailed grooves and other similar
anchoring devices, the liners are in a greater or less degree loose in
the shells.

The Lubricant Penetrating the Hollow Spaces

When these loose bearings are in service, the hollow spaces between
the liner and shell gradually become impregnated with an oil film
from the lubricant employed, as shown in Fig. 12. Now, the coefli-
cient of heat-conductivity of oil is only about 1/200 of that of an
ordinary babbitt metal, or of cast iron. Therefore, the heat created
in the liner by the working friction will not be conducted away to the
shell, and thence to the engine frame, as quickly as though an {nti-
mate contact existed between shell and liner. The result is that the

|
. from Feeder

penetrating
between shéll and liner

|
-_T_.

Machinery, N. I.

Fig. 12. Penetration of Oil between Shell and Liner

bearing readily becomes hot, because the babbitt metal liner retains,
instead of throwing off, the heat. The regular working pressure also
sets up a hydraulic pressure in the oil flim, between the shell and
the liner, which tends to produce breakages and cracks in the liner, as
may sometimes be observed when removing bearings from gas en-
gines, pumping engines and the like, subject to high pressures and
shocks. A consequence of shocks is also that a liner which is some-
what loose will become distorted and “work”; this “working” pro-
duces additional friction and increased temperatures. All the facts
mentioned above tend toward the one result, viz., the increasing of -
the temperature in the bearings, even to the extent of melting down
the babbitt liner.

From various tests which have been made, the results of one may be
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given here. A bearing with a perfect contact between liner and shell
was tested under a constant lcad of 400 pouads per square inch and a
constant sliding speed of 480 feet per minute. The same bearing was
again tested under the same conditions, but with the liner not in inti-
mate contact with the shell. As the tests were necessarily made under
a slightly varying atmospheric temperature, the difference between the
actual bearing temperature and the room temperature was taken as
the basis of each, and in the former case the result was 60 degrees
F, while in the latter 85 degrees F. When such differences are ob-
tained in a testing machine, under the best operating conditions, how
much worse must be the influence of the slightest lack of contact
under usual working conditions, such as we have them in steam en-
gines, air compressors, pumps, gas engines, etc.!

Summing up the foregoing we may say that in most cases the direct
causes of hot bearings are: A lack of contact between liner and shell,
caused, first, by shrinkage and careless treatment of the babbitt, and
second, by shrinkage strains produced by an unequal distribution of
the liner masses over the shell; the formation of an isolating ofl film,
together with its consequences; cracks or breakages in thie liner pro-
duced as explained. The means of avoiding these troubles, and the
principles of a good and safe bearing construction, must consequently
be an absolutely intimate and homogeneous contact between liner and
shell; an equal distribution of the liner over the shell; and a strength-
ening of the liner against the shocks and working pressures. If
these conditions are faithfully carried out, many troubles and much
expense may be avoided.
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THRUST BEARINGS

Thrust bearings are, in general, of two kinds: step bearings and col-
lar bearings. In the former the thrust is taken by the end of the sup-
porting shaft, in the latter by projections or shoulders at some distance
from the end of the shaft. The simplest kind of a thrust bearing is the
pivot bearing, exemplified by the bearings for watch pinions and by a
lathe center taking the end thrust of a cut on a piece held between the
centers in a lathe. In general, however, the end thrust is taken by

A B
7 65 4 831 138 & 6506 78

lc Machinery.N.Y.
Pig. 138. C tion of the Schiele Curve

a large flat or nearly flat surface. When this is the case several con-
siderations present themselves which must be given due attention by
the machine designer.

. Assume that the flat end of a vertical cylindrical shaft carrying a
weight or otherwise subjected to pressure is supported by a flat sur-
face. Then, if tl}e shaft rotates, the velocities of points on its end
surface at differédnt radial distances from its axis, will vary. The
velocities of the points near the outside will be, in comparison, very
high, while the velocity of a point near the center will be low. On
account of this variation in velocity, the wear on the end surface of the
shaft and the thrust surface of the bearing will be considerably un-
even. If the parts are well fitted together when new, so that a uni-
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bearing refused to take the oil, and could not be made to run cool,
and after several trials the best results which could be obtained led
to the selzure of the brass under a load of only 200 pounds per square
inch. These experiments proved clearly the futility of attempting to
fntroduce the lubricant at that part of the bearing. A pad placed in
a box full of oil was therefore fixed below the journal, so as to be
always in contact with it when revolving. A pressure of 550 pounds
per square inch could then be carried without seizing, or very nearly
the same load as in the case of oil-bath lubrication.

Results of Tower's Experiments

One important result was to show that friction is nearly constant
under all loads within ordinary limits, and that it does not increase
in direct proportion to the load according to the ordinary laws of
. friction. This is indicated by the result of the experiments recorded
‘below.

Variation of Friction with Pressure.—Journal, 4 inches diameter, 6
inches long. Brass, 4 inches wide. Speed, 300 revolutions — 314 feet
per minute. Temperature, 90 degrees F.

BATH OF LARD OIL

w
Preseure in pounds per square inch of bearing p= Py

X
Pressure per Coefficient of Friction Product
8q. in. =pu PXp
520 0.0013 0.676

415 0.0016 0.664

310 0.0022 0.682

206 0.0031 0.636

163 0.0041 0.627

100 0.0067 0.670
BATH OF OLIVE OIL W

Pressure in pounds per square inch of bearing p= <3

X
Pressure per Coefficient of Friction Product
8q. in. =p X »
520 0.0013 0.676

' 468 0.0016 0.702
415 0.0017 0.706
863 0.0019 0.689

310 0.0021 0.651
268 0.0025 0.645

106 0.0030 0.615

163 . 0.0044 0.673

100 0.0069 0.690

lelent of friction with bath lubrication varies inversely as
=g, or, in other words, the friction of the bearing is alto-
=mdent of the pressure upon it; the first law of friction
read: Temperature and velocity remaining constant,

nt {8 proportional to the nominal pressure, and the

‘riction s independent of the load, provided this

s 400 pounds to 600 pounds per square inch.

that the work done in ofercoming friction is



FRICTION AND LUBRICATION 27

independent of the load upon & machine, and that there is no appre-
ciable increase in the loss due to friction from no load to full load.
Under a load of 300 pounds per square inch and with a surface speed
of 300 feet per minute, Mr. Tower found the coefficlent of friction to
be 0.0016 for oil-bath lubrication, and 0.0097 for a pad.

In the next place it was found that the coefficient of friction is in-
versely proportional to the temperature, other conditions remaining
the same, as shown below.

Variation of Friction with Temperature.—Journal, 4 inches diameter,
6 inches long. Brass, 4 inches wide. Speed, 300 revolutions = 314
feet per minute. Load, 100 pounds per square inch of nominal area.

BATH OF LARD OIL

Temperature Coefficient of Product
Degs. F. (Degs. F.—82) =t Friction=4x tX n
120 88 0.0044 0.387
110 8 0.0050 0.390
100 68 0.0058 0.394
80 68 0.0069 0.400
80 48 0.0083 0.398
70 38 0.0103 0.391
60 28 0.0130 0.364

The second law of friction should therefore be stated: Nominal
pressure and velocity remaining constant, the coeficient, and therefore
the work done against friction, is inversely proportional to the tem
perature of the bearing.

This has also been very neatly demonstrated by a recent experi-
menter, Mr. Dettmar, whose machine is electrically driven, and there-
fore the consumption of current could be very accurately measured
during a five hours’ run at constant speed and voltage. As load and
velocity remain constant throughout the test, a decrease in the loss
due to friction could only occur with a diminution in the coefficient.
The current fell off in the same ratio as the temperature increased.

The results of Tower’s experiments seem to indicate that friction
increases with the velocity, although not nearly in proportion to the
square of the velocity as observed by Dettmar. As the result of the
more exact determination possible with his machine, Dettmar found
that friction increases very nearly as the 1.5 power of the velocity.

The mean values of the coefficlent of friction for different lubricants,
and with different methods of lubrication as observed by Mr. Tower,
are given in the following table:

Variation of Friction with Different Lubricants.—Journal, 4 inches
diameter, 6 inches long. Brass, 4 inches wide. Speed, 300 revolutions
==314 feet per minute. Temperature, 90 degrees F.

Max. Safe Pressure in
Coefficient of Pounds pereq. Inch
Lubricant Friction of Nominal Area
Oliveoll ..........cc0uutn 0.00172 520
Lard ofl ... 0.00172 570
Spermoil ................ 0.00208 670
Mineral oil .............. 0.00176 625
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In this formula,

d —=diameter of shaft in inches,

u = coefficient of friction (0.15 on an average),

W=1load on the bearing in pounds. .

This formula holds true when there is plenty of oil, so long as the
speed is small. If we take as an example the case of the spindle for
8 10-inch lathe, running slowly, with a weight of 3000 pounds carried
by the front bearing, which is 3% inches in diameter, then the friction
work per revolution is °

* X 3.6 X 0.16 X 3000

12
If a cut were 1/4 inch X 1/16 inch on soft steel, the cutting force
would be, say, 3500 pounds, and on a 20-inch face-plate diameter the
work spent in cutting per revolution would be

==412 foot-pounds per revolution.

20 »
3600 X —z =18,300 foot-pounds.
1

The work lost in friction by the journal is therefore 2.26 per cent
of the useful work. A similar calculation for a 48-inch lathe would
show a loss of about 10 per cent. These great frictional losses con-
stantly occur with lathe spindles or other rotating shafts, revolving
slowly, even when abundantly fed with oil, and indicate the necessity
for using measures to preserve a separating film of oil between the
shaft and bearing, and not to allow them to run in metallic contact.
This 1s more difficult to accomplish at slow than at high speeds.

Automatic Lubrication

The following rules for supplying bearings with oil will give the
best results in practice: If the oil is fed in by the ordinary cup and
syphon, or by a ring or centrifugal method of supply, it should be
made to flow onto the journal at the place where the pressure is least.
The oil should therefore be fed from a point situated in the top rear
quadrant of the bearing when the journal is loaded by gravity only,
and the point should be further back the slower the speed. This
applies, then, especially to the large lathes. If the loading of the
journal is principally due to cutting force acting upward upon it, the
feed should be placed in the bottom front quadrant, and nearer the
front, the slower the speed of rotation. This meets the case of the
smaller sized lathes.

The compromise ordinarily effected to enable the lubricant to enter,
whatever may be the direction of the loading, is the simple one of
fitting the oll cup on the top of the bearing. This seems almost the
only thing to do in the case of automatic lubrication, but it is the
correct position only when the resultant force upon the journal, due
to gravity and cutting force, etc., acts nearly horizontally and from
front to rear.

Forced Lubrication

When the lubricant is supplied by mechanical means at a fixed rate
and at any required pressure, it must be fed in at the points of greatest
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oil pressure in the bearing. For large lathes, where gravity is more
important, the region of greatest pressure lies in the rear bottom
quadrant. For small lathes, on the other hand, in which the force on
the spindle acts upward, owing to the cutting force being relatively
greater, the maximum oil pressures occur in the front top quadrant.
To meet all contingencies, it would appear on the whole best, in the
case of forced lubrication, either to force the oil in at the back of the
bearing, well below the center, or preferably to fit three alternative
branches from the oil pressure supply pipe to the back, top, and front,
any one of which may be turned on at will to suit the conditions of
working.

Frictional Resistance Due to Viscosity

In describing the phenomena occurring when a journal rotates in
a bearing, we have, so far, not alluded to the nature or magnitude of
the frictional resistance experienced when there is an abundant supply
of lubricant completely separating the former from the latter, and
preventing any metal-to-metal contact. It is frequently stated that
“there is no friction without abrasion,” or, in other words, that unless
two metals rub against each other there can be no resistance due to
relative motion. This, however, is not the case. When a film of lubrl
cant 18 interposed between two metallic surfaces there is a resistance
to relative motion of these surfaces due to the shearing or transverse
distortion of the ofl film.

This resistance does not depend on the load. It is governed only
by the area of viscous fluid to be sheared and the viscosity of the oil,
1. e., the kind of oil and its temperature (with which the viscosity
greatly alters), and it also gets greater the smaller the thickness ot
the flim, so that if the shaft is a close fit within its bearing the resist-
ance to motion will be greater than if the fit is an easy one.

There are very few cases in engineering practice where a journal
rotates with a uniform thickness of oil around it, and it is only at
very high speeds that this takes place. At moderate and low speeds
the shaft moves to one side an amount depending on the speed of the
load, the eccentricity for any given load becoming less the greater the
speed. We have already sald that the frictional resistance depends
on the thickness of the oil film. Experiments have shown, however,
that the thickening of the film on one side of the shaft is more than
counteracfed by the thinning of the film on the other, so that, in gen-
-ral, the friction gets greater when the journal becomes more eccentric.

=aidering, therefore, the bearing running slowly, in which a lubri-
8 just formed a complete flim all around the shaft, it will have
ximum amount of eccentricity, and the frictional resistance
n this account, be large. As the speed increases, the eccentricity
mnishes. The friction increases with the speed, but it diminishes,
the other hand, with the eccentricity. Experiments show that at

‘st there is a decrease and then an increase, so that the coefficient
of friction attains a minimum value which depends on the circum-
~*anoes in each case. With further increase in speed, the diminishing
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hardly to be any wear at £ll. The system is extensively used in high
speed steam engines and gas engines.

Grease as a Lubricant

Grease has certaln advantages as a lubricant which make its use
advisable in many places, but it should not be expected that its lubri-
cating value is ever as good as that of the best oil, although it may
give better results in some places. For example, grease is particularly
valuable for bearings exposed to dust, for when it is forced into the
bearings with compression grease cups, the grease flows outward
around the journals, forming a perfect dust protector, both because it
seals the bearing and because the outward fiow of the grease repels
the intrusion of dust and abrasive particles. 1n such places the best
ofl would not give nearly as good results as grease, although its
lubricating quality is generally considerably greater. On the other hand,
the use of grease for lubricating machinery of a mill would not be
advisable where the power factor is important in the cost of produc-
tion. For example, some tests were made several years ago in the
lubrication of the machinery of a flour mill that was run by two water
wheels of the same size, as stated by Mr. W. F. Parish, Jr.,, in & paper
read before the North Eastern Coast Institute of Engineers and 8hip
Builders. In making the trial of grease the sectiom driven by No. 1
water wheel was fitted up first. As the grease displaced the oil it was
noticed that the speed of the mill decreased with a consequent de-
crease of production. At first no one thought that the grease was
responsible for the slowing down, but as the second part of the mill
slowly decreased in speed as the use of the grease was extended, a con-
sulting engineer was called in, who suggested that, in view of the fact
that speed had decreased with the introduction of grease, it was respon-
sible for the loss of production, Upon the resumption of the use of
oil the speed of the machinery again rose to its original figure, proving
conclusively that the lubricating value of the grease was inferior to
that of oil and that the difference was an important factor in the
mill’s production. The relative value of diffcrent oils in the lubrication
of textile mills has long been known to be important in influencing the
cost of production.
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strength of solder and, in fact, all alloys, decreases very.greatly with
the pressure or tension at the time of solidification, and in general the
cooling process, and the influence on tempering, affect the structure
snd consequently compressional resistance to a much greater extent
than is generally considered. The same properties which influence
the hardening and tempering of steel by heat, extend to a greater or
less degree to all metals and are much more pronounced in alloys
than in the simple elements.

Sufficient has been said to show the importance of the bearing metals
in machine design to-day, and to give a brief outline of the situation
in regard to the character and type of the metals available, with a
few of the properties of the same. The possible combinations of alloys
for this purpose are very great. Comparatively little progress has been
made along investigations covering all possible alloys of different ma-
terials in different proportions. The recent introduction and placing

COMPOSITION OF BRONZES
White Metal:

Hard Bronze for Piston Rings:

b e eessneas ceeees ceeeees 2
COPPOT ..vvttnrnecascersccosascscsnnncanss 78.
Bearings—Wearing Surfaces, etc.:
L0, ¢+ RN 6
Tin ..... etesecresetntateetrertaretcaanans 1
Zine .....cc000ennnn etesesaenann Ceeeeeneas %4
Naval Brass:
Copper ......cce... Cheeeeecsteeatereeaenns 6
Tin

Zinc .......... teeertecsesetretetasananann 31.
Brazing Metal:
COpPer ...ovvvvnvans e reeetaeeateeteataanns 86.
/1 TP 16
Anti-friction Metal

Copper—(best refined)

Banca tin .............

Regulus of antimony .......................
Well fluxed with borax and rosin in mixing.

Bearing Metal—(Pennsylvania Ralilroad):

ceees . 8

LeAd ....oviieicenricncncnnnsen 0
0

0

COPPET ....vvvvevennnnnns Ceeereenan. eeeaeans 77.0
Tin ......... teseesseceesananes ceetreeneaas 8.0
Lead ....covveveenennncnanaas seseccsenaanne 15.0

on the market of a large number of metals, such as calcium, etc., very
common in nature, and ultimately bound to be furnished at a very low
rate, and many of them possessing very suitable properties for bear-
ing alloys, 18 undoubtedly bound to influence the situation; and various
engineering devices, such as the steel grid, recently developed, will
undoubtedly receive attention in the immediate future with consequent
increase in efficiency in this field. The development i{s but at its incep-
tion along this line, and standardization of the alloys at hand should

>
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6 No. 12—MATHEMATICS OF MACHINE DESIGN

Table IV gives values of n for various values of k.

Example: Suppose the shafts of the two previous examples are one,
that is, a shaft subjected to a twisting moment of 120,000 inch-pounds,
and a bending moment of 65,000 inch-pounds. Required, the diameter
of the shaft, with the fiber stress at 16,000 pounds per square inch as
pefore.

=0.54.

k=
120,000
The nearest corresponding value of n is 1.17.

The diameter d for a twisting moment of 120,000 inch-pounds found
in the first example is 33 inches.

D =3.3756 X 1.17=23.94 inches, say a 4-inch shaft.

A comparison of the three examples will show the importance of con-
sidering both the bending and twisting moments upon any shaft that
is subject to both actions.

Gears, drums and other detail parts are so distrjbuted upon shafting

P P

Machinery,N.Y.
Fig. 1
as to cause combined strains, and the maximum fiber stress resulting
therefrom must be determined. A simple case is that of two gears
between bearings, Fig. 1, the large and small gear respectively carry-
ing loads P and p, the loads acting in the same direction. Connect P

and p by a line cutting the axis at b. .
Since the shaft must be in equilibrium, we have p X da=P X ec. and
P ec
P da
By the law of similar triangles,
ec ebd
da bd
and substituting we have,
1) eb
P ba

and, consequently, p X bd =P X eb.
The reaction at b is then p 4+ P=W.
WAB

and the bending moment is M =
L
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The torsional moment fis,
T=p X ad.

M WAB (p+P)AB
k=—= =
T LXpXad LXpXad
Another case of combined strains is shown in Figs. 2 and 3, where
Fig. 2 shows an elevation, and Fig. 3, diagrammatical end views. In
P

Fig. 2

this example a gear under load P drives two pinions each under load
p. First consider case A where all loads are in the same direction.
Draw the bending moment diagram b-b-b for load P, also the diagram

-

me |

&

Mp
r» Machinery,N.Y.

CASE A case B

Fig. 8

a-a-a-a for loads p. It is obvious, since the loads are on opposite sides
of the bearing, that the bending moments will oppose each other, and
the shaded portion of the diagram represents the algebraic sum of
the two moment diagrams. Any ordinate of the shaded portion is the
bending moment of the corresponding point of the shaft.
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In case B the loads are not in the same direction. To find the
moment at any given point on the shaft it is necessary to lay off sep-
arately, in the direction of each force, the bending moment ordinate
for that force, as MP—-¢eb, and Mp — ba. and take ihe resultant MR
as the bending moment at the given point. This method may be
extended to all forms of loading, as illustrated in the following ex-
amples:

Erample: A shaft, Fig. 4, carrying a gear loaded to 2,140 pounds
tooth load drives two pinions, each under 1,925 pounds tooth load.
Required, the size of the shaft suitable for the given dimensions, the
fiber stress being 9,000 pounds per square inch.

g
o7

Machinery,N.Y.
Fig. 4
7=1,925 X 3.6 =6,930 inch-pounds,
Mp=1,925 X 4="1,700 inch-pounds,
2,140 X 93 X 4
MP—=-————————=—28,200 inch-pounds,
97
MR = 11,248 inch-pounds.
MR 11,248
ke=— = — =—1.6, the corresponding value of n being 1.51.
T 6,930
T 6,930
—_— =0.77
7 9,000

From Table I, of values for twisting moments, we find the nearest
constant above 0.77 is 0.842 for a 154-inch shaft. Then 1.625 X 1.51 =
2.45 inches for the required diameter of the shaft.

In all such cases as the above example, in which a shaft is sup-
ported upon charnels or other unsymmetrical supports, the bending
moment must be calculated to the center of gravity of the supporting
member.

Example: In Fig. 5 we have a drum shaft of given dimensions and
following conditions: Drum loose on shaft and bushed; weight of
drum 500 pounds; two ropes leading from drum, each under 3,750
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pounds load; weight of gear, 250 pounds; tooth load on drum gear hori-
zontal; rope loads vertical; fiber stress to be 10,000 pounds per square
inch. Resolving all loads to the heavier loaded journal we have:

6,226 X 24
———==4,980 pounds horizontal load,

30
3,750 X 17 ’
—— = 2,125 pounds, rope c,
30
3,750 X 4
———————= 500 pounds, rope d,
30
250 X 24
T: 200 poynds, weight of gear,
500
. = 2560 pounds, weight of drum,

Total = 3,076 pounds vertical load.

< 6220 L8S.

+6

- i T,—l‘s"— o .4

Machinery,N.YT.
Fig. 6

The resultant of the horizontal and vertical loads on A is 5,852 pounds.

Then M =5,852 X 4.6 = 26,919 inch-pounds.

M 26919 :
=2.69

7 10,000

In Table II, of values from simple bending moments, the nearest
constant is 2.7 for a 3-inch shaft.

Fig. 6 shows a common arrangement of drum and gear, in which a
is the center of gravity of the rope loads P. Where there are two
ropes on the drum, the position of a is constant, while for one rope
the position of a varies along the drum, and for the latter case several
golutions should be made with varying positions of a. The load is sup-
ported upon three points, the journals A and B and the gear teeth at
C. The load P puts a downward load upon each journal A and B, and
1s divided proportionally between them. In the figure a is central, so
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the loads upon A and B are equal, and are P/2; the upward load p at
C is divided proportionally between A and B; thus we have:

cm
Load at A —=——

upward loads.
Ccn

Load at B—=——
L J

P
Loads at A and B——, downward loads.
2

The algebraic sum of the two loads upon both journals gives the
amount and direction of the resultant load on the journal. Draw BC,
and produce Ca to cut AB at d. We thus represent the load P as

N Machin: Y.
——m———-—-——jle—n- achinzryN.T.

1
Fig. 6

eccentrically supported upon a beam BC, at an arm ab, and prevented
from rotating about BC as an axis by the reaction of journal A acting
at an arm bc. We thus have

} Pxabd
Load at A = ——— = W, upward load.
be
(P+W)BD
LoadatC —= ——————
BC downward loads.
(P+W)CDd
f.oad at B — ——8M
BC

The condition of loading at journal A is seen from the position of
point d, which, lying beyond B as in the figure, indicates an upward
load at A, lying on B indicates no load at A. and lying between A and
B indicates a downward load at A. the weight of the drum and gear
being neglected.

Fig. 7 shows the same arrangement with the pinion on the opposite
side from a. and this case is analogous to that shown in Fig. 1.



MACHINERY SHAFTING 11
A shaft requiring special investigation in certain classes of ma-

chines, as cranes, turntables and other revolving machines; is that
effecting the slewing or turning in a horizontal plane.

Fig. 8 repre-
sents the diagram of a common slewing mechanism for a crane, in
which

A —the center pin, column or mast,

—_—m—— ——— Machinery,N.¥.
- e

Fig. 7
B =a large circular rack, concentric with A.

C=a=a pinion mounted upon a vertical shaft, and meshing with the
rack B,

W =the load in pounds,

D 3

Machinery,N. Y.
Fig. 8

R =the radius of the boom in feet,

r=the radius of the circle described by the slewing shaft,
a=the radius of the pinion C,

n =the number of revolutions p'er minute of the crane,
2w Rn
Y =the velocity of the load W in feet per second =

60
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V*=10.01 R* n?,

B =space in feet in which full velocity is to be obtained,
F ={force in pounds acquired by the load W,

F,="{orce in pounds on the slewing shaft,

g = acceleration — 32.2.

wv:
Energy = =FS8
29
Then,
wv w v
- F= = (2)
298 64.4 8
2xR

Assuming § — one-quarter of a turn, — = 1.57 R, and substi-

tuting the values of 8 and V* in (2) we have,
F =0.0001 R W n?
Now
FR 0.0001 R* W n*
F,= = .
r+a r4+a
The twisting moment on the slewing shaft then is
0.0001 R°*Wn*a
r—=Fa—=———— (&3]
r+a

-
Substituting in (3) the value — d'f for 7. and assuming f=10,000
16

pounds per square inch, we have

n 0.0001 R* W n*a
—_f
16 r4+a
0.00000005 R* W n*a
d =
r+a
3 R*n?
d= 0.00000005 Wa
r+a
R*n?
If we assume 0.00000005 — =—nh. we may write the last formula
r+a
d= 7 Wa 4)
RI
Table III gives values of h for various values of the ratio
r+a

and n., assuming f=10,000 pounds per square inch. For f=12,000,
multiply the values by 0.833, and for f=16,000, multiply by 0.625.

The pinion C may be either overhung, or mounted between bearings,
as shown respectively in Fig. 9 and Fig. 10. The values of k are as
follows:
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Overhung Shaft, Fig. 9
The bending moment
0.0001 R*Wn*L

r+a

M=F,L=

and the twisting moment
0.0001 R* W n‘a

T=
r+a
and
M L
k==
T a

Shaft between Bearings, Fig. 10

The bending moment
F,L 0.000lR*Wn*L
) D ——
2 2(r+a)

<l

F1

—
1
1

Fig. © Fig. 10

and the twisting moment
0.0001 R* W n*a

r+a
and
M L
k=—=—
T 2a

In taking the values of W and R, not only the load and the radius
of the boom must be considered, but also the weight and radius of
such heavy parts of the machinery as may revolve with the crane, in
each case resolving the turning moment of such parts about the center
pin or mast, to the radius R.

Ezample: Fig. 11 represents a steam crane, the letters correspond-
mg to those of Fig. 8, while the dimensions and weights given are
those of a particular crane having a capacity of ten tons at a radius
of sixteen feet, the pinion C meshing into an internal spur rack in the
foundation and being driven by bevel gears as shown. Required, the
diameter of the vertical shaft, f being 12,000 pounds per square inch.
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as a lubricant, a very satisfactory bearing, well within the limits of
good performance as regards heating.
Let d =the diameter of the shaft,
I =the length of the journal,
a =the projected area, —= d X 1.
W = total pounds pressure on journal, -
R.P.M.=revolutions per minute of the shaft,
Then the pressure per square inch is,

w w v
—_—— = 80 pounds; d=—";
a dXxli 801
The surface speed, in feet, is,
rd X R.P.M. 12 X 350 1337
—_———=350; . d= =
12 » X RP.M. R.P.M.

Fig. 11

Equating these two values of d we have,

w 1337 W X R.P.M.
807 R.PM. T 106,960
and rounding off the constant to a more convenient figure, we have
W X R.P.M.
=
100,000

Cases will arise, especially with heavily loaded slow running shafts,
in which this rule gives a bearing altogether too short for practice,
sometimes not allowing room for the stud bosses on the cap, and also
having too high a bearing value, which should. be kept below 1,000
pounds per square inch. For shafts running about 80 R.P.M. or faster,
the above rule gives excellent bearings, while for slower running
shafts an investigation of the bearing value as well as the above rule
at once determines the limiting length of the journal.
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efficiency for the forward movement, which will automatically sustain
the load when the power is removed.

Rigidity of Ropes
When considering the efficiency of the different classes of mechanism
combined to form a hoisting machine it will be seen that the resistance
of ropes to bending around sheaves and drums enters largely into the
equations for the efficiency of these parts. Any rope offers resistance,
by reason of its rigidity, when wound onto a sheave or drum, while by

e
T Fig.16 T4T,
P .
1
M
t Q=L+,
a
Fig. 17. Fig. 18.

L

Industrial Press, N.Y.

Figs. 16 to 18

reason of its elasticity, little or no resistance is offered when it unwinds
and passes off the sheave or drum.

In Fig. 16 let T — the tension in the on side of the rope about to
be wound around a sheave, and T + T, — the tension in the off side of
the rope; them 7, — the force required to bend the rope around the
sheave while under the tension 7. Let R, — the radius of the sheave,

d
and d = the dlamete_r of the rope, while » — the radius of the rope —.
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Then let R, + r = R.
The lever arm of the rope axis on the off side is,
R, 4+ r=R.
Considering the on side of the rope, the fibers on the outside are
stretched, while those on the inside are compressed, and the resultant
of these two forces with the force T will lie to the outside of the rope
axis a distance denoted by h.
Then the lever arm of the on side is
ab=R,+e+r+h=R+c+h.
The distance ¢ is given by DuBois as

k
e — — for hemp rope, and ¢ = —— for wire ropes,
T T -

where k is a constant to be determined by experiment.
The condition for equilibrium is then for wire ropes

kKR Th
T(R+——+M=(T+T)Ror =k +——.
T

Experiment gives this formula the form,

009 T

T,=—=1.08 + for wire ropes,

100 4+ 0.22T
T,———————for tarred hemp rope,

R

44+0065T

T,— ——— for untarred hemp rope,
R

where T and T, are expressed in pounds and R in inches. (DuBois.)

The efficiency of the rope, neglecting the journal triction of the
sheave, is

T
e =——-:

T+ T,

Erample: A one-inch wire rope under 20,000 pounds tension is
wound over a 15-inch sheave. Neglecting the journal friction of the
sheave, what force (T 4+ T,) will be required to raise the load of 20,000

pounds?
Here T = 20,000.
R, =17.5.
R =8.
0.09 X 20,000
then, 7', =—=1.08 + ——————— == 226.0% pounds,
8

and T 4+ T, =20.226.08 ppunds.
The efficiency in this case is

T 20,000
=0.989.

0=

T+ T, 20,226.08

Table V gives the efficiency of plough steel wire ropes when strained
to their full working capacity, and wound over sheaves or upon drums
of the smallest diameter that should ever be used with each size of
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runs including only those directly connected to the movable block.
In Fig. 21, t;—the tension in the last run of rope, and as shown

before, t,— kt,— k't =—the tension in the power end of the rope.

'Q=L+T|
t
"
Fig..19. .":'
1
it
'
B
Fig.21
Fig. 20. Q
N
Industrial Press, M. Y.
Figs. 19 to 31
In general, then for n runs of rope, the tension in the power end =
(14)

ko t, or
P—=kn~t

The harmful resistances may be considered as added to the load,
which then becomes equal to the sum of the tensions in the several

ropes connected to the movable block, and we have
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the ratio of the gears a-b and b-c is 1 to 4 in each case, and the diam-
eter of the drum is 24 inches; the force or pull in the rope wound
around the drum is
120 X 16 X 4 X 4
I —=———————=—2,560 pounds.
12
Fig. 22 shows the crane as having four runs of rope, which gives
the load
Q@ =2,5660 X 4=10,240 pounds.
The actual load L that can be raised by four men working this
crane would be, assuming the eficiency as 72 per cent,
L =10,240 X 0.72=1,372 pounds, or about 314 tons.

Conversely: A load of 314 tons is to be raised by such a crane. We
have the force or pull in the rope

7,000
T=— =1,760 pounds.
"Then the power P required is
1,760 X 12
P———— =282 pounds, nearly.
4xX4%x16

The coefficient of resistance is 1.38, and we have the actual force
Tequired on the crank F as

P =282 X 1.38 =113 pounds, nearly,
which would be fair work for four men.
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8 No. 13—BLANKING DIES

scribe an inside line at a distance from the outside line equal to one-
half the diameter of the holes to be drilled, then space off, and spot.
In spacing off, do not use dividers, but use a double prick punch.
Using a pair of dividers requires too much time, besides the points
get dull quickly enough without using them when it is unnecessary.
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Fig. 6. Gage Plates

After the centers have been lightly spotted with the double prick punch,
use an ordinary prick punch and make the spots a trifie deeper, so
that the drill will more easily take hold.

In drilling, use the method shown in Figs. 2 and 3, for in this way
the holes can be drilled closer together, thereby making it easier to
get rid of the surplus stock and saving the time of broaching out the
webs. The die blank should be slightly tipped by placing a narrow
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METHOD OF MAKING DIES 1

in case it is broken. The pilot pin is also made of drill rod, and can
be very easily and quickly taken out when the punch requires sharp-
ening.

The stripper and gage plates for this die are shown in Figs. 4 and 5.
They are fastened by four 7/16 cap-screws to the die bed, used for
holding the die in position when in use, and form, without doubt, not
only the best, but by far the cheapest of the various methods employed
for this purpose. While this method cannot be used on all kinds of
blanking dies, it can, however, be used with the best of results on dies
similar to the one described, and eliminates the unnecessary opera-
tion of drilling and tapping holes in the die itself to hold the stripper
and gage plates in position. Not only that, but the gage plates as
shown are used in connection with many other dies of a similar nature,
thereby doing away with the necessity of having a set of gage plates
for every die, as would otherwise be the case.

As the illustrations speak for themselves, no more explanation seems
necessary, except perhaps that the slot B shown in Fig. 4 is to allow
for an automatic finger to act as a position stop for the metal when
it is run through.
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It should be remembered that all holes in dies of this kind are lapped
or ground to size after hardening; they should be perfectly round and
have 1 degree clearance. In some shops the holes are left straight for
14 inch, and then tapered off 2 degrees.

ol
ohg
@@
oL
'@

Maciinery N. Y.
Fig. 13. Plan View of Die for Punching Eight Washers Simultaneously

An important point to bear in mind in making the punch is to have
a perfect “line-up.” It may not be generally known, but it is never-
theless a fact, that blanking tools that blank, or that pierce and blank
two or more blanks at one time, will run longer without sharpening,
cut cleaner blanks, and, in fact, give all around better results, if the
punches are a perfect *“line-up” with the die, than if they are lined up
in the so-called “near enough” way. A perfect line-up, as referred tc
in the above, is a line-up that will allow a punch that consists of two
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run through the first time. The pilot pins engaging with the pier¢
holes cause the second lot of blanks to be cut centrally with f
holes, and also to be accurately centered betwéen the portions of stc
from which the blanks have already been cut. When this die is

1 2
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o O
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\

* ehinevy, N.X.
Fig. 18. Another Example of Blanking Die

use, the metal is run through in the usual way from right to 1
until half of the required amount of blanks is cut, after which f
piercing punches for the holes are taken out and the metal is r
through again and the other half of the required amount of blar
is cut.

Bridge 3G -

5, 90000 0O0OO OO0 OO0 O

Muchruery, N.X.
Mgz, 19. Stock after having been run once through Die in Fig. 18

In laying out this die, which is done after the manner shown in F
28, the line A is used as the center line for the piercing holes numbes
1 and 2 in Fig. 18, and the line B is the center line of the blanki
part of the die. The line C is the center line that shows the cen
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36 No. 13—BLANKING DIES

The Gang Starting Device

The devices so far described serve to stop the stock when it has
passed the blanking punch. But there are many cases where two or
more operations are performed on a piece before it reaches the blank-
ing die and the usual stop-pin. The operator usually gages the proper
positions by watching the end of the stock through openings in the
stripper, but it is better to have temporary stop-pins that can be used
for that purpose. Fig. 43 shows a starting device for a gang die with
two punches. When starting a strip the button B should be pressed.
This brings into action the temporary stop 8, which locates the stock
properly for the first operation. It is then released and springs back
out of the way. The stock is then advanced to the regular stop-pin.
As many of these side stops may be used as are necessary. Not only
do they save annoyance and time, but they add to the life of the dies
by preventing the partial cuts due to the stock entering too far at the
start.
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Therefore 6, —6,— 6§ —=a constant.
Therefore the arc of contact on each pulley — 180° 4+ 26 — a con-
stant.
A, A, A, A,
Also ot —m—_ —— — —- —
a + b, K a.+ bs K
A,:=4,= K cot 6—a constant.
180° 4 26
But length of belt=—=2 A4 4 _—360"_ X (2ra,4+2=0,)

180° 4 26

=244+ ——X 27w X (a,+ D)
360°

in which, as has been shown above, all the terms are constants, there-
fore length of belt is constant.

,‘\/ ] ‘i‘ 0y - $

A\~ | v
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\ | A\

! _ A i \
|

!
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\
\

Nashinery, N.F.

Fig. 4 Fig. 6

Note: The subscript applied to the letters denotes that the letters
are used for the corresponding quantities in a special case; thus a,,
in Fig. 4, refers to a.

The radii of the various steps may be determined graphically by the
following diagram (Fig. 6):

Draw a horizontal line from 4, and also draw AC making an angle
of 45 degrees with it. On this line lay off AS equal to the distance
between the cone centers, using any scale most convenient, bearing
in mind, however, that the scale adopted now must be used con-
sistently throughout the diagram. At S erect the perpendicular 787"
10 the line ASC. From some convenient point on AC, as D, drop a
vertical equal to some known radius of the cone a., as DE. and then
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Let R=AK (Fig. 7).
When =0, R=E X 1.11815172.
0=15°, R=EFE X 1.11806842.
0=230°, R=EF X 1.11798671.
0—45°, R=UF X 1.11803397.
The value used for R in the diagram is E X 1.11803397; so the maxi-
mum error of R occurs when §=0, and is equal to E X 0.00011775,

Neckinery, N.T.

Fig. 7
which is much more accurate than the work of the most careful drafts-
man. Dr. Burmester gives values of R up to §=290°, but as it is evi-
dent from Fig. 8 that it would be practically impossible to have a value
of 6 greater than 45°, the writer has omitted the other values.

Fig. 8

In order to make the use of the diagram perfectly clear, let us solve

the following problems:
Problem 1. Fig. 9
Given:

Distance between centers of cones =3’ 4”.



CONE PULLEY RADII 1

Diameters of driving cone, 4”, 8”7, 14, 20”.
Diameters of driven cone, X, X, 14”, X.
Required:
All diameters of driven cone.
Lay out the diagram and determine the point M as previously
directed. Now the radii of driving cone may be laid off as abscissas or
ordinates, whichever happens to be the more convenient, as the results

Fig. 8. Solution of Cone Pulley Problem when Diameters of One Pulley and
Center Distance are Known

obtained will be exactly the same in either case. In this particular
problem it is evidently more convenient to lay them off as abscissas.
Then the ordinates erected at the ends of these abscissas will repre-
sent the corresponding radii of the driven cone. The problem is solved
in Fig. 9 and the following results obtained:
Results:
Diameters of driven cone, 2234”, 1934*, 14”, and 714"

This problem does not bring out all of the flne points of the diagram,

80 let us solve a more complicated one, in which the different steps ot
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the cone are to transmit given valocities
Given: Prohiem 1 Pig 10
Distance between centers of cones —13" £”.
Maximum veloeity of beit assumed) 38 feet per secomd.
R P. M. of driving cone — 248,
Required:
Driven cone to make 139, 249 404 and 33 R P. M.
The maximum beit speed will be atrained when the bell is on the
largest step of the driving cone.
Therefore
Ara « 24)
=320; %= —28%"
12 W
b Y 249}
Bat ——
9%
Now having obtained a value for & and 3, the point M om the dia-
gram may be found. Nex: draw a line from ¥ as WO. inciined so that
any horizoatal projection. as X¥. will be to the correspeading vertical
projection. ¥O. as the R P. M. of the driver are to the R P. M. of the
driven; thus,

;2. =119~

¥N R P.M of driving come

No R P. X of driven come

Also from similar triangles
¥y B AN

N6 No
But we know that
R. P. M. of driving ccoe rad. of driven cone

R P.)M. of driven come  rad of driving cone

Ther=fore ¥ N equals radius of d=ivan cone. while N"¢0/ equals radius
of driving ccone. thus making. for this case radii of driving cone verti-
cal and of driven core horizonsal. The problem is solved in Fig. 10
and the following results cbraicsd:

Reasults: .
Dia. or driving cone, 23X7, 233%™, 2037 11"
Dia. of driven cone. 11707, 1IX", 237 8%~

We have seen that the Burmester diagram is under all conditions
r.uch riore exact than is required in practice: ard a more compaet,
airapler. or quirker method of finding cone pulley radii could not be
degir=d.  An exrerienced draftsman should be able to solve a prob
lera like No. 2 above in less than 10 minutes. while to obtain the same
re<ulta by an analytical method would require as many hours. Results
6! aufficlen® arrurary can usually be obtained by making the diagram
tr, r.alf 2rale, al'hough there is no reason for reducing the scale. unless
the Al arce hetween centers is inconveniently large. and in that case
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the results do not need to be so accurate, as the belt will stand more
stretching.

Another graphical method for laying out a pair of cone pulleys is
as follows: First draw straight line A A, Fig. 11, supposed to connect
the centers of the cones to be laid out; then set off the centers of the
cones B and C on line A A (full size is best); then bisect the distance

/

/|
/ /;
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YTy |
o=

MN_ _ 240
e NO /00

/ . LN _ 240
NP 240

/ L1 2490
NQ T 400

NN _ 240
“NR T 580

Fig. 10. Solution of Cone Pulley Problem when Velocity Ratios, Maximum Belt
8peed, Oenter Distance, and R. P. M. of Driver are Known

between the centers of the cones and draw perpendicular line D E. Now
assume the size of the two cones—say the largest is 25 inches and the
smallest 3 inches diameter. Then draw a line tangent to the circles,
or the line representing the inside of the belt G¢. which will intersect
the llne D E at E, and taking the point E for a center scribe the circle
F. Then divide the circle F, commencing at the line of the belt G,
into a8 many parts as needed, of a length to suit the required apecds.
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Draw the other radiating belt lines through the point E and the divi-
sions on the circle F, extending them toward the cone B, and they
will be the inside of the other belt lines. Draw circles tangent to these

Racrnery, 8.1,
Fig. 11. 8imple Graphical Solution of Cone Pulley Problem

lines. We now have all the diameters of the rest of the steps of the
cone to match the first, and the belts will correctly fit all the steps.
This is, of course, only an approximation rule. This method was con-
tributed to the June, 1905, issue of MACHINERY by John Swanberg.
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the number of revolutions right, but they must give a perfectly even
and smooth motion from point to point or from tooth to tooth.

Fig. 3 will show clearly how such a result is obtained. It represents
the friction wheels with teeth fastened to them, the teeth, of course,
extending all the way around instead of part way as shown. These
teeth are set so as to be partly without and partly within the edges
of the two wheels, as obviously they will give better results thus
arranged than with all the projections on one wheel and all the grooves
or depressions on the other, as in Fig. 2.

Fig. 2

With the wheels fitted in this way it can be proved that the only
conditions which must be fulfilled in order that the teeth shall give
wheel B the same motion that it would have if it were driven by
frictional contact with wheel A is that a line drawn from the point O,
where the two wheels meet, to the point where the tooth curves touch,
shall be at right angles to both tooth curves at this point, whatever the

m

Fig. 8

position of the gears. For example, in Fig. 3, two of the teeth touch
at h. 1f the curves are of the right shape, a line m n, drawn through
kh and O. will be at right angles to both curves at point . This is
the law of tooth curves, and it makes no difference what the shape of
the teeth is, so far as their correct action is concerned, if this law
holds true for every successive point where the teeth come in contact.

In technical language the “friction wheels” mentioned are known
as “pitch cylinders,” and they are always represented on a gear draw-
ing by a line—usually a dash and dot line—called the “pitch line.” As

/
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teeth are generally proportioned, this line falls nearly, but not quite,
midway between the tops and bottoms of the teeth, the inequality
being due to the space left at the bottom of the teeth for clearance.
The diameter of the pitch cylinder is called the “pitch diameter.”

Involute System

We are now ready to consider the particular forms of teeth most
often used. The one that is at present most in favor is the involute
tooth, the term “involute” being the name of a curve described by the

Fig. 4

end of a cord as it is unwound from another curve. For example, to
draw an involute, wind a cord around a circular disk of any con-
venient material, and make a loop in the outer end of the cord. Lay
the disk flat on a piece of paper, and with a pencil in the loop, unwind
the string, keeping it drawn tight, and let the point of the pencil trace
a curve, which will then be an involute.

In Fig. 4 18 shown how the same principle is applied to forming
tooth curves. A and B, with centers at M and N, are two disks which
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serve the purpose of pitch cylinders. C and D are two smaller disks
fastened to the larger ones and around which a cord is stretched and
fastened at points G and H. When either disk is turned, the cord is
supposed to pull the other one around at the same speed that it would
go if moved solely by frictional contact between disks A and B. To do
this, it i8 simply necessary to have the disks C and D in the same
ratio as A and B. If A, for example, i3 half as large as B, then C
must be half as large as D.

To make room for drawing the curves, let pieces F and E be fastened
to the large and small wheels, respectively. With a pencil fixed at
point d on the cord, turn the wheels in the direction of the solid

arrow, meanwhile moving the pencil outward, and the curve dd will
be described, which will be a suitable tooth curve for the larger wheel,
and which it can be proved will answer the requirements of the gen-
eral law. Starting again with the pencil at @, and turning the wheels
in the direction of the dotted arrow, and moving the pencil outward, a
similar curve, ac, for the smaller wheel will be traced.

The circles representing the disks C and D are called ‘base circles,”
and in practice are drawn at a distance from the pitch circle of about
one-sixtieth of the pitch diameter. This brings the angle, K0d, called
the angle of obliquity, in Fig. 4, about 1414 degrees; and although it
is not by any means certain that this is the best angle, it i8 the one
commonly used.
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Cycloidal System

Take a silver dollar and roll it along the edge of a ruler, holding
the point of a pencil at the rim of the dollar, so that as the latter rolls,
the pencil will trace a curve. This curve is a cycloid. Should the
dollar be rolled on the edge of a circular disk, however, the curve
traced would be an epi-cycloid, and should it be rolled on the inside of
a hoop, it would be called a hypo-cycloid. These curves are employed
for the teeth of the cycloidal system of gears.

In Fig. 6 it is shown how the face or the outer portion of the tooth
is rolled up by the point A on the outer rolling circle, and how the
flank or inner portion is generated by point B on the inmer rolling
circle. In this case the hypo-cycloid and flank are straight lines, the
reason for this being that, as drawn, the diameter of the rolling circle

2 PITCH
24 TEETH

CYCLOIDAL

Fig. 6

is one-half the diameter of the pitch circle of the gear, and the hypo-
cycloid generated under these conditions becomes a straight line.

Comparison of the Involute and Cycloidal Systems

The involute and cycloidal systems are the only two that are used to
any extent, and in Fig. 6 a gear tooth and rack tooth of both are
shown for comparison. The involute gear tooth has the involute curve
from point a to point b on the base circle, and from b to c at the bottom
of the tooth the flank is a straight, radial line. One dificulty with the
involute system is that with the standard length of tooth the point a
will interfere when running with gears or pinions having a small
number of teeth. To avoid this, the point is rounded off a little below
the involute curve. In general appearance the tooth seems to have a
broad, strong base, and a continuous curve from a to c. A strong fea-
ture of the involute gearing is that it will run correctly even if the
distance between the centers of the wheels is not exactly right. This
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will be evident by referring to Fig. 4, where it will appear that the
relative velocities of the two wheels will be the same however far
apart they may be, and if involute teeth are used in place of the string
connection there shown, the action will be just the same. The involute
rack tooth has straight sides at an angle of 1414 degrees, with the
points rounded off.

Of the cycloidal teeth but little need be said except that they have
two distinct curves above and below the pitch line, as previously ex-
plained, and that in the rack tboth the two curves are just alike, but
reversed.

TABLE I. CUTTERS FOR INVOLUTE GBAR THETH

No. 1 will cut wheels from 135 teeth to a rack.

.« " [ “ ‘“ 55 “ ‘" 134 twth‘
e [ .« ({3 35 (1] [ 54 o
([ ({3 " ‘" 26 ‘@ “" 34 (4
[ " €« .« 21 " (1 25 "

[ (3 .« (1] 17 (13 .« 20 o
(1] [ .“ ‘" 14 “” .« 16 "
(1] " “” ‘" 12 " .“" 13 “”

o

“«

.

00 =3 O U W

Whatever system is used, it is essential that all the wheels of a
given pitch should be capable of running together. To make this possi-
ble with the involute, all the wheels must have the same angle of
obliquity; and with the cycloidal system the same size rolling or de-
scribing circle must be employed for all sizes. The circle generally
chosen is one having half the diameter of a 12-tooth pinion, which
makes the flanks of this pinion radial. In Fig. 5, iIf the diameter of
the rolling circle had been either greater or less than half the diameter

TABLE II. CUTTERS FOR CYCLOIDAL GEAR TEETH

Letter of No. of T etter of No. of

Cutter Tecth Cutter Teeth
A 12 M 27to 29
B 13 N 30to 33
(o] 14 (o} 34to 37
D 16 P 38to 42
E 16 Q 43to 49
F 17 R 50 to 59
G 18 S 60to 74
H 19 T 75to 99
I 20 U 100 to 149
J 21 to 22 v 150 to 249

K 23 to 24 w 250 or more
L 25 to 26 X Rack

of the pitch circle, the flank of the tooth would have been curved, and
in the case of the greater circle, the curve would have fallen inside of
the radial flank drawn in the figure, causing a weak, under-cut tooth.
With the smaller circle, the curve would fall outside, making a strong
tooth.
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transmitted, the rollers are liable to slip at the point of contact X,
which will not give a positive motion; that is, it will require more than
one revolution of the shaft A to produce one revolution of the shaft 4’.

Suppose, as shown in Fig. 8, that we put projections on the surface
of the roller B and cut recesses in the roller B’, making them of such
shape that the sides of the projections on roller B will slide with as
1ittle friction as possible upon the sides of the projections caused by
cutting the recesses in roller B’. Then, when shaft A is revolved, shaft

b c
¥ 20
/ | /

Mackinery,N.Y. .
g 7

A’ must also revolve. The identity of the rollers B and B’ is not lost,
for we have simply added a number of projections to one, and cut the
same number of recesses in the other, and the point of contact of the
two rollers is still at X. but in this case there is no special pressure
required to keep the rollers together as in the preceding case, nor is

there any slip, and consequently shaft A’ will make one revolution in
the same time that shaft A does.

In Fig. 9 we have changed Fig. 8 by adding projections between
recesses in roller B’, and by cutting recesses on roller B between pro-
jections, and we have the regular gear tooth. We have now no visible
part of the original rollers B and B’ left, but we have in their places
imagirary rollers, the diameters of which are the pitch diameters of
the gears. Thus we might have called our original rollers pitch rollers,
and then proceeded to put on our projections and cut our recesses,
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and divide by the pitch. This, expressed as a formula, is:
N+2

P

in which N —number of teeth; P-—diametral pitch; O =—outside diam-
eter.

Ezample—Given a gear of 20 teeth and 4 pitch, to find the outside
diameter. The number of teeth, 20, plus 2 equals 22, and 22 divided
by 4 (the pitch of the gear) equals 5%, the outside diameter of the
gear.

This formula is simply a combination of formulas (3) and (4), for
we first find the pitch diameter, and then add the addendum twice, for
it must be added on each side of the pitch diameter. The mathemati-
cal solution is as follows:

=0 (5)

N 1 1
—=D; D+—+—=0
P P P

2
O0=D+—; 0= (5)
P P
Dedendum and Clearance

The dedendum is the working depth of the tooth below the pitch
1

line, and must be equal to the addendum or —, for the pitch circles
P

of two gears are tangent (touching), so the addendum of one will give
the working depth of the other below the pitch lilne. The clearance
is the distance from the end of the dedendum to the bottom of the
space between the teeth. There is no common standard for this dis-
tance, different gear makers using different distances, yet the differ-
ence between them is very slight.

The Brown & Sharpe formula for this distance is:

0.157
F= (6)
P
in which F —=clearance; P =—diametral pitch.
The Geo. B. Grant formula is:
8
=— (49
8

in which FF= clearance; 8 —addendum.
Thickness of Tooth

The thickness of tooth and width of the space of a gear are always
equal at the pitch line, and if the circular pitch is the distance from
the center of one tooth to the center of the uext tooth measured on
the pitch line, tooth and space being equal, then the thickness of tooth
must be equal to one-half the circular pitch. or

. )il
T—=— 8)
2
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in which T =thickness of tooth at pitch line; P’ =circular pitch.
We know by formula (1) that
3.1416

P
and substituting this value for P’ in formula (8) we have:
3.1416

P =

1)

T= —
2
and this formula resolved to its simplest form is:

1.5708
T= 9
P

in which 7 —=thickness of tooth at pitch line; P — diametral pitch.

Ezample.—Given a gear 13/16 circular pitch, what is the thickness
of tooth at the pitch line? 13/16 (the circular pitch) divided by 2
gives 19/32, the thiokness of tooth at the pitch line.

Ezample.—QGiven a 6-pitch gear to find the thickness of tooth at the
pitch line. 1.5708 divided by 6 (the diametral pitch of the gear) gives
0.262, the thickness of tooth at the pitch line.

Table V gives the thickness of tooth.at the pitch line for the different
diametral pitches.

Depth of Tooth

After we get the gear blank turned up, we next want to know how
deep to run the gear cutter in order to get a perfect tooth. The work-
ing depth of the tooth we have shown to be equal to the sum of the

1 1 2
addendum and dedendum, or — 4+ —=—, and the whole depth of the
P P P

2
tooth must equal — plus the clearance.
P

2 0.157
Using the Brown & Sharpe standard, we have — 4 =
P P
2.157
W= (10)
P

in which 1= whole depth of tooth; P — diametral pitch.

Ezample.—Given a gear of 6 diametral pitch, to find the depth of
cut to be taken to get a perfect gear tooth.

Divide 2.157 by 6 (diametral pitch) and the quotient 0.359 is the
depth to be cut in the gear.

If we had the circular pitch given, to find the depth of tooth, we
could substitute in formula (10) the value of P as given in the formula
(2), and we would have

2.157

We—ro—m—
3.1416 =+ P
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If the number of teeth + 2 divided by the pitch equals the outside
diameter, then the outside diameter multiplied by the pitch must ejual
the number of teeth 4+ 2, and then the pitch must equal the number
of teeth 4+ 2 divided by the outside diameter, which, expressed as a
formula, is:

N+2
=P 14
° (14)
in which N —number of teeth in gear; O —outside diameter; P — dia-

metral pitch.

Erample—Given a gear of 36 teeth and 3 1,6-inch outside diameter;
to find the diametral pitch.

36 (the number of teeth) + 2 = 38.

38 = 31/6 = 12, the diametral pitch of the gear.

Pitch Diameter

1. Having given the outside diameter and the pitch, to find the pitch
diameter. The distance from the pitch diameter to the outside diam-

1
eter is —, as explained in formula
P

1
§=— (4)
P

and as this is to be added on each side of the center, the outside diam-
2

eter of the gear must be equal to the pitch diameter plus —. If this
P

2
is 80, then — subtracted from the outside diameter will give the pitch
P

diameter, or
2
D=0—— (15)
P
in which D = pitch diameter; O — outside diameter; P — diametral
pitch.

Erample.—Given a gear 3 1/6 inches outside diameter and 12 pitch;
To find the pitch diameter.

31/6 (the outside diameter) — 2/12 — 3 inches, the pitch diameter
of the gear.

2. Having given the outside diameter and number of teeth, to find
the pitch diameter. Multiply the outside diameter by the number of
teeth, and divide by the number of teeth plus 2.

We have shown in formula (5) that the outside diameter equals the
number of teeth + 2 divided by pitch, or

N+2

P

and in the formula (13) that pitch equals the number of teeth divided
by the pitch diameter, or

0=

(5)
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N
P=— (13)
D
Now, if the outside diameter equals the number of teeth plus 2

divided by the diametral pitch (and the diametral pitch equals the
number of teeth divided by the pitch diameter), then the outside diam-
cter must be equal to the number of teeth plus 2, divided by a fraction
with the number of teeth as numerator and the pitch diameter as de-
nominator. This is simply substituting the value of the pitch as shown
in formula (13) for the pitch in formula (5), and expressed as a for-
mula, is:

N+2

N-+D

N
Multiplying both sides of the equal sign by — we have
D

N OXN
O0X—=N+2, or ——=N+2,
D D"

and now, multiplying both sides by D, we have
OXN=(N+2)XD
and dividing both sides by N 4+ 2 we get '
OXN OXN
————=D,or D=——— (16)
N+2 N+2
in which D =pitch diameter; N = number of teeth; O = outside diam-
eter.
Erample.—Given a gear 3 1/6 inches outslde diameter and 36 teeth.
to find the pitch diameter.
3 1/6 (the outside diameter) multiplied by 36 (the number of teeth)
equals 114. 36 (the number of teeth) 4+ 2 =—=38. 114 (0 X N) divided
by 38 (N + 2) = 3 inches, the pitch diameter of the gear.

Number of Teeth

1. Having given the pitch diametér and pitch, to find the number of
teeth. Multiply the pitch diameter by the pitch, and the product will
be the number of teeth in the gear.

The diametral pitch of a gear equals the number of teeth for each
inch of pitch diameter; hence, if we multiply the pitch by the num-
ber of inches of pitch diameter we will have the number of teeth in
the gear, which, expressed as a formula, is:

N=PXD (17)
in which P = diametral pitch; D = pitch diameter.

Ezample.—Given a gear 3 inches pitch diameter and 12 diametral
pitch, to find the number of teeth. 3 (pitch diameter) multiplied by
12 (diametral pitch) — 36, the number of teeth in the gear.

2. To find the number of teeth, having given the outside diameter
and pitch. Multiply the outside diameter by the pitch and subtract
2, or

N=(0XP)—2 (18)



CHART FOR DIMENSIONS OF SPUR GRARS

No) To Find Rule Formufa
] P "7,’,7;:;" A Divide 3.1416 by circuvlar pifch p=2! ,4,’ ¢
2|Gcevlar | pivide 31416 by diametrol pitch pr2iglt
3, Igfrlg,k | Oivide number of feeth by diamefral pifch o= g—
4 Pifch Multiply nurnber of feeth by circukar pifch and o=N

Diamefer| divide the product by 3.1416 2./41/¢
s| Center | Add the number of feett in both gears ond divide c=N*
Disfance | the sumn by two firmes the diameftral pifch 2
6| cenfer | muitiply the sum of the number of feett in both - c=% 1)
Distance | gmars by circufor pifch and divide the product by 6.2832 6.2832
7| Addendum| Divide 1 by diametral pitch s-%
¢

'8 Uddendurm | Djvide circular pifeh by 3 1416 =3 ,’: 7t
9|Clearance | Divide 0.157 by diametral pifch F=2 ;;“

10 |Clearance. ] Divide circvlar pifch by 20 F= %

1 |”oh;/;%h , Divide 2.157 by diametral pifch W= Z_IF_fi

12|l Deoth | w1401y 0.6866 by circutar pitch W=06866

13 Z}"T::,?" | Divide 1.5708 by diameftral pitch A %?24

14 T:;CT’;Z ;;5 | Divide circular pitch by 2 | 7= %

15| Ovtside | Add 2 fo the number of feeth and divide the o= Nt2

Diameter | sum by diomeftral pifch P
/6 Outside Multiply the sum of the number of feeth plus 2 by 0 Nt2)i
Diamefter ; circular pifch ond divide the product by 3./4/6 3./14/1

17 ai%{;i;ra/ Divide number of feeth by pitch driomefer P= %
,8 | Cireviar | Multiply pifch diameter by 3./416 and divide pe3/4/6

Pifch | by number of feettr . N

19| Dimeter. Subtract wo times the addendum from avtsice dhameter | D= 0= 2

20| Number of | Multiply pitch diameter by diametral pitch N=PxL

21 |Number of | Muitiply pifch diameter by 3./416 and divide N=2l41e

Teeth the produvct by circular pifch [atd

22| Qut5ide | pdd two times the addendum 1 the pitch diamefer | 0= D 2

2a3l|length of | Multiply nurnber of feeth in rack by 3./4/6 and L -3.74/6

Rack divide by diarmefral pifch P
Lengthof | Multiply the nurmber of feeth in the rock by - '
241" pack circular pifeh L=NP
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As the number of teeth for the gear becomes still larger, the increas-
ing weight of the wheel may be lightened by cutting out relieving
spaces in the web, or by abandoning the web entirely, and using arms
for supporting the rim. This scheme, shown in Fig. 14, with arms of
oval section, i8 the one best adapted for small and medium sized gear

. 4
o e
| | .
' =
|
__g._.,!
Machinery N.Y.
P = diametral pitch, P’ = circular pitch,
a=1 P’ f =2.00 P=0.65 P’
b=286 P’ x = F 4 0.025 D
c=3 = 0.44 X bore
d=4 5 P’ b':b-i-é inch per foot
e=20 .25 P’ o' =0+ inch per foot

sions of Spur G with Oval Arms
blanks, and is often used on the largest work as well. It is the hand-
somest of all designs of gear wheels, when it is in harmony with the
rest of the machine to which it belongs. It requires somewhat more
metal for the same strength than do the two designs next shown. It is

e — F—i
te—g-—!
Machinery,N.Y.
metral pitch, P’ = circular pltch.
R idd g =F4 0025 D
R h = 0.44 X bore
3 b’ =0+ % inch per foot

Fig. 156. Dimensions of 8pur Gears with Ribbed Arms

very easily molded. Suitable dimensions for wheels of various sizes
made in this way, are tabulated below the illustration.

For the largest gears, made of steel, cast iron or bronze castings,
wheels with arms of 4 or H-section are largely used. Dimensions






38 No. 15—SPUR GEARING

drawing. This means that the hole is to be bored and reamed until
it will make a good push fit for a standard plug gage of the size given.
It will be noted that all the dimensions needed by the workman who
turns the blank, are appended to the figure, while those needed by the
workman who cuts the teeth are given in tabular form.

The face view of the gear on the left is needed only for showing the
number and dimensions of the arms to the pattern-maker. For pin-
ions and webbed gears it may be omitted. It is not necessary in stand-
ard gearing to show the shape of the teeth, so the side view is given

k- (Yad o

D " \ . ”
f— 258 -t — 3L 02 W TEETH—-— I aa——
[\ [T\ M\z=s
LV N W A Y
&
RACK DATA FOR CUTTING
1 WANTED - MACH. STEEL DIAMETRAL PITCH 3
FINISH ALL OVER WHOLE DEPTH OF TOOTH | 0.7190
ADDENDUM 08888
THICKNESS OF TOOTH 05236
NO. OF CUTTER 1

Machtnery,N.Y.
Pig. 18. Example of Properly Dimensioned Rack Drawing

as showing the blank before the teeth are cut. The pitch and bottom

circles are represented by broken and dotted circles, respectively. The

shape and kind of teeth (whether involute or cycloidal) is taken care

of by the cutter called for—specified by its proper number if it is invo-

lute, and by its letter if it is cycloidal.

In Fig. 18 is shown a model drawing of a rack, which is self-explana-
tory. Here, as in the previous case, the blank dimensions are shown
attached to the figure of the rack, while the cutting dimensions are
tabulated. The student may check up the dimensions given with the
rules for gears and racks, page 20, if he desires practice in such calcu-
Jations.

The expressions chordal tooth thickness and corrected addendum
given in the table in Fig. 17, are terms which are not defined in this
book. They refer to the correction of the tooth thickness and the ad-
dendum for the curvature of the pitch line—a refinement which is not
commonly practiced. Full explanation of the calculations required for
obtaining these dimensions have not been considered to be within the
scope of this book, but will be found in “Formulas in Gearing,” pub-
lished by the Brown & Sharpe Mfg. Co., Providence, R. 1. For ordi-
nary work it is sufficient to simply give the addendum and tooth thick-
ness as calculated by Rules 7, 8, 13 and 14, page 20.
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Substituting these values in the general formula and reducing, we
have for a 15-tooth cast iron spur pinion:

HP.=06P'\/V ccovvrirrnrinrinnnnn. ceeenn cereriiaeees .(1)
By a similar process, we find for a 15-tooth cast steel spur pinion:
HoP.=16 P\ /T iiiiiiiriiiinrarainecnetanannens veeeeese(2)

For a bevel pinion, let
d —=small diameter of bevel,
D =large diameter of bevel.

a 2
As — usually equals about —, we can say:
D 3

SBPAY'V 2
P—m=—— X —
33,000 3
and for a 16-tooth cast iron bevel pinion,
HP.=04P' /T eiiiiiiininiiiinaanne, S ¢ )
For a 15-tooth cast steel bevel pinion,
HP=P'\/V ........... et teetenerenreteeieaaaana, ..o (4)

We now wish to find V in terms of revolutions per minute. For a
16-tooth pinion, approximately:

15Xr.pm.XP
V—=——--—---——=1.25r.p.m. X P.
12

Substituting this value in (1) we have:
H.P.=0.6 P/ 135 rom. X P.
Squaring, H. P.2=0.36 P** (1.25 r.p.m. X P’).
Reducing, and solving for P’, we have for cast iron spur pinfon:

222HP’
N et L E TN .(5)
rpm

A similar substitution and reduction in formulas (2), (3) and (4)
gives the following:

*170.36 H. P2
For cast steel spur, P'=— e it itereeeeae R ()]
r.p.m.
T 5.0H.P3
For cast iron bevel, P = ———— i I & ]
r.p.m.
YT 0sH.P?
For cast steel bevel, P'—= i tieeee ... (8)
r.p.m.

For rapidly varying loads, or where there is much starting and stop-
ving, it is well to reduce the safe stress to two-thirds that allowed by
‘e above formulas. We then have:
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T 5H. P2
For cast iron spur, H.P. = 0.4 \/P* V; P’ =J _—.(9)
r.p.m.
' T 0.8H.P?
For cast steel spur, HP.=P*\/V; P'= _....(10)
r.p.m.
_ Y TTIL0OH.P
For cast iron bevel, HP.=0.27 P*y/V; PP=, | ——————(11)
r.p.m.
_ *T18H.P3
For cast steel bevel, HP.=0.67 P*\/V; P =, | ————(12)
r.p.m.

The fifth root can be easily determined by logarithms on the slide
rule, or from the usual tables, but the values for the common cases
are given later.

Corrections for Tooth Numbers

It now remains to determine the correction for different numbers
of teeth.

As the teeth of pinions generally range from 12 to 30, we need not
go outside these limits. Let N =number of teeth. Plotting the Lewis
values for ¥’ for this case, and determining the nearest curve, we find

that the straight line formula:
2N + 45

1,000

expresses this curve very closely, as will be seen by the following
comparative table:

No. of Y’ by Y’ from No. of ¥’ by Y’ from
Teeth, N Formula Lewis’ Tables Teeth, N Formula Lewis’ Tables
12 0.069 0.067 19 0.083 0.087
13 0.071 0.070 20 . 0.085 0.090
14 0.073 0.072 21 0.087 0.092
15 0.075 0.075 23 0.091 0.094
16 0.077 0.077 25 0.095 0.097
17 0.079 0.080 27 0.099 0.100
18 0.081 0.083 30 0.105 0.102

Theretore, for other teeth, we can multiply the horse-power given in
2N+ 45
the above formulas by ———7-:—, or more briefly by 0.027 N 40.6.

Correction for Increased Velocity
We must also correct for the increased velocity of this larger pinion,

N
i. e., multiply the result by J — or 0.26 / "N. The continued product
15 :

of these last two multipliers might be used, but this does not sim-
plify the calculation. These -corrections need seldom be applied for
preliminary work.
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To Find the Pinion Diameter
Lastly, to find the diameter of the pinion, approximately:

NXP
diameter = —, or
L 3

diameter = 0.318 N P/,

or for a 15-tooth pinion,
diameter =4.77 P’ ..... P & & 3 ]
If diametral pitch is desired, it is sufficiently close to say:

3
diametral pitch=— ................ tessesesesanne RN ¢ T))
P

The following formulas, therefore, Nos. (5) to (14) (as deduced
above), give closely enough for all preliminary determinations, .the
size of pinion required of 15 teeth.

Lewis’ Tables Stress 3§ Lewis’ Tables

' |"2.22H.P7 *I"5.0 H.P.?
Cast iron spur, PP = _—
r.p.m. r.p.m.
517036 H.P.* Y708 HP?
Cast steel spur, P! — _— —_—
r.p.m. r.p.m.
8"5.0 H.P3 ¢ | 11.0 H.P.
Cast iron bevel, P =, | — -
r.p.m. r.p.m.
5170.8H.P? *IT1.8H.P?
Cast steel bevel, P —, [ ——— .
r.p.m. r.p.m.

Diameter —=4.77 P’.
3
Diametral pitch =—=—.
P

. Practically, stock gears are made up to 3 inches circular pitch by 1;-
inch steps, and a pitch of less than 1 inch is seldom used.

The following table will therefore determine the roots for the near-
est common pitch:

No. or Fifth No. or Fifth No. or Rifth
Root Power Root Power Root Power

% 0.24 2 32 314 525

1 1 214 58 4 1,024

1Y 3 214 98 414 1,845

11 8 284 158 5 3,125

1% 16 3 243 6 7,776

In case the revolutions per minute of the pinion are less than §0,
which is exceptionally slow, care must be taken in applying the for-
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mula, or the allowable stress may be exceeded. With a 15-tooth pinion:

80 r.p.m.=—=100 feet per minute for 1-inch P’.
40 r.p.m =100 feet per minute for 2-inch P’ .
27 r.p.m =100 feet per minute for 3-inch P’. ) :
20 r.p.m =100 feet per minute for 4-inch P’.

Chart for Rapid S8olution of Gear Problems

A simple three quadrant chart, Fig. 21, has been prepared for the
rapid solution of these problems by mere inspection, good for any nums
ber of teeth, and for all the different styles, materials, and stresses of ’ .
gears given by the above formulas, but for occasional preliminary de-~
termination, the formulas are sufficient, as their solution is simple. N

It will, of course, be understood that the teeth considered in these
formulas are those of the usual standard dimensions, in which the:
height of tooth equals seven-tenths of the pitch. What are known ag
“short tooth gears,” in which the height of tooth equals half the pitch, -
are undoubtedly stronger, but their smaller working face is supposed
to cause more rapid wear, and their use is not common. Although
machine-molded cast gears run quietly at low speeds, they should not
be used for rim speeds much over 1,000 feet per minute. For speeds
of from 1,000 to 3,000 feet per minute cut gears should be substituted.

For a quick approximation of the diameter of the pinion shaft in
inches the following formula may be used:

Shaft diameter =P’ 4 1.

The weight of pinions and gears varies with different makers. Pin-
fons of from 12 to 30 teeth are usually made slightly wider than gears,
even if they are not shrouded; and the smaller sizes have solid webs
in place of arms. It is found that a formula of the form

Weight in pounds = coefficient X P2AN,

will usually fit the weights.
For many tables, the coefficients of the following values will serve:

Weight of pinion = 0.35 P? AN,
weight of gear —0.45 P?AN,
or where A=3 P,
Weight of pinion —= P"X\,
weight of gear =1.35 P*N
=D
or when diameter and P’ are known, as N=_P—"
Weight of pinion=23.1 DP"?,
weight of gear — 4.2 DP",

The price of gears varies largely with different manufacturers. The
price of cast tooth spur gears can be usually expressed by a formula of
the following form:

Price = (coeff. X P’N) + (coeff. X P’).
Cut tooth gears usually cost about 20 per cent more than cast tooth;

and cast steel gears from 50 to 75 per cent more than cast iron gears
of the same size.
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DRIVES FOR HIGH SPEED CUTTING TOOLS 39

N, ={fastest speed of spindle to correspond with slowest counter-
shaft speed.
N,=slowest speed of spindle without back-gears to correspond.
with slowest countershaft speed.
D,
Let ——=1r (12)
D, ’
D, 1

_—=— 13)
D, r

Then nXr=N, (14)

1
nX—=N, (15)
r

~ C.S. CONE
©LLEY

SPINDLE, CONE
D, PULLEY

N

N A Industrial Press, N Y.
PFig.12
Combining (14) and (15),

w=y/N, XN, (16)
Substituting in (16) the proper speeds taken from the table,
n’ = /145 X 101=121
From (14)
N, 145
r=—————=1.199
- 121
14
Dy=—- an
n'
Substituting in (17) the value of V and »’,
2295 X 12
D = ————="T21% inches,
3.14 X 121
From (12)

D,=r X D, (18)
Substituting in (18) the value of r and D,

D, =1.199 X 7214 =87 inches.
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The front gear ratio from spindle cone speed to driving spindle speed
145

will bo —— = 1.629.
89

Since the values of the constants used in computing the force at the
cutting tool were taken from expgriments made with slow cutting
speeds, and would be considered low in view of the fact, noted by some,
that the work at the tool for high speeds Increases in far greater pro-
portion than the increased cutting speeds; and since the assumed 70
pounds per inch width for effective pull at the belt is quite liberal, it
is clear that the pulleys are practically at a minimum. size under the
conditions assumed. It is therefore convincingly apparent that for
the ordinary back-geared head, belts ¢can be of no avail for high-speed
cutting except for extremely limited ranges of dlameters og stock.

It the diameters of the pulleys are reduced by speeding up the- belts
and gearing down the spindle, nothing is availed in most cases but.an
added and useless expense, since every compounding element is a loan
for a mortgage whose interest rates sometimes increase pretty nearly
in a geometrical progression.
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The subject treated in this number of MACHINERY’'S Reference Series
is one on which a considerable amount of information has been pub-
lished by various writers in MacHINERY. The fundamental formulas
on which the discussion is based, however, are the same, and it is,
therefore, evident that the several authors to some extent deal with
the subject in a similar manner. In the following chapters, the treat-
ment of each writer has, however, been given in full, irrespective of
the fact that, due to this, some formulas and statements are repeated.



































































































THICK CYLINDERS 35

as a support, the thickness need not be increased, even if the com-
pressive stress is nearly equal to the allowable tensile stress, a case
found in hydraulic accumulators, where the plunger remains station-
ary, and the cylinder carries the balancing weight and resists internal
bursting pressure at the same time. Yet, mathematically, the square
root of the sum of the squares of the compressive stress and the tensile
stress due to the weight and working pressure should not exceed the
allowable tensile stress of the material. If the cylinder supports a
weight producing a tensile stress, additional metal must be provided
to resist this stress, exclusive of that which resists internal bursting
pressures. This additioral metal may be in the form of ribs, provided
the thickness of the ribs is equal to the thickness of the cylinder, go
as to prevent stresses due to unequal cooling or contraction. If the
cylinder is subjected to bending, an additional amount of metal must
be provided, the moment of inertia of which, about an axis through
the center of the cylinder, is sufficient to resist the bending stress.

In addition to the diagram, Fig. 8, a diagram for 10,000 pounds fiber
stress only is given in Fig. 9, showing the plotting of the curves and
how the thickness increases with the working pressure. It also shows
prlainly that the Formula (19) deduced is a straight line equation. and
&ives the reader a better idea of the ratio of increase in thickness than
t he general diagram, Fig. 8.
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gasoline engine cylinder for a Peerless motor car. This cylinder broke
around a circumference just above the lower flange when subjected
to a hydraulic pressure of 1,600 pounds per square inch. The cylinder
had an internal diameter of 4.25 inches and a shell thickness of 5-16
inch. The flange was 9-16 inch thick. The fracture showed a clean,
close-grained iron. Assuming a tensile strength of 18,000 pounds  per
square inch and substituting values, we have ¢ =0.024.

The conclusions to be derived from these experiments are: .
First, that when the cylinder flanges are unsupported, the initial
fracture will be circumferential and close to the flange at a pressure

very much less than that determined by the formula:

2t8
p=—
a
Second, that when the flanges are sufficiently braced to insure longi-
tudinal fracture, a considerable allowance must be made for bending
and other accidental stresses.
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When preparing the third edition of this Reference Series book, a
considerable amount of matter pertaining directly to general shop
calculations was added. In order to provide space for this material,
the chapters on more advanced shop calculations, including Square and
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additional matter of an advanced nature, included in MACHINERY'S
Reference Series No. 52, Advanced Shop Arithmetic for the Machinist.








































































L No a8 MOl ARITHMETIC

Pha vhanpn genring mny boe ofthor simple or compound. Simple
Pt ing e shawn Iy the aceompanying {llustration, Fig. 35. When
whiphe puit i te vaed 1 fs alwaya necossary to use an idler between
the pay o the apiitle atod and the goar on the lead-screw. As al-
et s aptntined, thie tier haa ne influence on the ratio of the gearing.
A val e Aany wamber of teoth,  Compound change gearing is
winin i tn Wy A

iting (he Lathe Serew Constant

WL o e Able e vatvutate change gears for the latde I is menas
ALY Abrr W bk AR AR avrew catstant vt This JoneTeTt iF BTWETE
W AR Y W e R At otAr tacRe dug it may Y 3i%rmers Ioo Gnones
WERTALY VA e W WAk

LR P P R N L I L A7 R D o A B 4 Sy TR AT

. BRI TN L YA P U7 T T B Pl it g -7
YR S EEINN av- R v Y @b Py, wamh 7 YvRAE ot AR

. . -
-0 - - fad - N
~ : - . - z- ]
- . - . - i
- - ~ - - - ~ ° T et ity 8
- - . SN . - - . T
- wwe Y ~ ~ ~ - -
- . A EY - . ~.a
(SRS - . ~ -
* N ~ N ~
% - H
























4" No. 18—SHOP ARITHMETIC

Indexing for Angles

In ¥ig 04 is shown a plece of round stock having two flats millecR
in such & way that the angle between two lines from the center a @k
right angles to the two surfaces is 86 degrees. In this'case the indemmmx
head cannot be turned so as to make a certain whole number of movessess
in one complete revolution of the work, as is done, for instance, whemmmmmn
we make four moves in one revolution for milling a square, six MovVenm—

- —LARGER ,,'«"
&

AN %

\
\
\
)
X

X
RIANT ANOLE OBTUSE ANGLE ACUTE ANGLE
Mackinery.X.T.
g 4@ g 47 rg. 48

in ane revoluiton for milling a hexagon, and 80 moves for milling =mmmn
Rtooth gear. lnstead, we have here given a certain number of dET—Je
areed which it ia required that the work be turned before another c——ut
W taken hy the milling eutter.

~,
o \ N
£ § 3 s %
ra ] i ;
N W e N e R
—/\Q
) X 'i}..
. e
" N3 g =

nialg BE eS8 Y SNUCSN vhiwwer Y Eope & el

WY R NN MY 3 WM Seacun if O vk oree S D muml
A A SEEE R L4 N3 Nmmeor T I § iarees vask ¥
YR X o3 Nuppheer T, o R Sapees v & T4 o & sumpihew 30L
W TLLAR N 4R A Clw nisk TIOR3 Theee e ao ibsewrmsst
o ANARIN R Napoye CX R L T e wqunesd o Swibx B 8K l
W Ao e et thadl & o oasnmal e Ieleeig
Shuing D RCeVamuans Or ke Dahartag

TheN A N it D I0v NmMMME Sed I T wmk weemid \

IR O Jarmk X 0w hitc oSl e WSRO e “eswlntem F 8 '



















Students whose knowledge of elementary arithmetic and its applica-
tion to simple problems is too limited for intelligent study of this
treatise, are advised to first study MacHINERY’S Jig Sheets 6A to 16A,
inclusive, Common Fractions and Decimals; MacHINERY'S Reference
Series No. 18, Shop Arithmetic for the Machinist; and No. 58, Advanced
Shop Arithmetic for the Machinist.

In preparing the second edition of this book, the chapter on graphi-
cal methods of solving problems, contained in the first edition, was
omitted, and In its place a chapter containing solutions of twenty-four
mechanical problems selected from many different flelds of mechanical
engineering, were introduced. This substitution, it is believed, greatly
enhanced the value of the book, and met with the approval of readers
especially interested in the use of formulas in mechanics. In the pres-
ent—the third—edition, this feature has, therefore, been retained.
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ease to enable us to follow the operations called for by any formula
we may wish to use.

The following table exhibits in the first column the symbols most
frequently met with; in the second column the arithmetical equivalent
of the symbols is given, assuming that a—=2 and d=4; in the third
column the symbols are expressed in English to give the proper method
of reading the symbols.

TABLE 1. OCOMMON MATHEMATICAL SIGNS

=2 b=+ a equals 2 b equals 4
a4+ d=c 24+4=6 a plus b equals ¢
b—a=d 4—2=2 b minus @ equals d
“);gf: gx 4—g O timesDd equalse.or

a.b;c - ad equals e

g (a+d)=J 2X 6=12 a times a plus b equals /
bra=h 4

L

b divided by a equals &, or

—=h ;‘—"2 b over a equals A
a
a<d 2<4 a is less than b
b>a 4> 2 b is greater than a
",’,"“’f 4 12 {blstoaaa]lstoc
- —_—— b divided by a equals 7 divided by ¢
a - c 2 6 b over a equals f over ¢
=D 2X2=+4 a square equals b*
b= 4X4X4=64 D cube equals k
V= Vi= square root of b equals a
Pe= #8=2  cube root of e equals a

Examples of Formulas

Let us now take the simple case of finding the area of a circle whose
diameter we know. Expressed in English the rule is: Multiply the
diameter by itself, then multiply the resulting product by 0.7854. The
result is the area of the circle. If the diameter is expressed in inches,
the area will be expressed in square inches. The corresponding mathe-
matical expression is

A=0.7854d* (1)
where A =the area in square inches,
d =the diameter in inches.

Note that d* simply means d X d.

Now, to solve this expression for a particular case, suppose we wish
to know the area of a circle nine inches in diameter. We simply sub-
stitute for d* its numerical value, and perform the indicated operation,
thus:

A=0.7854 X 9 X 9=0.7854 X 81=63.617 square inches.

* For a more complete explanation of the meaning of square and square root,

and cube and cube root, sce MACHINERY'S Reference Series No, 52, Advanced

Shop Arithmetic for the Machinist, or MacHiNERY's Jig Sheets No. 19A, Square
Root, and No. 20A. Cube Root.
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Take as another example the formula for the indicated horse-power
of an engine:
PLAN
HPpP=—— (2)
33,000
where P=—the mean effective pressure in pounds per square inch,
L =the length of stroke in feet,
A =the area of the piston in square inches,
N =the number of strokes per minute.

Note that PL AN simply means P X L X A X N.*

The whole information as to how to determine the indicated horse-
power of an engine is given in a very small space in the formula,
while to write the same in English would require considerable of the
space at our disposal.

Take the case of an 8 X 10-inch engine running at 100 revolutions
per minute under 125 pounds mean effective pressure; here we have:

P=125 pounds,

10 inches
L =————=—0.833 feet,
12 ’
A=0.7854 X 8 X 8= 50 26 square inches,
N =100 rev. per min. X 2=200.
Then,
125 X 0.833 X 50.26 x 200

H.P.= =31.7
33,000

Right-angled Triangles

In right-angled triangles,t if we call the side opposite the right angle
a, and the sides forming the right angle b and c, then the following
formula expresses the relationship between the three sides:

) a=\/F¢& (3)

Assume, for example, that in a right-angled triangle one of the sides
forming the right angle is 8 inches long, and the other side forming
the right angle is 6 inches. What is the length of the side opposite

the right angle?
If we insert the given dimensions in the formula above, we have:

a=\/8 F 6=\/6% + 36 =\/100 =10.
The side opposite the right angle, thus, is 10 inches long.

* 8ec MACHINERY'S Reference Series No, 52, Advanced Shop Arithmetic for
the Machinist, or MACHINERY’S Jig Sheet No. 16A, Use of Formulas.

4+ Bee MACHINERY’S Jig Sheet No. 21A, Squares, Rectangles, Triangles, etc.
Kor a more complete treatment of the rlght-&ngled triangle see MACHINERY'S
Reference Series go 52, Advanced 8hop Arithmetic for the Machinist, and No. 564,
Bolution of Triangles.




CHAPTER 11

THE USE OF FORMULAS IN MECHANICS

The use of formulas for solving problems in mechanics can best be
made clear by actual examples. In the present chapter, therefore, a
number of problems have been solved, showing the methods employed,
and the manner in which the formulas taken from hand books and
reference works are used.

Prodlem 1.—A metal ball falls from the top of a tower 3Q0 feet high.
How long a time will be required before it reaches the ground?

The formula by means of which this problem is solved is:*

KL
= _— (4)

g
in which ¢{ =time in seconds,

h =height in feet,
g =—acceleration due to gravity —32.16 feet.
Inserting the known values of 2 and g in the formula, we have:

2 X 300
t= \, ————=14/T18.66 =4.32 seconds.
32.16
Problem 2.—What is the velocity of the ball in the previous example
when it reaches the ground?
The formula for finding the velocity is:

v=\/'7—g—h_ (5)
in which v =velocity in feet per second, and h and g denote the same

quantities as in Problem 1. Inserting the values of g and A in the for-
mula, we have:

v=1/2 X 82.16 X 300 = /19,296 = 139 feet, nearly.

Problem 8.—A projectile is fired from a 12-inch gun vertically into
the air. It strikes the ground, coming down, exactly 1 minute and 40
seconds after it left the muzzle. Disregarding air resistance, what
height did the projectile reach? What was its velocity when leaving
the muzzle? And what is the energy of the projectile when it strikes
the ground, if its weight is assumed to be 600 pounds?

The time required for the projectile to reach its greatest height is
one-half of the total time for the upward and downward journey.
Thus, in 50 seconds, the projectile has reached the point where its
velocity i8 zero, and where it begins to fall. The formula for finding
the height reached is:

gt? .
=— (6)
2

* See MACHINERY’S Reference Beries No. 5, First I'rinciples of Thcoretiem)
Mechanics, page 34, second edition.
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in which A, g and t denote the same quantities as in Problem 1. In-
serting the known values, we have:
32.16 X 50° 32.16 X 2,500

= 40,200 feet,
2 2

40,200

5,280

The velocity of the projectile when leaving the muzzle is the
as the velocity acquired when again reaching the ground. This veloc-
ity is found by the formula:

v=gt=232.16 X 50 =1,608 feet per second. (¢))

The energy of the projectile when it strikes the ground equals fits
weight multiplied by the distance through which it has fallen. If W=
weight, and E —energy, we have: .

E=W X h=1600 X 40,200 — 24,120,000 foot-pounds. (8)

Another formula for the energy is as follows:

Wo?
E—=—- 9)
29

This formula, with the values of W, v and g inserted, will, of course,
give the same result.

600 X 1,608 600 X 2,685,664

2x3216 2 X 3216

If, upon reaching the ground, the projectile buries itself to a depth
of 8 feet, what is the average force of the blow with which it strikes
the ground? The average force of the blow equals the energy divided
by the distance d in which it is used up, plus the weight of the pro-
jectile, or if F —average force of blow:

E 24,120,000
F=;— + W=—8— + 600 =38,015,600 pounds. (10)

or

=17.6 miles, appx:oxlmately.

=24,120,000 foot-pounds.

Problem 4.—A drop hammer weighing 300 pounds falls through a
distance of 3 feet. What is the stored or kinetic energy of the hammer
when it strikes the work, and what is the average force with which it
delivers the blow, if, on striking the work, it compresses it 3§ inch?

From Formula (8) given in Problem 3, we have:

E=W X h=300 X 3=900 foot-pounds.

The distance d in which this energy is used up equals 34 inch or
14 + 12=0.04 foot. Therefore, from Formula (10) the average force
is:

E 900
=;- + W=-0—M- + 300 =22,500 4 300 — 22,800 pounds.

Prodlem 5.—Find the stress in the rim of a fly-wheel, 5 feet mean
diameter, made of cast iron, the rimm belng 2 inches wide by 4 inches
%agp, if the fly-wheel rotates at a velocity of 200 revolutions per min-
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The formula for the stress in the rim is:*
8 =10.00005427 WRr* “(11)

in whichk 8 =—stress in pounds on the rim section,
W = weight of rim in pounds,
R = mean radius in feet, and
. r=revolutions per minute.

We know that the mean diameter of the fly-wheel 18 6 feet; there-
fore, R=—2.b feet; r is given as 200; but we must find the value of
W before we can apply Formula (11).

The weight W of the rim equals its volume or content in cubic
inches multiplied by the weight of cast iron per one cubic inch. The
volume of the rim equals the cross-sectional area of the rim multiplied
by the circumference of the circle having for radius the mean radius of
the fiywheel; expressed as a formula:

V=2R X 3.1416 X @ X .
in which V =the volume of the rim, in cubic inches, R— the mean
radius, in inches, ¢ —the width, and b =the depth of the rim, in
inches. Substituting the values in this formula, we have:
=2 X 80 X 3.1416 X 2 X 4=1,508 cubic inches.

One cubic inch of cast iron weighs 0.26 pound. The weight of the

rim then is:
. W=1,508 X 0.26 = 392 pounds.

‘We can now substitute the values in Formula (11):

8 =0.00006427 X 392 X 2.5 X 200%?= 2,127 pounds.

The multiplication above can be carried out by the use of logarithms
as follows:¢

log 0.00005427 —5.78456
log 392 =— 2.59329

log 2.6 = 0.39794

2 X log 200 = 4.80206

log 8 =38.32785
Hence 8 ==2,127 pounds.

Probdlem 6.—The cylinder of a steam engine is 16 inches in diameter,
and the length of the piston stroke 20 inches. The mean effective pres-
sure of the steam on the piston is 110 pounds per square inch, and
the number of revolutions per minute of the engine fly-wheel is 80.
What is the power of the engine in indicated horse-power?

The formula for the horse-power of engine has been given in Chap-
ter 1, page 6:

PLAN

HP=—=— " (2)
33,000

in which P —mean effective pressure in pounds per square inch,

® See MACHINERY’S Reference Series No. 40, Fly-Wheels, page 19, first edition.
4 8ee MACHINERY’S Reference Series No, 53, Use of Logarithms and Logarithmie
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F X 2X 48 X 3.1416 == 2,000 X %
F X 301.59 =1,000

1,000
F=
301.569

will be seen that by the given arrangement a force of ¢
Id be sufficient to lift a ton. Friction, however, has not
red in this problem, and as the frictional resistance in
g screws for conveying power is considerable, the actua
ed would be a great deal more than 3.3 pounds.

isume that is required to find the power if friction is ¢
his case we must know the diameter of the screw and
1e thread. We will assume that the thread is square, an
1eter of the screw is 3 inches. The depth of a 34-inch le
ad is 14 inch. The pitch diameter of the screw is, ther
= 2% inches.

1e formula for finding the force required at the end of t

=3.3 pounds.

f+tana R
9=W— x—
1—ftana r
hich Q = force at end of handle, in pounds,
W = weight to be lifted = 2,000 pounds,
7 =rcoeflicient of friction,
a=angle of helix of the thread at the pitch diamete
R =plitch radius of screw in inches =134 inch,
r —=1length of handle in inches = 48.

lead 0.5

3.1416 X pitch diam. 3.1416 X 2.75

1e coefficient of friction, f, may be assumed to be 0.15.
rt the known values in the formula, we have:

0.15 4 0.068 1.376
Q =2,000 X X =12.02 pound
1—0.16 X 0.0568 48
early four times as much as when friction was not consi
roblem 10.—Determine the length of the main bearing
zontal steam engine. The diameter of the crank-shaft is
the weight of the shaft, fiy-wheel, crank-pin and oth
8 that may be supported by the bearings is 60,000 pounds
. two-thirds of this weight, or 40,000 pounds, comes on
‘ing. The engine runs at 80 revolutions per minute.
he length of the main bearing of an engine may be fou

nula:*
w K
L=—{N+ —
PK D

See MACHINERY’S Reference Series No. 11, Bearings, page 11, t

tana = =0.058.
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in which L = length of bearing in inches,

W =1load on bearing in pounds,

P=maximum safe unit pressure on bearing at a very slow
speed,

K = constant depending upon the method of oiling and care
which the journal is likely to get,

N = number of revolutions per minute,

D = diameter of bearing in inches.

The safe unit pressure P for shaft bearings is 400 pounds; the factor
K varies from 700 to 2,000. In this case, assume first-class care and
drop-feed lubrication, in which case K =1,000. The other quantities
given are W =—40,000, N — 80, and D =10.

Inserting these values in Formula (14), gives us:

40,000 - . 1000 1
=——— [80 + — ) = — (80 + 100) = 18 inches.
400 X 1000 10 10

Problem 11.—What is the carrying capacity of a helical spring hav-
ing an outside diameter of 5 inches, made from 34-inch round steel?
The tensile stress per square inch of section of spring must not exceed
80,000 pounds.

The formula for the carrying capacity of helical springs is:*

8B a

256D

in which P —=safe carrying capacity,
8 =safe tensile stress per square inch,
d = diameter of wire,
D =mean diameter of spring — outside diameter minus diam-
eter of wire. )
In the given problem §=280,000; d—=1%; and D=5 —% =43;. It
these values are inserted in Formula (15) we have:

80,000 X 0.5* 10,000
P= =
2.55 X 4.6 11.476

Prodlem 12.—Find the weight of steam that will low in one minute
through a pipe 100 feet in length and 2 inches in diameter, if the
initial preséure i8 40 pounds (absolute) per square inch and the ter-
minal or delivery pressure 35 pounds (absolute).

The formula for finding the weight of steam under the above condi-

tions is:¢
\I w (P— Px) di
W=c¢ —-——-—L (16)

in which W = pounds of steam per minute,
¢ =constant = 52.7 for a 2-inch pipe,

(15)

== 871 pounds.

® See MACHINERY’S Data Sheet No. 22, Ju% 1903, Formulas for Coil Sprin
1+ 8ee MACHINERY'S Data Sheet No. 109, March, 1909, Steam Pipe Sizes fer
Heating Systems. .
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In the given problem, where K =—=21,000, N =120, D=8, ¢ =0.02,

and n =300, we have:
10.75 X 120
P=21,000 X ———————— =0.78 ton.
8 %X 0.02 X 300*

Expressed in pounds the weight of the rim equals 0.78 X 2,000 —
1,660 pounds.

Problem 18.—F'ind the thickness of the piston for a steam engine hav-
ing a cylinder diameter of 20 inches and a length of stroke of 24 inches.

The following formula may be used for finding the thickness of the

piston:*

4
T=\/LXD (22)
1n which 7 =thickaess of piston in inches,
L = length of stroke in inches,
D = diameter of cylinder in inches.
Inserting the given values in this formula, we have:

4 . _
T =1/ 24 X 20 =4/ 480.
The fourth root of 480 can be most easily found by logarithms.{

log 480
log T =—.

log 480 = 2.68124; 2.68124 = 4 =—0.67031.
log T=0.67031; T =4.68 inches.

Problem 19.—Find the average horse-power required for taking a
chip in a lathe 5/16 inch deep with a feed of 5/32 inch per revolution.
The material cut is a bar of 30-point carbon steel, 4 inches in diameter,
and is turned at a speed of 40 revolutions per minute.

A formula for finding the horse-power for turning in a lathe, based
upon the experiments of Hartig, is as follows:}

H.P.=0.036 X 3.1416 X D X n X @ X t X 0.28 X 60 (28)
in which H. P. = horse-power required for turning,
D =mean diameter of piece turned,
n =revolutions per minute,
d = depth of cut,
t =thickness of chip = feed per revolution.

In the problem given, D — outside diameter minus depth of cut —=
4—5/16=311/16; n — 40; d — 5/16; and t —= 5/32. If we insert
these values in the given formula, we have:

H. P. =0.035 X 3.1416 X 3.6875 X 40 X 0.3126 X 0.1562 X 0.28 X 60 =
13.3.

Problem 20.—What horse-power may safely be transmitted by a 3
inches wide, machine-cut spur gear of 16-inch pitch diameter having
64 teeth, made of cast iron and running at a velocity of 120 revolutions
per minute?

® See MACHINERY'S Data Sheet No. 120, Steam Engine Design.
ﬂtl’: sleeTM;I(:mnnnx's Reference Serles No. 53, Use of Logarithms and Loga-
mic Tables.
- $ See MACHINERY'S Keference Series No, 16, Machine Tool Drives, page 29,
rst edition.
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The formulas for the solution of this problem are as follows:*

V=0262DR (24)
600
B=8, X —m— (25)
6004V
SFY
W= (26)
P
LAY
HP = (27)
33,000

in which ¥ = velocity in feet per minute at pitch diameter,
D =pitch diameter in inches,
R =revolutions per minute,
S =allowable unit stress of material at given velocity,
8, = allowable static unit stress of material,
W =maximum safe tangential load, in pounds, at pitch diam-
eter,

Y ={actor dependent upon pitch and form of tooth,
F =width of face of gear,
P =diametral pitch.

H. P.=horse-power transmitted,

The known values to be inserted in the given formulas are D =16,
R=120, 8, (for cast iron, assumed) = 6,000, F=38; Y (for 64 teeth,
standard form) =0.36; and P=64 + 16=4. If we insert these val-
ues, as required, in the Formulas (24) to (27), and insert the values
obtained in each formula in the next succeeding one, we have:

¥V =0.262 X 16 X 120 =503 feet.
600
8 =6,000 X —————— =38,264 pounds per square inch.
600 4 503
3,264 X 3 X 0.36
W=—-—4—— = 881 pounds.

881 X 503
H.P.—=————=13.4 horse-power.

33,000
Prodlem 21.—The initial absolute pressure of the steam in a steamx
engine cylinder is 120 pounds; the length of the stroke is 26 inches,
the clearance 114 inch, and the perfod of admission, measured from
the beginning of the stroke, 8 inches. Find the mean effective pres-
sure.
The mean effective pressure is found by the formula:
P (1 4 hyp. log R)
= (28)
R
in which p=mean effective pressure in pounds per square inch,
P =1Initial absolute pressure in pounds per square inch,

w‘" See MACHINERY'S Reference Series No. 15, Spur Gearing, page 29, second
on.
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call it the “resistance” and represent it by the letter R. A lever may
bave to overcome a number of resistances besides that of raising a
weight, such as the resistance of friction, of a coiled spring, or of the
pressure of steam, and the term “resistance” implies this better than
the term “weight.”

Finally, regarding the three kinds of levers mentioned above, there
is no necessity for trying to separate levers into any number of classes,
or for trying to remember to which class they belong in the solution of
examples. All levers depend upon the same principles, which are simple

P F
@
[

2

F

Figs.1and 8

and easily understood, and all timt is necessary is to first master these
principles without regard to the relative position of the applied force,
the resistance, or the fulcrum.

The Moment of a Force

We have seen what is meant by the term “force,” and the next thing
to learn is what the moment of a force is. When a force acts at a
point on a lever, that is, when that point is given a push or a pull, the
tendency is to cause the lever to turn about its fulcrum. This tendency

IP
B

Mashinery, X.X.

ng.s

depends first upon the strength of the force acting and second upon
the perpendicular distance from the line of action of the force to the
fulcrum. If either the strength of the push or pull exerted by the
force, or the perpendicular distance of its line of action from the ful-
crum, is changed, the tendency of the force to rotate the lever will be
greater or less, as the case may be. The rotative effect of any force
thus depends upon both the strength and the distance, and 18 measured
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duced with the wrench as placed in Fig. 4 than as placed in Fig. 5,
although in each case the hook is at the same distance (4 feet) from
the fulerum F. The direct distance, however, of the point of applica-
tion of the force from the fulcrum does not necessarily have any influ-
ence on the effectiveness of this force in moving the lever. The only
distance that can be considered is the perpendicular distance from the
line along which the force acts to the fulcrum, and this distance is
greater in Fig. 4 than in Fig. 5, and in the former the force of 300
pounds has a greater leverage than in the latter. In Fig. 5 the meas-
ure of the rotative effect is the pull P, which 18 300 pounds, times
the distance L, which in this case measures 2 feet, or 300 X 2==600
foot-pounds. The distance L, as before, is measured at right angles to

Fg. b

the line m n, and if the rope had extended along the line ¢ d, instead
of the line m n, L would have been measured at right angles to the
line ¢ d, as indicated by the line L,.

The True Lever Arm

The distance L in Figs. 4 and § is called the lever arm. Ordinarily
the arm of a lever is understood to mean that part of the lever that
lies between the fulcrum and the point where the force is applied, or
between the fulcrum and the point where the resistance takes place;
and such it is in a strict sense if the lever arm is straight and the
force acts at right angles to the lever. But in Fig. 5 the true length
of the lever arm is the distance L, and not the length of the handle of
the wrench, because L is the effective length acting, in the position
shown. TRAe true lever arm, therefore, is the perpendicular distance
Jrom the line of action of the force to the fulcrum.
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In Fig. 9 the lever shown is pivoted at F, which serves as the ful-
crum. A push P is exerted by the rod at the right, which receives its
motion from the cam and roller, as indicated. This push acts to over-
come a resistance R, which acts along the rod seen at the left, and
which may be supposed to consist of the resistance of the spring coiled
around the rod, and of any piece of mechanism that this rod may have
to operate. Let it be required to ind how great a push, P, is necessary
to overcome a resistance, R, of 260 pounds. The first thing is to find
the length of the true lever arms, since without these the moments
cannot be determined. To do this, first draw lines through the points
on the lever at which the forces act, and in the direction in which
they act. Thus, the force P acts at the point C, and the line D H indi-
cates the position and direction of this force. Likewise the force R
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acts at point B, and line A B indicates the position and direction of
force R.

Now, the lever arm of force P is the perpendicular distance from F
to line D H, and the lever arm of force R is the perpendicular distance
from F to line A B. Assume that these distances measure 8 and 16
inches, respectively. Then,

Momentof P—28 X P.

Moment of R = 250 X 16 = 4,000.

4,000
8 X P=4,000; and P=

==500 pounds.

Esgample.—Suppose P—400, R =150, and the short arm — 6 inches.
‘What is the length of the long arm? Answer—16 inches.

The safety valve in Fig. 10 is an example of a lever in which there
are three forces to be considered, if we take into account the weight
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of the lever, which is quite essential to do. The valve at ¥ fs acted
upon by the pressure of the steam, tending to raise it. This pressure
constitutes the push P upon the lever, which is resisted by the sus
pended weight R, and the weight of the lever, which we will call R,
The weight of the lever is effective at the point G, the center of gravity
of the lever. This point can be found by balancing the lever on a knife
edge, the center of gravity being directly over the knife edge. The
fulecrum of the lever is at F, and the lever arms for R, R, and P are
marked A, B, and C, respectively.

Ezample 1.—Assume that A — 30 inches, B =14 inches, C =3 inches,

- —— A

" Mashiasry, R.Z.

Mg. 10
R =20 pounds, and R, —8 pounds. Find what pressure of steam the
valve will carry.
Momentof P=3 X P,
Moment of R =20 X 30 = 600,
wnent of B,=—28 X 14=112,
» valve to balance, the moment of P must be equal to the sum
aoments of R and R,, for the moment of P tends to raise the
ad the other moments tend to hold it down. Adding the mo-
» R and R,, therefore, we have 600 4- 112=1712, and this must

712
) the moment of P or 3 X P. Hence, 3 X P=1712, and P—=——
3

(1/8 pounds. This last part of the operation is like the work of
iang examples. The 237 1/3 pounds is the total pressure upon
to obtain the pressure per square inch that can be
imply to divide 237 1/3 by the area of the valve. To
act. the welight of the valve and stem should be
'1/8.
were desired to carry a total pressure upon
With the other dimensions remaining as
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Hence, the moments of all the gravity forces acting upon the parth
cles, taken about the middle point of the line, will balance, and that
point will, therefore, be the center of gravity of the line. A straight
line will balance upon its middle point; if supported upon that point,
it will be in equilibrium in any position, and will have no tendency
to rotate.
Two Straight Lines of Different Length

Let A B and C D, Fig. 12, be two straight lines of any lengths and
having any positions with respect to each other. The center of gravity
of each line is at its middle point, as O and O,. If these two centers
of gravity be connected by the straight line O O, the center at gravity
of the system will be somewhere on this line. Draw the line O B,
equal and parallel to O, B = 14 A B; on the opposite side of O O, lay
off on the line B A, a length of 0,0, equal to 0 =14 C D, and draw
B,0,. The point g, where the lines O O, and B,C, intersect, will be

C, [o)
A > 1
A
pe
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the center of gravity of lines A B and C D. If the given lines are
parallel, O B, is simply laid off on O D prolonged. The distance O, g
may also be calculated; it is given by the equation:
CD X 00,
0g=—"—
AB+CD
Perimeter of the Triangle

Let A B C, Fig. 13, be any plane triangle, in which D, E and F are
the centers of gravity of the three respective sides. Join any two of
these centers, as D and E, and on this line determine, by the method
just explained, the center of gravity c of the two sides joined. To do
this, join E and F; the line E F will be equal and parallel to C D;
then lay off D E, equal to C E; the intersection ¢ of the lines D E
and E, F will be the center of gravity of the sides B C and C A. Now
Iay of FB,—% AE + % BD and draw E B,; the intersection g ot
the lines E B, and ¢ F will be the center of gravity of the three sides,
or perimeter, of the triangle.

Circular Arc

Let A B C, Fig. 14, be the arc of a circle whose center is at 0; A C
is the chord and B is the middle point of the arc. The center of
gravity of the arc will be at some point g on the radius O B, at such
“Istance from O that
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connected with that method, it has the advantage of being easily
remembered.

Let A B C D, Fig. 17, be any foursided plane figure. Consider it
first to be divided into the two triangles A B C and A D C. The points
E, F, G, and H are the centers of the respective sides, the common side
A C not being drawn. The intersection c of the lines A F and C E is
the center of gravity of the triangle A B C, and, similarly, the inter-
section ¢, of the lines A @ and C H is the center of gravity of the
triangle A D C. The line c ¢, connecting these two centers of gravity,
will be a gravity axis of the entire figure. The trapezium is then
considered to be divided into the triangles B A D and B C D, and, by a
simflar construction, the position of the gravity axis ¢’c¢” is deter-
mined. The intersection g of these two gravity axes will be the center
of gravity of the trapezium.

Fig. 19

For this construction, it is not necessary to draw the entire portion
of each comstructional line, as shown in the figure, but only such
portions of the lines as are necessary to locate their intersections.
Some may prefer the construction shown in Fig. 18; it is the same as
that shown in Fig. 17, except that only one gravity axis is drawn for
each triangle, and the center of gravity of the triangle located at two-
thirds the length of the axis from its vertex.

Trapeszoid

If the figure is a trapezoid, the following construction, taken from
Trautwine’s Engineer’s Pocket Book,” is a very simple method of
finding its center of gravity. Let A B C D, Fig. 19, be any trapezoid
for which the center of gravity is to be found. Prolong the two paral-
lel sides in opposite directions, making each prolongation equal to the
other side, and join the extremities of the prolongations by a straight
jine; also join the centers of the parallel sides. The intersections of
these lines will be the center of gravity of the figure. Thus, in the
- A A, 18 made equal to DC, and CC, equal to A B, and the
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extremities of the prolongations joined by the line A,0,, while the
line O O, joins the centers of the parallel sides; the intersection g of
the lines A,C, and O O, is the center of gravity of the trapezoid.

Irregular Figure

The center of gravity of any irregular figure bounded by straight
lines may be found by dividing it into triangles, finding the center of
gravity of each triangle, and then finding the center of gravity of the
system of triangles, the area of each being considered to be concen-
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trated at its center of gravity. For finding the center of gravity of
the system of triangles, the method of rectangular co-ordinates may
be employed. Let A BCO D E F, Fig. 20, be any irregular figure bounded
by straight lines. By the lines AC, AD, and A E the figure can be
divided into the four triangles ABC, ACD, ADE, and A EF, whose
centers of gravity, g,, g,, g,, and g, may be found by the method ex-
plained for triangles. Draw the vertical and horizontal axes O Y and
0 X, Intersecting at O; these may be any vertical and horizontal lines,
but it is generally convenient to draw them through the left-hand

and lower extremities of the figure, as shown; O X is the axis of
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stress, 80 substituting these for the letters in the formula we get
M 108,000

ot —— e ———
=

4th. Find the section of our beam in Table 4, Case 1, where we find
that the section factor is
bt
Z =
6
We know Z and we know b, so substituting these values for the let-
ters, we get
2XMn
6.7 = .
6

It we multiply both sides of this equation by 6, we shall not change
its value, but shall get

6 X 6.75=2Xhn.

9000 LO8.
Mackinery .0,

Fig. 26 . Mg. 27

If we now divide both sides by 2, we shall not change its value, but

shall get
6 X 6.75

2

5th. We can most conveniently find the square root of 20.25 from a
table of squares and roots which may be found in any hand book.
‘This square root is 4.5, and we thus find that

h=4.5 inches.

It we make the beam 2 inches thick by 4.6 inches deep by 36 inches
long, it will support a load of 3,000 pounds at its free end, and the
fibers will be strained to 16,000 pounds per square inch.

Example 2. Let us undertake to design a suspension beam like Fig.
27 to carry ten tons, the material to be cast iron. The proposed section -
of the beam is more complicated than that of the previous example,
and we cannot obtain a result quite so directly.

1st. Inspect the proposed beam to locate the compression and ten-
sion flanges. We find the compression flange is on top and the tension
flange on the bottom, and we mark them c and ¢ respectively.

2d. Table 3 shows us that cast iron is stronger in compression than
in tension, hence we conclude that we should have more metal on the

= h*=20.25.
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tension side than on the compression side, and accordingly we place
the section with the heavy side down.

3d. Assume a section by making the best guess possible as to the
dimensions shown heavy in the figure. Cut out this section of card-
board, and find the location of the neutral axis z z as previously ex-
plained. Now fill in the figures shown light by measuring the card-
board section.

4th. Find the section in Table 4. Here we find that before we can
get the section factor of the beam we must get the moment of inertia
of the beam. Substitute the dimensions of our section for the letters
of the formula given in Table 4, and we shall get

(0.75 % 8.8%) 4+ (10 X 3.7*) — (10 —0.75) 3.2*
I=

3
511.1 4+ 506.6 — (9.25 X 3.2Y)
- 3
1017.6—303.12 714.48
= = = 238.
8 3

5th. Now divide the moment of inertia just found by the distances
of the extreme fibers from the neutral axis, that is, by y.and y,, and

we get
1 238
Z,— — =—=——=217, the section factor for the compression side.
Ve 8.8
1 238
Zy—=— = ——=—=64.3, the section factor for the tension side.
Y 3.7

6th. Inspect Table 2 and find the bending moment on the beam ac-
cording to Case 2; substituting the dimensions of the beam, and the
load to be carried, in the formula given, we have

wi 20,000 X 72

7th. Dividing the bending moment just found by the section factors
found in the 5th step, will give the fiber stress on the beam according
to Formula (35), thus

360,000
=13,333 pounds per square inch on the compression side.
27

360,000

64.3

The latter is too high, so another guess must be made, making the
section heavier on the tension side. Then the steps 8, 4, 5 and 7 must
be repeated, and if the fiber stress then comes below 3,000 pounds per
square inch, the section will be right.

=15,600 pounds per square inch on the tension side.
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RULES AND FORMULAS 7

it nearly 30 or even up to 46 would be better. On the basis a, = 30,
and a, = 60 degrees, we have the following calculations:
To find the pitch diameters, use Rule 2:

45
Pitch diameter of gear —=—————=230 inches.
3 X cos 60°
18
Pitch diameter of pinion — ———— = 6.928 inches.
3 X cos 30°
To find the center distance, use Rule 3:

30 4 6.928

==18.464 inches.

je= == = — —CIRCUMFERENCE = 8.4418 X PITCH ou\u.-———_j

To prove that the previous calculations are correct, use Rule 4:

45 X tan 60° 4 18 =95.940.

2 X 18.464 X 8 X sin 60° — 95.939.

These two results are so nearly alike that the previous calculations
may be considered fully correct.

To find the number of teeth for which to select the cutter, use Rule 5:

45
For gear, ———————— =—360.
(cos 60°)*
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18
For pinion, ———————— =28, approximately.
(cos 30°)*

To find the lead of the tooth helix, use Rule 6:
Lead for gear =23.1416 X 30 X cot 60° =54.38 inches.
Lead for pinion =3.1416 X 6.928 X cot 80° == 37.70 inches.
To find the addendum, use Rule 7:

1
Addendum = -3— =10.333 inch.
To find the whole depth of tooth space, use Rule 8:

2.167

‘Whole depth=—3—= .719 inch.
To find the normal tooth thickness at the pitch line, use Rule 9:

1671
Tooth thickness =

==0.627 inch.

To find the outside diameter, use Rule 10: -

For gear, 30 < 0.666=230.666 inches.

For pinion, 6.928 + 0.666 = 7.694 inches.

This concludes the calculations for this example. If it is required
that the pitch diameters of both gears be more nearly alike, the tooth
angle of the gear must be decreased, and that of the pinion increased.

Suppose we have a case in which the requirements are the same as
ifn Example 1, but it is required that both gears shall have the same
tooth angle of 45 degrees. Under these conditions the addendum,
whole depth of tooth and normal thickness at the pitch line would be
the same, but the other dimensions would be altered as below:

46

Pitch dlameter of gear — ———— =—21.216 inches.
3 X cos 45°

18
Pitch diameter of pinion = ——————— =_8.487 inches.
3 X cos 45°

21.216 +4.8.487
Center distance—=————————=—14.851 inches.
2

Number of teeth for which to select cutter:

45
For gear, ————— =127, approximately.
(cos 45)*

18
For pinion, ———— =751, approximately.
(cos 45)*
Lead of helix for gear =23.1416 X 21.216 X cot 45° = 66.65 inches.
Lead of helix for pinion =3.1416 X 8.487 X cot 45° =26.66 inches.
Outside diameter of gear =—21.216 4 0.666 —21.882 inches.
Outside diameter of pinion = 8.487 4 0.666 = 9.163 inches.
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the distance from the point of intersection to corner A is at its maxi-
mum. For the minimum value, the tooth angle is the limiting feature.
For a gear of this kind, 30 degrees is, perhaps, about as small as would
be advisable, so when the ruler is inclined at an angle of about 30
degrees with margin line A G’, and occupies position No. 2 as shown,
it will cut line A F at 0”, and the distance cut off from the point of
intersection to corner A will be at its minimum value. The ruler
must then be located at some intermediate position between No. 1 and
No. 2.

Supposing, for example, 14 teeth in gear ¢ and 28 teeth in gear d be
tried. According to Rule 11, the equivalent diameter of gear a will
then be 14 + 12, or 1.1666 inch; the equivalent diameter of b will be
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Fig. 6. Preliminary phical Solution for Prob No. 1

28 + 12, or 2.3333 inches. ' Returning to the diagram to locate the
point of intersection, it will be found that point 0’” is so located that
lines drawn from it to A G and A @’ will be equal to 1.1666 inch and
2.3333 inches respectively, but this is beyond point 0’°, which was
found to be the outermost point possible to intersect with a 41-inch
line, D D’. This shows that the conditions are impossible of fulfill-
ment.

Trying next 12 teeth and 24 teeth, respectively, for the two gears,
the equivalent diameters by Rule 11 will be 1 inch and 2 inches. Point
O is now so located that O B equals 1 inch and O B’ equals 2 inches.
Seeing that this falls as required between 0’ and 0”, stick a pin in
at this point to rest the straight-edge against, and shift the straight-
edge about until it is located in such an angular position that the
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B OD=63° 45’; and the tooth angle of gear B —angle B’ O D’ =90° —
63° 45’ ==26° 1§’, according to Rule 1. Performing the operations indi-
cated in Rule 12 to correct these angles, it is found that when the tooth
angle of gear a is 63° 54’, and that for gear b is 26° 6’, the equation of
Rule 12 becomes:
3 4 (16 X 2.04125) =—6.76 X 0.89803
6.06187 =6.06170

which is near enough for all practical purposes. The other dimensions

A 3 o7

/

L Nashinery XT.
Pig. 7. Solution of Problem No. 2 for Equal Diameters

are easily obtained as before by using the remaining rules.

To still further illustrate the flexibility of the helical gear problem,
the third case, for a center distance of 4 inches, will be solved in a third
way. It is shown in MacCord’s “Kinematics” that to give the least
amount of sliding friction between the teeth of a pair of mating helical
gears, the angles should be so proportioned that, in our diagrams, line
D D’ will be approximately at right angles to ratio line A E. On the
other hand, to give the least end thrust against the bearings, line D D’
gshould make an angle of 45° with the margin lines A @G and A @, In
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obtained graphically and those obtained in the more accurate mathe-
matical solution is a measure of the skill of the draftsman as a graphi-
cal mathematician. The method is simple enough to be readily copied
in a note book or carried in the head. If the graphical method is to
be used entirely, it will be best not to trust to the cross-section paper,
which may not be accurately ruled; instead skeleton diagrams like
those shown in Figs. 6, 7 and 8 may be drawn. Fer rough solutions,
however, to be afterward mathematically corrected, as in the exam-
ples considered in this chapter, good cross-section paper is accurate
enough. It permits of solving a problem without drawing a line.
Point O may be located by reading the graduations; a pin inserted
here may be used as a stop for the rule, from which the diameter
and center distance are read directly; dividing A D, read from the
paper, by D D’, read from the rule, will give the sine of the tooth
angle of the gear a.

Formulas for Spiral Gearing

For sensible people, who prefer their rules to be embodied in formu-
las, the appended list has been prepared, using the following reference
letters, which agree in general with the nomenclature of the Brown &
Sharpe gear books.

N.==number of teeth in gear a,
Np=number of teeth in gear d,
P, =normal diametral pitch or pitch of cutter,
« = center angle,
a =angle of tooth with axis,
D = pitch diameter,
O = center distance,
N’=number of teeth for which to select cutter,
L =1ead of tooth helix,
8 = addendum,
“W = whole depth of tooth,
T.=normal thickness of tooth at pitch line,
0 = outside diameter.
‘Where subscript letters . and , are used, reference is made to gears
6 and b, as for instance, “N,"” and “Ny,” where the letter N refers to
the number of teeth in gears a and b, respectively, of a pair of gears
¢ and b.

=a, + a (1)
N
, D= (2)
P, cosa
D, D
et )
2
Ny + (N, Xtana,) =2CP, Xs8ina, (4)
N
N = (5)

(cos a)®



18 No. 20—SPIRAL GEARING

L=xD Xcota (6)
1
8= (7)
P,
2.157
= (8)
. Pa
1.571 ]
a = 9)
P
O0=D+28 (10)

Examples of Spiral Gear Problems*

A number of examples will be given in the following, which can be
solved by simple modifications of the methods outlined for problems
of Class 2. The same reference letters are used as before.

& 8, Dy g,

Nachinery,¥.Y.
G

Example 1.—Find the essential dimensions for a pair of spiral gears,
velocity ratio 3 to 1, center distance between shafts 514 inches, angle
between shafts 38 degrees.

First obtain a preliminary solution by the diagram shown in Fig. 9.
Draw lines A G and A G, making an angle v with each other equal
to 38 degrees, the angle between the axes. Locate the ratio line A E
by finding any point such as O, between A G and A G,, that is distant
from each of them in the same ratio as that desired for the gearing.
In the case shown, it is 6 inches from 4 @, and 2 inches from A G,
which is in the ratio of 3 to 1 as required. Through O, draw line A E
—which may be called the ratio line. Select a trial number of teeth

=mand pitch of cutter for the two gears, such, for instance, as 36 teeth
or the gear and 12 for the pinion, and with 5 diametral pitch of the
’cnﬂ.er. The diameter of a spur gear of the same pitch and number
“ tasth ag the gear would be 36 — 5=17.2 inches. Find the point O

=y, December, 1008.




RULES AND FORMULAS 19

on A E, which 18 7.2 inches from A G,. This point will be 2.4 inches
from A G, if AE is drawn correctly.

Now apply a scale to the diagram, with the edge passing through O
and with the zero mark on line A G. shifting it to different positions
until one 18 found in which the distance across from one line to an-
other (D D, in the figure) Is equal to twice the center distance, or
10.26 inches. 1If a position of the rule cannot be found which will give
this distance between lines A G and A G,, new assumptions as to num-
ber of teeth and diametral pitch of the gear and pinion must be made,
which will bring point O in a location where line D D, may be prop-
erly laid out. D D, being drawn, the problem is solved graphically.
The tooth angle of the gear is B,0D,, or a, , while that of the pinion

Nachiwery,N.Y.

Fig. 10

is BOD, or a,. O D, will be the pitch diameter of the gear, and O D
the pitch diameter of the pinion.

To obtain the dimensions more accurately than can be done by the
graphical process, the pitch diameters should be figured from the tooth
angles we have just found. To do this, divide the dimensions O B,
and O B for gear and pinion, by the cosine of the tooth angles found
for them. If they measure on the diagram, for instance, 21 degrees
50 minutes and 16 degrees 10 minutes respectively (note that the sum
of a, and ap must equal v), the calculation will be as follows:

7.2 + 0.92827=1.7563 =D,
2.4 =+ 0.96046 = 2.4988 =D,

10.2551=2C

The value we thus get, 10.2551 inches, for twice the center distance,
is somewhat larger than the required value, 10.250 inches. We have
now to assume other values for a, and ap, until we find those which
give pitch diameters whose sum equals twice the center distance.
Assume, for instance, that ap =21 degrees 43 minutes, then o, =23} Ae-
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A demonstration of this formula was presented by Mr. H. W. Henes
in MacHINERY, April, 1908. This demonstration is as follows:

Let P, be the perpendicular distance between two consecutive teeth
on the spiral gear, and let D, be the diameter of the spiral gear. Let
the gear be represented as in Fig. 14, and pass a plane through it per-
pendicular to the direction of the teeth. The section will be an ellipse
as shown in CEDPF. Designate the semi-major and semi-minor axes
by a and b respectively.

Now N’ is the number of teeth which a spur gear would have if its

G A
Hackinery,N.7,

Fig. 14. Diagram for Deriving the Formula for Determining Spur
Gear Cutter for Cutting Spiral Gears
radius were equal to the radius of curvature of the ellipse at E. There-
fore, it 18 required to determine the radius of this curvature of the
ellipse.. This is done as follows:
From the figure we have:
2b=axisEF=D, (11)
HI D,

Cos a cosa
From (11) and (12) we have for @ and b,

12)

2a—=axisCD=GH=

D,
b—=— 13)
2
D,
a= (14)
2co8a

‘* known, and shown by the methods of calculus, that the mini-
re of an ellipse, that is, the curvature at E or F, equals
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b .
—. Taking the values of ¢ and b found in (13) and (14), we have the
a!

curvature at E:

D,
b 2 4 D,cos’a 2cos’a
Curvature = —= =~ = (15) -
a? D,? 2D} D,
4cos’a

1
It is also shown in calculus that the curvature is equal to —, where
R

R i8 the radius of curvature at the point E. Therefore from (15) we
have:

1 2costa D,

—=-———, whence R==—«—— (16)

R D, 2 cos’a

Formula (16) can also be arrived at directly, without reference to
the minimum curvature of the ellipse, by introducing the formula for
the radius of curvature in the first place. The curvature is simply the
reciprocal value of the radius of curvature, and is only a comparative
means of measurement. The radius of curvature of an ellipse at the
a’

end of its short axis is —, from which formula (16) may be derived
]

directly by introducing the values of @ and b from equations (13) and
(14).

Having now found the radius of curvature of the ellipse at E, we
proceed to find the number of teeth which a spur gear of that radius
would have. From Fig. 14 we have:

P,
AB=

an
CO8 a
Now, if A B be multiplied by the number of teeth of the spiral gear,
we shall obtain a quantity equal to the circumference of the gear;
that is: '

AB X N=xD,, and since AB= from (17)
CcCo8 a
P,
X N==D, (18)
CcosS a

Since N’ is the number of teeth which a spur gear of radius R would
have, then,

2xR
P,

In equatfon (19) the numerator of the fraction is the circumference
of the spur gear whose radius 18 R. and the denominator is the circu-
lar pitch corresponding to the cutter.

N =

(19)
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From equation (16) we have:

D,
R=—r—um
2cos’a
Substituting this value of R in (19), we have:
2»D,
N—m——————— (20)
P, X 2cos’a
From equation (18) we have:

NP,
Dy=

(21)
wCOSa

Substitute this value of D, in equation (20) and we have:
2x NP,

N=———

2 P, xrcos’a

N
N—=— (22)
cos’a
Since N is the number of teeth in our spiral gear and N’ is the num-
ber of teeth in a spur gear which has the same radius as the radius
of curvature of the helix above referred to, this is the equivalent of
saying that the cutter to be used should be correct for a number of
teeth which can be obtained by dividing the actual number of teeth in
the gear by the cube of the cosine of the tooth angle. Since the cosine
of angle is always less than unity, its cube will be still less, so N’
is certain to be greater than N, which will account for the fact that
spiral gears of less than 12 teeth can be cut with the standard cutters.

or





















DIAGRAMS a1

strip of paper is used in the same manner as before, and upon careful
measuring of the respective distances from the center to the lines, one
obtains the distances 3.075 and 5.176 inches, which represent the re-
spective diameters, the sum being 8.25. The spiral angles are obtained
by measuring or calculating as follows:

cos spiral angle of first gear—=2.8 X prn =0.910;
spiral angle = 24 deg. 16 min.
1
cos spiral angle of second gear=—4.2 X =0.812;
&

spiral angle =35 deg. 46 min.

The above examples will show the careful student the manner of
working out various problems as required, and if the directions are
properly followed, this method will be found to be a great time-saver.
It may be mentioned that it is advisable to keep the spiral angle as
nearly equal in the two gears as possible in order to obtain the great-
est eficiency of transmission. It should be noted that when diagrams
of this type are to be used for practical calculation of spiral gears,
they should be laid out in a much larger scale than is possible to
show in these pages, and it would be advisable to lay out radial lines
in Fig. 15 for every degree, and vertical and horizontal lines for every
tenth of an inch, and circular arcs for equally fine subdivisions. The
same is true of the diagrams in Figs. 16 and 17. In Fig. 16, horizontal
lines should be laid out for every tenth of an inch, and vertical lines
should be laid out for all whole numbers of teeth. In Fig. 17, the
horizontal lines should be laid out for every tenth of an inch, vertical
lines for at least every 0.2 of an Inch, and radial lines for every de-
gree. This diagram should also be laid out so that leads over 20
inches may be read off, as well as those below this figure.

In Fig. 19 is given a diagram for determining the cutter to use
when milling the teeth of spiral gears. The instructions for the use
of the diagram are given directly on the chart itself, so that no other
explanation is necessary. This diagram was contributed to MACHINIRY
by Elmer G. Eberhardt, and appeared in the September, 1907, issue.
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gear teeth were ever stressed to anywhere near their breaking point.
But it has been found in practice that consideratioms of wear so far out-
weigh those of mere breaking strength that a gear which is designed
to give reasonable service will carry anywhere from ten to twenty
times the working load without fracture. A point of vastly greater
importance is that the stepped form will wear more evenly umder
extreme loads than the ordinary type. The reason for this is shown
in Figs 20 and 21. The resultant tooth pressure is always normal
to the teeth and tends to bend them apart. The stepped form offers
a uniform resistance along its whole length, carrying the load from
end to end (Fig. 20). The teeth of ordinary herringbone gears tend

Fig. 20

Fig. 81

Fig. 22

Pigs. 20 to 22. Diagrams showing Tooth Pressures and Angle
N 'y for C of Action

to separate more at the sides than near the supported center, causing
the load to be concentrated toward the center (Fig. 21).

The standards which have been adopted for Wuest gears are the
result of experience gained in Europe during the last six years. The
spiral angle of the teeth is about 23 degrees with the axis. Since the
nature of the action eliminates shock, it follows that the pitch required
for given conditions will be much finer than would be chosen for spur
gears. On the other hand, the face width will not be less, because
there is as much necessity for wearing surface with one kind of tooth
as with the other. Spur gears are usually made with a face width
equal to three or four times the pitch. Herringbone gears may con-
veniently have a face width equal to six times the pitch, not because
the width of this type need actually be greater, but by reason of the
pitch being proportionately less.

Starting with a width equal to six times the pitch, and allowing one
times the pitch as the non-bearing portion in the ceunter, there temainn
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an imaginary single tooth for corresponding pitch line velocities V
in feet per minute. The values are entirely empirical, but they are
based on the results of extended experience, and lead to dimensions
which are safe and reliable. Different curves are given for different
materials, and it is necessary to use that curve which corresponds
to the lowest grade material of the combination. The dimensions of
gears can be derived from the curves in the following manner:

H.P.=—=brake horsepower transmitted,
N =revolutions per minute,
D =pitch circle diameter, inches,
p=circular pitch in inches (use nearest diametral pitch),
W = total width of face, inches,
¥ = pitch line velocity, feet per minute,
P —total tooth pressure at pitch line, pounds,
K —stress factor (from curve).

Then
=DN H.P. X 33,000 pWK
V= —_ —— _
12 14 2
" in normal gears of moderate ratio, and face
P=8p K{ width equivalent to six times the circ. pitch
P
=4 —
3K

For high ratio gears take W=Rp (R=ratio) up to maximum of

W = 10p.
25P
p=\/
RK

In normal gears it is safe to aim at pitch line velocities between
1000 and 2000 feet per minute, with 1500 feet as a fair average. If
the pinion is to be fixed to a motor shaft without external support, the
diameter must be greater than when it can be supported on both sides.
Cast iron is preferable to cast steel for gears of large diameters
and moderate power, but the latter will be found more economical
for high tooth pressures. Pinions are usually made from steel forg-
ings of 0.40 to 0.50 per cent carbon. Soft pinioms should never be
used for herringbone gears.

There are two special cases where the ordinary methods of calcula-
tion should not be used. Rolling-mill gears are subjected to stresses
which are so far in excess of the average working load that it is
necessary to consider carefully the strength of the teeth in regard to
possible overloads. Extra high velocity gears, such as are used for
steam turbines, require additional wearing surface and are character-
ized by extreme width of face combined with abnormally fine pitch.
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Use 4 sign when gear and hob are of opposite “hand,” and — sign
when they are of the same “hand.”

In cutting teeth at large angles it is desirable to have the hob the
same hand as the gear, so that the direction of the cut will come against
the movement of the blank, but at ordinary angles one hob will cut
both right- and left-hand gears.

The actual feed of the cutter depends upon the angle of the teeth as
well as on the vertical movement of the hob. This is obtained by
dividing the vertical feed by the cosine of the tooth angle; thus:

0.03125

0.70711

The last computation need not be made except to see that we are
not figuring on too heavy a cut, as it has nothing to do with the gear-
ing of the hobbing machine. In setting up a hobbing machine for
spiral gears, care should be taken to see that the vertical feed does
not trip until the machine has been stopped or the hob has fed down
clear of the finished gear. Should the feed stop while the hob is stlll
in mesh with the gear and revolving at the ratio required to generate
a spiral, the hob will cut into the teeth and spoil the gear.

Should the thread angle of the hob be exactly equal to the tooth
angle of the spiral gear, and both hob and gear be the same “hand,” the
axis of the hob spindle will be at right angles to the axis of the gear.
This is in conformity with the rule that when hob and gear are of
the same “hand,” the hob spindle is set at the tooth angle minus
the thread angle of the hob. In cutting a spiral gear to take the
place of a worm-wheel, it 18 posgible to use the same hob that was
used in cutting the worm-wheel. This would be a case where it is
not necessary to tilt the hob spindle. Sometimes multiple-threaded
hobs are used in order to make the thread angle approximately equal
to the tooth angle, when it is desired to cut spiral gears with machines
on which the hob spindle swivels through only a small angle.

=0.043 inch actual feed.

































