
Exhibit N

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 1 of 99

United States Patent 1191 [I I] Patent Number: 4,680,698
Edwards et al. [45] Date of Patent: Jul. 14, 1987

[54] HIGH DENSITY ROM IN SEPARATE Memories," Electronic Engineering, vol. 54, No. 663, pp.
ISOLATION WELL ON SINGLE WITH CHIP 101-109 (Mar. 1982).

Ohzone, et al., "An 8K X 8 Bit Static MOS RAM Fabri-
[75] Inventors: Jonathan Edwards, Bristol; David L. cated by n - ~ ~ ~ / n - ~ e l CMOS ~ ~ ~ h ~ ~ l ~ ~ ~ , ~ IEEE

Waller, Avon; Michael D. May, Journal of Solid State, Circuits, vol. SC-15, No. 5, pp.
Bristol, all of England 854-861 (1980).

[73] Assignee: Inmos Limited, Bristol, England Primary Examiner-Archie E. Williams, Jr.
- -

[21] Appl. No.: 552,601
Assistant Examiner-William G. Niessen
Attorney, Agent, or Firm-Edward D. Manzo

[22] Filed: Nov. 16, 1983 [571 ABSTRACT

Po] Foreign Application Priority Data
Nov. 26, 1982 [GB] United Kingdom 8233733

[5 11 Int. C1.4 C06F 13/00; G06F 15/16;
G06F 7/48; HOlL 27/02

[52] U.S. C1. 364/200, 364/712;
357/40

[58] Field of Search ... 364/200 MS File, 900 MS File,
364/700, 706, 712; 365/200; 371/8, 10;

361/400; 357/40, 45

~561 References Cited
U.S. PATENT DOCUMENTS

.......................... 3,980,992 9/1976 Levy et al. 364/200
......................... 3,993,934 1]/I976 Baker et al. 361/400

4,074,293 2/1978 Kravitz 357/40
........................ 4,144,563 3/1979 Heuer et al. 364/200

................. 4,153,933 5/1979 Blume, Jr. et al. 364/200
............................... 4,191,996 3/1980 Chesley 364/200

4,346,459 0/0000 Sud et a]. .
......................... 4,349,870 9/1982 Shaw et al. 364/200

.................. 4,467,420 8/1984 Murakarni et al. 364/200
.............. 4,482,950 11/1984 Dshkhunian et al. 364/200

................... 4,491,907 1/1985 Koeppen et al. 364/200
...................... 4,546,454 10/1985 Gupta et al. 371/10 X

OTHER PUBLICATIONS

Intel Microcomputer Handbook, Jan. 1983, pp. 1626.
Electronic Design, Oct. 14, 1982, pp. 131-139.
Electronic Design News, Oct. 27, 1982, p. 165.
Barron, "The Transputer," The Microprocessor and Its
Application, pp. 343-357 (1978).
"Growing Microfamilies Show Off New Strengths,"
Electronics Design, vol. 29, No. 1, pp. 64-68 (1981).
Tominage, et al., "High Performance 3 Micrometer

A programmable, high speed, single chip microcom-
puter includes 4K of RAM, ROM, registers and an
ALU. Program can be stored in the on-chip RAM. The
first local variable of each process to be executed is a
workspace pointer (WPTR), and each process has a
respective workspace identified by its WPTR. For each
process, addressing of other variables is relative to the
current WPTR, which is stored in a workpiece pointer
register (WPTR REG). Instructions are constant bit
size, having a function portion and a data portion
loaded, respectively, into an instruction buffer (IB) and
an operand register (OREGTR). Memory address loca-
tions are formed by combining the contents of the
workspace pointer register and the operand register, or
the contents of the A Register and the operand register.
A set of "direct functions" obtains data from OREG.
"Indirect functions" use the OREG contents to identify
other functions, obtaining data from registers other than
the operand register. A "prefixing" function (PFIX)
develops operands having long bit lengths. Scheduling
and descheduling of processes are achieved by forming
a linked list within the several workspaces for the active
processes. Each workspace identifies the workspace
pointer of the next process to be executed. Each work-
space contains in memory the identification of the next
instruction to be executed for that respective process. A
"last pointer" register (LPTR REG.) cooperates in the
scheduling operations. Each microcomputer chip can
be coupled serially to other such chips on a respective
pair of only two wires, each a unidirectional channel.
Each channel also has two registers, one for process
identification and one for data. Communications are
synchronized.

15 Claims, 19 Drawing Figures

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 2 of 99

Fig. 1.

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 3 of 99

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 4 of 99

U. S. Patent JUL 14,1987 Sheet 3 of 15 4,680,698

t
r

RUNNING LATCH - -10
I B LATC 11 2

MEMORY
INTERFACE Ci\{pL MEN ENABLE LATCH REQUESTS

WRITE LATCH
BYTE LATCH
UPPERMER LATCH

117 116
115 Fjg. 3

I

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 5 of 99

6 5 4 0 REGTR 1

7 1 4 A REGTR 1

WWK SPACE WORK SPACE
I 1

AMRESS CONTENTS
b300 1 ADDRESS OF C W E L 10 1

I

I

11002 1 VARIABLE 2 1

AoORESS CONTENTS
Ill303 1 ADWESS CF CHANNEL 41 I

I

a

10202 VECTOR VARlABLE 2 I 1 11200 1 AOCRES ;F CHANNEL LO I

111001 1 VARIABLE 1 1'

10201

~ 1 1 0 0 0 I VARIABLE 0

VECTOR WRIABLE 1 I

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 6 of 99

U. S. Patent JUL 14, i 987

FUNCTION DATA .- .. A -,

>I Fig.5.
INSTRUCTION

154) 155,
GO

DELAY 2

MICRO-INSTRUCTION DESTINATION COLUMN SOURCE
STROBE STROBE PRE- CHARGE STROBE

Fig. 7

/l50
SOURCEJ
STROBE \ / 1 / \ \

DESTINATION A 151 %

STROBE
A

COLUMN
PRE- CHARGE V

(152
MICRO-
I N S T R U C T I O N J A f

STROBE

Fig.' 6
153

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 7 of 99

63

13 Fig. 8. FUNCTION DATA

MICRO IN-
PROGRAM I

I Z [11;81 2 [7:41 Z [3:01

P FIX N FIX NEITHER SIGNAL

1 1

1 1 I NEXT D

1 1 Oorl Om

1 0 Oorl FROM S+D

104

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 8 of 99

U. S. Patent JUL 14,1987 Sheet 7 of 1 5

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 9 of 99

U. S. Patent JUL 14,1987 Sheet 8 of 15 4,680,698

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 10 of 99

0

0

,d OW CHANNEL M~CRoCoMPUTEn

o mCESS REGlSrER
2

b
I

t) t)

0

0

MICROCOMPUTER

6 0 0 6 0

<---c. -
MICROCOMPUTER

,-.. - -
b b

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 11 of 99

U. S. Patent JUL 14,1987 Sheet 10 of 15 4,680,698

INPOT PROCESS REGISER
OF MICROCOMPUTER 2 I

READY

I

I SEQUENCE
I I

I

READY ed I I 189e

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 12 of 99

u. s. Patent JUL 14,1987 Sheet 1 1 of 15 4,680,698

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 13 of 99

BUS
16

27

ACK READY CLOCK 28 ACK TAKEN

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 14 of 99

Fig. 16.

ACK GONE CLOCK 28 ACK GO ACK READY ACK TAKEN CLOCK 22

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 15 of 99

u. s. Patent JUL 14,1987 Sheet 14 of 15 4,680,698

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 16 of 99

u. s. Patent JUL 14,1987 Sheet 15 of 15 4,680,698

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 17 of 99

4,680,698
1 2

an array of memory cells providing at least one K bytes
HIGH DENSITY ROM IN SEPARATE ISOLATION (8K bits) of programmable RAM.

WELL ON SINGLE WITH CHIP The present invention also provides a microcomputer
comprising a single integrated circuit device providing

The invention relates to microcomputers. This appli- 5 a processor and memory, said processor being arranged
cation is one of five applications assigned to Inmos to execute a number of operations on data in response to
Limited, each filed on Nov. 16, 1983 having Ser. Nos. a program consisting of a plurality of instructions for
552,601; 552,602; 553,027; 553,028; and 553,029. These sequential execution by the processor, each instruction
five applications have identical descriptions from pages including a set of function bits which designate a re-
6 through 85. 10 quired function to be executed by the processor,

BACKGROUND O F THE INVENTION wherein:
(a) said processor includes:

Microcomputers generally comprises a processor and (i) plurality of registers and data transfer means for
memory, the processor being arranged to operate in use in data transfers to and from said registers,
accordance with the sequence of instructions derived 15 (ii) means for receiving each instruction and load-
frdm a stored program. In operation the processor will ing into one of the processor registers a value
normally need to make data transfers between registers associated with the instruction, and
and between registers and memory. It may also wish to (iii) control means for controlling said data transfer
transmit messages to or from processes carried out on means and registers responsive to said function
other microcomputers. The speed of access to memo- 20 bits to cause the processor to operate in accor-
ries located external to the processor chip is much dance with said function bits and
slower. Furthermore, microcomputers have commonly (b) said memory comprises an array of memory cells
arranged for external communications to take place providing at least one bytes of RAM for storing a
through a shared bus which can act as a bottleneck program to be by the processor^
causing slower operation of the microcomputer. Preferably the memory provides at least four K bytes

Although the development of integrated circuit tech- of RAM. nology has led to more components provided On Preferably =id memory comprises a plurality of a microcomputer chip, difficulties arise in providing a
useful amount of memory on the same chip as the pro- RAM cells formed with high impedance resistive loads

30 and transistors. cessor.
The size available on a single silicon chip is limited In one embodiment said high impedance resistive

and memory arrays may comprise the largest and dens- loads are formed in a film of polycrystalline silicon.

component required for a microcomputer. Preferably the microcomputer has a substrate of

quently the incorporation of any memory on the same semiconductor material and said memory is located in
chip as a pdrocemr may occupy excessive area and 35 an isolation well formed of semiconductor material of
may lead to too low a yield of components different type from the substrate to reduce noise inter-

from a silicon chip due to the increased risk of defective ference between the memory and processor.
components arising from the incorporation of memory Preferably the microcomputer comprises a
on the chip. structure having an n-channel substrate with one or

~ ~ ~ h ~ ~ ~ ~ ~ , difficulties arise in trying to avoid un- 40 more isolation wells of p-type semiconductor.
acceptable noise interfering with the operation of a Preferably a plurality of isolation wells are provided
memory array when an asynchronous circuit such as a in the substrate, the memory m a y being located in one
processor is incorporated on the same chip. isolation well and transistors of other circuitry used in

the microcomputer being located in other isolation
OBJECTS OF THE PRESENT INVENTION ,, wells. . -

It is an object of the present invention to provide an In order to achieve-a satisfactory yield in manufac-
improved microcomputer with satisfactory combina- ture, said memory array preferably comprises a main
tion of memory and processor on a single chip. memory array and a redundant memory array, together

It is a further object of the invention to provide im- with means for enabling use of redundant memory if
proved speed of operation of a micr-mputer by re- 50 defective memory elements occur in the main memory
ducing delay in transfers between processor and mem- array.
ory. Preferably said redundant memory array incorpo-

It is a further object of the present invention to pro- .rates redundant rows and columns of memory elements
vide an improved microcomputer in which a program interconnectable with the main memory array through
for operating the microcomputer can be stored in a 55 fuse elements.
memory on the same chip as the processor. Preferably a single silicon chip on which is formed

It is a further object of the present invention to pro- the processor, programmable RAM together with com-
vide memory and processor on a chip with minimum munication channels permitting message transmission to
noise interference. or from a process executed by the processor. Preferably

It is a further object of the present invention to pro- 60 said control means for the processor is arranged to
vide an improved microcomputer which incorporates respond to functions selected from a function set which
memory and processor on the same chip with an accept- include data transfer between registers, memory and
able yield in manufacturing processes. registers and which enable synchronisation of message - -

transfer through said communication channels.
SUMMARY OF THE PRESENT INVENTION 65 Preferably said processor is arranged to execute a
The present invention provides a microcomputer sequence of instructions each one byte long and each

comprising a single chip having a processor and mem- having the same format of bit positions, thereby reduc-
ory formed on the same chip, the memory comprising ing the chip area required by the processor registers,

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 18 of 99

4,680,698
3 4

said registers each having a bit length which is an inte- ing both a processor and memory as well as links to
gral number of bytes. permit external communication. It is capable of carry-

The invention also provides a network of microcom- ing out a plurality of concurrent processes and effecting
puters as aforesaid, the microcomputers being intercon- scheduling and communication between processes both
nected to execute a plurality of concurrent processes. 5 on the same chip or separate chips. Each microcom-

It will be understood that the term microcomputer puter has at least one K byte of memory in the form of
does not impose any lower limit on how small the com- programmable RAM on the same chip as the processor
puter may be. and the processor is capable of obeying programs in the

An example of a microcomputer in accordance with chip's memory. The microcomputer has a plurality of
the present invention will now be described by way of lo communication links, herein called serial links, to enable
example and with reference to the accompanying draw- it to be connected into a network of interconnected
ings. microcomputers so that any one microcomputer can be

used as a building block for a network. The communica-
DESCRIPT1ON OF THE tion between any two microcomputers is effected by a

FIG. 1 is a block diagram showing the main features 15 serial link which provides one or more specific pin to
of the microcomputer, pin connections each interconnecting two and only two

FIG. 2 is as more detailed block diagram of some of microcomputers. Each link is not shared with other
the components shown in FIG. 1 and in particular illus- microcomputers or with any external memory. The
trates more fully the memory and serial links for exter- microcomputer is provided with means for synchroni-
nal communication, 20 sation in data transmission between microcomputers

FIG. 3 shows further detail in block diagram form of within the network so that communication through a
part of the microcomputer and particularly illustrates link between two microcomputers can be initiated by
the registers, data paths and arithmetic logic unit of the either the receiving or transmitting microcomputer.
central processing unit as well as the interface between The microcomputer contains a program with a plu-
the central processing unit and other units of the mi- 25 rality of sequential instructions each consisting of two
crocomputer, parts, one part representing the function of the instruc-

FIG. 4 illustrates the use of workspaces within the tion and the other part representing data which is
memory, loaded into an operand register. In this way the function

FIG. 5 illustrates schematically a form of instruction part of each instruction is of the same bit length regard-
used in the microcomputer, 30 less of the word length of the processor and in this way

FIG. 6 shows in wave form the relative timing and uniformity of function format and function bit length is
duration of a plurality of timing control signals, achieved regardless of the word length of the processor.

FIG. 7 illustrates the generation of timing control A further important feature of the microcomputer is
signals, that its operation is effected by use of a function set

FIG. 8 illustrates the operation of the microcomputer 35 which is simple and efficient. The function set consists
of FIGS. 1 to 3 with variable length operands. of a minimum number of functions. The function set

FIGS. 90 to 9e illustrate successive operations in one includes direct functions which cause the processor to
manner of communicating using a two word channel carry out an operation on the contents of the operand
between two processes which are executed by the same register. In a preferred arrangement it also includes one
microcomputer, 40 indirect function and two prefixing functions. The use

FIG. 10 illustrates the operation of two communicat- of the indirect function allows a large number of proces-
ing processes on one microcomputer, sor operations to be used without increasing the number

FIG. 11 shows a network of interconnected mi- and size of data registers to perform the operations.
crocomputers, including detail of the serial link wnnec- Furthermore the use of a prefixing function provides for
tion between two of them, 45 variable length operands.

FIG. 12 illustrates a sequence of operations for effect- By use of a microcomputer in accordance with this
ing communication via serial links between two pro- example, any required network of microcomputers can
cesses carried out on different microcomputers, be formed by interlinking a number of microcomputers

FIGS. 1% and 13b illustrate the format of data and and the resulting network operates in the same way as
acknowledge packets for transmission through serial 50 any single microcomputer.
links between two microcomputers,

FIG. 14 illustrates the operation of the same two
communicating vrocesses of FIG. 10 on two intercon-

GENERAL DESCRIPTION O F THE
STRUCTURE

nected microc&iputers, The main elements of the microcomputer are illus-
FIG. 15 shows a logic diagram of one output serial 55 trated in FIG. 1 on a single silicon chip 11 using p-well

link, complementary MOS technology, which will be de-
FIG. 16 shows a logic diagram of one input serial scribed in more detail with reference to FIG. 17. The

link, components provided on the chip have been indicated
FIG. 17 shows the chip formation which may be used in block form in FIG. 1 although it will be appreciated

for the microcomputer of FIG. 1, and 60 that the blocks are not intended to represent the relative
FIG. 18 shows an alternative chip formation which size and positioning of the various components. On the

may be used for the microcomputer of FIG. 1. chip there is provided a central processing unit (CPU)

DESCRIPTION OF THE PREFERRED
12 which includes some read-only memory (ROM) 13.

EMBODIMENTS
The CPU 12 is coupled to a memory interface 14 con-

65 trolled by interface control logic 15. The CPU 12 incor-
The microcomputer described herein is an example of porates an arithmetic logic unit (ALU), registers and

a Transputer (Trade Mark of Inmos International plc) data paths which will be described in more detail with
microcomputer and comprises a single silicon chip hav- reference to FIG. 3. The CPU 12 and memory interface

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 19 of 99

14 are connected to a bus 16 which provides intercon- manner in which the processor responds to each func-
nection between the elements on the chip 11. A service tion and the way in which the data is handled depend on
system 17 is provided with a plurality of input pins 18 the particular function selected from a set of functions
including a zero volt supply, a 5 volt supply, a reset pin which will be described below, but the format of the
which may be activated to reset the microcomputer to 5 function and data parts of each instruction is always the
a defined state, and a clock pin 28. The microcomputer same. The memory also stores data 31 which may be
is provided with a substantial amount of memory on the stored in either the ROM 20 or RAM 19.
chip 11 and this is represented by a random-access The microcomputer carries out a number of pro-
memory RAM 19 and the ROM 20. The amount of cesses together, sharing its time between them. Pro-
memory on the chip should not be less than 1K byte so 10 cesses which are carried out together are called concur-
as to provide sufficient memory capacity to allow the rent processes. At any time, only one of the processes is
processor 12 to be operated without external memory. actually being executed by the microcomputer and this
Preferably the memory on the chip is at least 4K bytes. process is called the current process. Each concurrent
The division between RAM and ROM on the chip may process to be effected by the microcomputer uses a
be selected to suit the particular requirements for the 15 region of memory called a workspace for holding the
microcomputer. The memory also includes redundancy local variables and temporary values manipulated by
21 (this may be as described in U.S. Pat. No. 4,346,459 the process. The address of the first local variable of
entitled "Redundancy Scheme For An MOS Memory;" each workspace is indicated by a workspace pointer
U.S. Pat. No. 4,389,715 entitled "Redundancy Scheme (WPTR). Similarly for each concurrent process, an
For A Dynamic RAM;" or U.K. Patent application 20 instruction pointer (IPTR) is used to indicate the next
823 1055, all owned by Inmos Corporation. This region instruction to be executed from the sequence of instruc-
21 of memory has rows and columns selectively con- tions in the program relating to that particular process.
nectable by fuses as shown to replace defective regions In FIG. 2, which shows three concurrent processes, the
of the memory 19 or 20 and thereby increase the pro- workspace for process '1 is indicated by the numeral 32
duction yield of chips which are satisfactory for use. 25 and the corresponding workspaces for processes 2 and 3
The operation of the microcomputer includes timing have been marked 33 and 34. Each workspace consists
control responsive to clock pulses from the pin 28. An of a plurality of addressable word locations and one
external memory interface 23 is provided and con- word location 35 of each workspace is used to store the
nected to a plurality of pins 24 for connection to an workspace pointer (WPTR) of the next process to be
optional external memory (not shown). In order to 30 executed on a list of processes waiting to be executed.
allow the microcomputer to be linked to other similar Thus, a linked list is formed in memory containing
microcomputers to form a network, a plurality of serial pointers to a sequence of workspaces for processes to be
links 25 are provided and in this example four are executed. If the processor is working on process 1 (see
shown. Each serial link 25 has an input pin 26 and an FIG. 2) and reaches a point where it is instructed that
output pin 27 each of which can be used to form a single 35 for the time being it is to stop executing that process, the
pin to pin connection to corresponding output and input CPU 12 will begin work on the next process, e.g. pro-
pins respectively of a further microcomputer. Each cess 2. It will be directed to that next process by reading
serial link is connected to a synchronisation logic unit the workspace pointer in memory at location 35. In the
10 comprising process scheduling logic which will be preferred embodiment there is a known relationship
described in more detail below. Although the drawings 40 between workspace pointer for any process and the
show four serial links 25, three links, or even two links, address of the workspace pointer of the next process on
may be used to form a single network but preferably at the linked list, so that the next part of the linked list will
least six, and for example seven, such links are provided be easily available from the current process workspace.
so that they may be fully interconnected in any desired For each process workspace, a further word location 36
array. 45 stores the instruction pointer (IPTR) for that process. It

will be appreciated that althdugh workspaces for only
GENERAL DESCRIPT1ON OF USE OF three processes are shown in FIG. 2, the number may be

AND COMMUNICAT1ON A wn T TWV c CHANNELS varied depending on the number of concurrent pro-
- I -u LLIVAJ cesses to be carried out.

FIG. 2 shows some of the elements of the microcom- 50 In order to allow communication between different
puter in more detail and in particular it illustrates the processes carried out by the same microcomputer, a
use of the memory on the chip. The microcomputer plurality of communication channels indicated by the
may be used to carry out a plurality of concurrent pro- numerals 40, 41, 42 and 43 are provided in the RAM
cesses on the same chip and in FIG. 2 the operations of section 19 of the memory. In this example each commu-
three concurrent processes have been shown. The mem- 55 nication channel consists of two word locations in mem-
ory is used to store the program 30 which may be stored ory, one for use in identifying the process wishing to use
in either ROM 20 or RAM 19. In this particular exam- the channel and the second for holding the data to be
ple the microcomputer is a 16 bit word device although communicated through the channel. The operation of
it will be understood that other word lengths may be these channels will be described more fully with refer-
used. The program 30 consists of a sequence of instruc- 60 ence to FIGS. 90-9e. FIG. 2 also shows in more detail
tions which in this example are each of 8 bit length and the formation of one serial link 25. It is to be understood
this instruction length may remain the same even if the that each of the serial links is similarly formed. As indi-
processor is of word length other than 16 bits. Each cated, the link 25 incorporates two channels 45 and 46
instruction is of the format shown in FIG. 5 where the each forming a uni-directional communication channel.
most significant 4 bits represent the function of the 65 In this way the channel 45 is used as an input channel
instruction and the least significant 4 bits represent data. and the channel 46 as an output channel. Each channel
The program 30 incorporates no data other than that consists of two registers each addressable in a manner
held in the designated part of each instruction. The similar to the two word locations of each of the chan-

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 20 of 99

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 21 of 99

4,680,698
9 10

ory, the instruction pointer IPTR is advanced for each -continued
instruction. An IB latch 112 records the state of the IB
register 63. An MADDR latch 113 records the state of OPERATIONS

the MADDR register. A MEM ENABLE latch 114 Code No Abbrev~atlon Name

records the state of the memory interface and has state 5 10 Join joln

1 whenever the memory interface 14 is occupied. A 1 1 sync sychron~se
12 re1 return

WRITE latch 115 records that a wnte request has been 13 rot rotate bytes
made to the memory. The BYTE latch 116 records that 14 sr shrft r~ght
a byte request has been made to the memory. An UP- 15 S I shlft left

PER/LOWER latch 117 holds the least significant bit 10
of byte addresses and is loaded from the least significant Prior to describing these functions and operations,
bit of the A register 71 when the content of the A regis- the notation which is used herein will be set forth. The
ter is shifted one place to the right. Transputer microcomputer is used preferably with

FUNCTION SET OCCAM (Trade Mark of Inmos International plc) lan-
guage, which is set forth more particularly in the book-

The function elements of the instructions which are let entitled programming Munua]-OCCAM published
received by the instruction buffer 63 are determined by and distributed by Inmos Limited in 1983 in the United
the function Set for the m i c r ~ ~ m p u t e r . The function Kingdom, a copy of which is attached to this specifics-
set is the list of available functions which can be se- tion as Appendix 1 as well as Taylor and Wilson, "Pro-
lected when writing a program and to which the mi- 20 cess-ariented Language Meets Demands of Distrib-
crocomputer is capable of responding. uted Processing", Electronics (Nov. 30, 1982), both of

There are three types of function in the function set. which are hereby incorporated herein by reference.
Direct functions which use the contents of the OCCAM language is particularly well suited to concur-

operand register 65 as data (the contents of other rent processing. Because the preferred embodiment is
registers may also be used as data). *' particularly suitable for concurrent processing, the use

Indirect functions which use the contents of the of OCCAM language with the present example is quite
operand register 65 to select one of a variety of appropriate.
''o~erations" using data in registers other than Other languages can be used with an appropriate
the operand register 65- The selectable "opera- compiler. In actual application, the programmer will
tions" are listed below the function set. 30 write a program using OCCAM language and a com-

Prefixing functions which accumulate operands piler will convert this to particular instructions in cus-
into the operand register 65. tomary fashion. Nevertheless, the functions and opera-

The function set is as follows: tions in the instructions are susceptible of description
35 using OCCAM language to show what happens within

Code No Abbrev~atton Name the preferred embodiment of the microcomputer de-
scribed herein. Thus, in describing these functions and

FUNCTIONS operations, as well as examples of use, the following
Dtrcct Funct~ons notation will be used:

0 idw load from workspace
1 stw store to workspace 40 NOTATION
2 ldpw load potnter lnto workspace
3 ldw~ load from workspace and increment I. PROCESS
4 Idv load from vector A process starts, performs a number of actions, and
5 stv store to vector
6 Id1 load l~teral

then terminates. Each action may be an assignment, an
7 ad1 add l~teral 45 input or an output. An assignment changes the value of
R J J U ~ P a variable, an input receives a value from a channel, and
9 JnZ jump non zero an output sends a value to a channel.

10 ldpc load polntcr lnto code At any time between its start and termination, a pro-
I 1 call call procedure

INDIRECT FUNCTIONS cess may be ready to communicate on one or more of its
13 opr operate 50 channels. Each channel provides a one way connection

PREFIXING FUNCTIONS between two concurrent processes; one of the processes
14 pfix prefix may only output to the channel, and the other may only
15 nfix negatlve prefix input from it.

An assignment is indicated by the symbol ":=". An

The operations which may be effected by use of indi- 55 assignment
rect functions are as follows: v.=e

OPERATIONS sets the value of the variable v to the value of the ex-
Code No Abbreviation Name pression e and then terminates. For example, x:=O sets

0 rev reverse 60 x to zero, and x:=x+ 1 increases the value of x by 1.
1 ~ q z equal to zero An input is indicated by the symbol "?'. An input
2 gt greater
3 and and c?x
4 or or inputs a value from the channel "c", assigns it to the
5 xor exclusive or
6 add add

65 variable x and then terminates. An input
7 sub
8 run
9 P=

subtract
run process
pause

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 22 of 99

inputs a value from the channel "c", and discards the cess to the inputting concurrent process, and execution
value. of both concurrent processes then continues.

An output is indicated by the symbol "!". An output A conditional construct

outputs the value of the expression e to the channel "c"
and then terminates. An output

outputs an arbitrary value to the channel "c".
The process SKIP terminates with no effect.
2. CONSTRUCT
A number of processes may be combined to form a

sequential, parallel, conditional or alternative construct.
A construct is itself a process, and may be used as a
component of another construct. Each component pro-
cess of a construct is written two spaces further from

..

condition 1
PI

condition 2
P2

condition 3

15 means that process PI is executed if condition 1 is true,
otherwise process P2 is executed if condition 2 is true,
and so on. Only one of the processes is executed, and
the construct then terminates. For example

the left hand margin, to indicate that it is part of the
construct. 20

IF
A sequential construct is represented by

x >= o

- -
P2
p3 increases y only if the value of x is positive.
. . . An alternative construct

The component processes PI, P2, P3 . . . are executed 30
one after another. Each component process starts after ALT

the previous one terminates and the construct terrni- lnput I
nates after the last component process terminates. For PI

example input 2
P2

35 ~nput 3

SEQ
P3
. . .

m ? x
.. . - .- , .

out I x waits until one of input 1, input 2 . . . is ready. If input
40 1 first becomes ready, input 1 is performed, and then

inputs a value, adds one to it, and then outputs the re- process P1 is executed. similarly, if input 2 first be-
sult. comes ready, input 2 is performed, and then process P2

A parallel construct is represented by is executed. Only one of the inputs is performed, and
45 then the corresponding process is executed and the

P A P
construct terminates. For example:

P3
. . . 50 count ? ANY

counter : = counter + 1
total ? ANY

The component processes PI, P2, P3 . . . are executed SEQ
together, and are called concurrent processes. The con- out I counter

struct terminates after all of the component processes counter : =O

have terminated. For example, 55
either inputs a signal from the channel "count", and

PAR increases the variable "counter" by 1, or alternatively

in ? x
inputs from the channel "'total", and outputs the current

out ! y 60 value of the variable "counter", and resets it to zero.
3. REPETITION

allows an input to x and output from y to take place
together. WHILE condition

Concurrent processes communicate using channels. P
When an input from a channel "c", and an output to the 65
same channel "c" are executed together, communica-
tion takes place when both the input and the output are repeatedly executes the process P until the value of the
ready. The value is assigned from the outputting pro- condition is false. For example

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 23 of 99

WHILE x > 5 x NOT x
x := x - 5 0 I

5 1 0

decreases x by 5 until its value is less than 5.
4. VARIABLES For the operators < < and > >
A variable is either a simple variation, corresponding x< < Y is the value of x moved Y bits to the left,

to a single word in store, or is one of a numbered set of vacated bit positions being filled with 0 bits
variables called a vector. For example, v [3]:=0 sets the X > > Y the value of x moved Y bits to the right va-
value of variable number 3 in the vector v to 0, and cated bit positions being filed with 0 bits
v[O] + 1 increases the value of variable number 0 by 1. The general OCCAM language

A variable is introduced by a declaration such as now be applied to the microcomputer of the example.
The register variables are defined as follows:

15 IPTR represents the contents of the instruction
VAR v : pointer register 67

P WPTR represents the contents of the workspace
pointer register 73

LPTR represents the contents of the list pointer reg-
which introduces v for use in the process P. 20 ister 74

5. PROCEDURES AREG represents the contents of the A register 71
A procedure definition allows a process to be given a BREG represents the contents of the B register 72

name. For example OREG represents the contents of the operand regis-
ter 65

25 A transfer from one register to another is represented
PROC square (n, sqr)

sar:= n * n
by an assignment, eg:

BREG: =AREG

defines the procedure "square".
The procedure name may be used as an abbreviation 30 which means that the contents of the A register are

for the process. For example copied to the B register, replacing the previous contents
of the B register.

square (x, sqrx) The memory in the transputer is represented by a
vector:

means 35
memory

sqrx:=xbx
An individual word in memory is identified by sub-

6. EXPRESSIONS scripting the vector eg:

An expression is constructed from operators, vari- 40 memory [AREG]
ables, numbers, the truth values TRUE and FALSE
and the brackets (and). which means the contents of the word in memory

TRUE is a value consisting entirely of 1 bits, and whose address is the contents of the A register.
FALSE is a value consisting entirely of 0 bits. A transfer between memory and a register is similarly

The operators +, -, *, / represent addition subtrac- 45 represented by an assignment eg:
tion, multiplication and division as usual.

For the operators =, < >, > and < =, the result is memory [AREG]: = WPTR

produced 2 shown below:
x=y true if x is equal to y
x<>y true if x is not equal to y
x> y true if x is greater than y

which means that the contents of the word in memory
whose address is the contents of the A register is re-
placed by the contents of the workspace pointer regis-
*a-
LCL.

x < = y true if x is less than or equal to y Three procedures (PROC) "run", "wait" and
For the operators \ /, / \ and > <, each bit of the "movetow occur frequently in the following descrip-

result is produced from the corresponding bits of the 55 tion. They are used in scheduling and will be explained
operands according to the following table: below in connection with scheduling. Meanwhile, they

0 0 0 0 0
0 I 1 0 1
1 0 1 0 I
1 I I 1 0

65
For the NOT operator, each bit of the result is pro-
duced from the corresponding bit of the operand, ac-
cording to the following table:

are defined as follows, wherein link [process] represents
the contents of the process register 47 of a serial link 25
and NIL represents a special value which is not the
workspace pointer of any process. READY represents
a further special value used by the serial links:

1 PROC run (w)
2 IF
3 w < > READY
4 SEQ
5 . memory [LPTR - 21 := w
6 LPTR := w

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 24 of 99

--

= READY
SKIP
PROC wait
SEQ
memory [WPTR - I] := IPTR
for each external request from a serial link
SEQ
run (link [process])
link [process] := NIL
WPTR : = memory [WPTR - 2]
IPTR := memory I WPTR - 1]
PROC moveto (w)
SEQ
IF
WPTR = LPTR

5 LPTR := w
6 WPTR < > LPTR
7 memory [w - 2] := memory [WPTR - 2]

5 8 WPTR := w

In the above procedures, line numbers have been
added for reference purposes in explanation which will
be given below.

10
Function and Operation Jkfinitions

These are now set out below using the notation de-
fined above. These will be further explained below in
connection with FIG. 4 and scheduling.

load from workspacc(function code 0)

Definition:

Purpose:

store to workspace(function code I)
Definition:

Purpose:

load pointer into workspace(function code 2)
Definition:

Purpose:

load from workspace and increment(func1ion code 3)
Definition:

Purpose:

load from vector(function code 4)
Definition:
Purpose:

store to vector(function code 5)
Definition:

Purpose:

load literal(function code 6)
Definition:

Purpose:
add literal(function code 7)

SEQ
BREG : = AREG
AREG := memory [WPTR + OREG]
to load into the A register the value of a location in
the current process workspace.

SEQ
memory I WPTR + OREG] := AREG
AREG := BREG
lo store a value in a localion in
the current process workspace.

SEQ
BREG : = AREG
AREG := WPTR + OREG
to load into the A register a pointer to a location in
the current process workspace
to load a pointer to the first
location of a vector of locations in
the current pro- workspace.

SEQ
BREG : = AREG
AREG := memory [WPTR + OREG]
memory [WPTR + OREG] := AREG + 1
to load into the A register the value of a location in
the current process workspace, and
increment the location
to facilitate the use of workspace
locations as loop counters,
incremating towards zero
to facilitate the use of workspace
locations as incrementing pointers
to vectors of words or bytes.

AREG := memory [AREG + OREG]
to load into the A register a value from an outer
workspace
to load a value from a vector of
values
to load a value, using a value as a
pointer (indirection) - in this case
OREG = 0

SEQ
memory [BREG + OREG J := AREG
AREG : = BREG
to store a value in a location in an
outer workspace
to store a value in a vector of
values
to store a value, using a value as a
pointer (indirection) - in this case
OREG = 0

SEQ
BREG : = AREG
AREG : = OREG
to load a value

AREG := AREG + OREG

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 25 of 99

-continued
Purpose: to add a value

to load a pointer to a location in
an outer workspace
to load a pointer to a location in a

jump(function code 8)

Definition:
Purpose:

jump non zero(function code 9)

Definition:

Purpose:

load pointer into code(function code 10)
Definition:

Purpose:

call procedure(function code 1 1)
Definition:

Purpose:

Indirect Functions(function code 13)
operate
Definition:
Purpose:

Prefixing Functions
prefix(function code 14)
Definition:
Purposc:

negative prefix(function code IS)
Definition:
Purpose:

Operations(function code 13)
reverse(operation code 0)
Definition:

Purpose:

equal to zero(operation code 1)
Definition:

vector of values

IPTR := IPTR + OREG
to transfer control forward or
backwards, providing loops. exits
from loops, continuation after
conditional sections of program

IF
AREG < > 0
IPTR := IPTR + OREG
AREG = 0
SKIP
to transfer control forwards or
backwards only if a non-zero value
is loaded, providing conditional
execution of sections of program and
conditional loop exits
lo facilitate comparjson of a value
against a set of values

SEQ
BREG := AREG
AREG := lPTR + OREG
to load into the A register the
address of an instruction to load
the address of a vector of data
forming part of the program

SEQ
memory [WPTR - 1] := IPTR
IPTR := AREG
AREG : = WPTR
moveto (WPTR + OREG)
to provide an eficient procedure
call mechanism
to facilitate code sharing, where
two identical procedures are
executed on the same processor

operate (OREG)
perform an operation, using the
contents of the operand register
(OREG) as the code dd~n ing the
operation required.

OREG := OREG << 4
to allow instruction operands which
are not in the range (2-15 to be
represented using one or more prefix
instructions

OREG : = (NOT OREG) < < 4
to allow negative operands to be
represented using a single negative
prefix instruction followed by zero
or more prefix instructions.

SEQ
OREG := AREG
AREG : = BREG
BREG := OREG
to exchange the contents of the A
and B registers
to reverse operands of asymmetric
operators, where this cannot
conveniently be done in a compiler

IF
AREG = 0
AREG : = TRUE
AREG < > 0
AREG : = FALSE

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 26 of 99

-continued
Purpose: to test that A holds a non zero value

to implement logical (but not
bitwise) negation
to implement
A = 0 as eqz
A < > 0 as eqz, eqz
i f A = O . . . asjnz
if A < > 0. . . as eqz, jnz

greater(operation code 2)
Definition:

Purpose:

and(operation code 3)

Definition:
Purpose:

or(operation code 4)

Definition:
Purpose:

exclusive or(operation code 5)
Definition:
Purpose:

add(operation code 6)
Definition:
Purpose:

subtract(owration code 7)
Definition:
Purpose:

run process(operation code 8)
Definition:

Purpose:

pause(operation code 9)
Definition:

Purpose:

join(operation code 10)
Definition:

IF
BREG > AREG
AREG := TRUE
BREG < = AREG
AREG : = FALSE
to compare A and B (trurting them as
twos complement integers), loading
- 1 (true) if B is greater than A, 0
(false) otherwise
to implement B < A by reversing
operands
to implement B < = A as (gt, eqz),
and B > = A by reversing operands and
k t . eqz)

AREG := AREG / \ BREG
to load the bitwise AND of A and B,
setting each bit to 1 if the
corresponding bits in both A and B
are set to 1, 0 otherwise
to logically AND two truth values

AREG := BREG \ /AREG
to load the bitwise OR of A and 8 ,
setting each bit to 1 if either of
the corresponding bits of A and B is
set, 0 otherwise
to logically OR two truth values

AREG := BREG > < AREG
to load the bitwise exclusive OR of
A and B setting each bit to 1 if the
corresponding bits of A and B are
different, 0 otherwise
to implement bitwise not as
(Id1 - I , xor)

AREG : = BREG + AREG
to load the sum of B and A
to compute add- of words or
bytes in vectors

AREG := BREG - AREG
to subtract A from B, loading the
result
to implement
A = B as sub, q z
A < > B as sub, eqz, cqz
if A = B as sub, jnz, . . .
i f A <> Bassub,eqz, jnz,. . .

SEQ
memory [AREG - 1] : = BREG
run (AREG)
to add a process to the end of the
active process list

SEQ
run (WPTR)
wait ()
to temporarily stop executing the
current process
to share the processor time between
the processes currently on the
active process list

IF
memory [AREG] = 0
moveto (memory [AREG + 1])

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 27 of 99

Purpose:

synchronise(operation code I I)
Definition:

-continued
memory [AREG] < > 0
SEQ
memory [AREG] : = memory [AREG] - I
wait ()
to join two parallel processes; two words
are used, one being a counter, the other a
pointer to a workspace. When the count
reaches 0, the workspace is changed

IF
memory [AREG] = NIL
SEQ
memory [AREG] := WPTR
wait I

Purpose:

return(operation code 12)
Definition:

Purpose:
rotate bytes(operation code 13)

memory [AREG 1 < > NIL
SEQ
run (memory [AREG])
memory [AREG] := NIL
to allow two processes to
synchronise and communicate using a
channel

SEP
moveto (AREG)
IPTR := memory [WPTR - I]
AREG : = BREG
to return from a called procedure

Definition:
Purpose:

AREG := (AREG < < 8) \ /(AREG > > (bitsperword - 8))

to rotate the bytes in the A register
to allow 8 bit byte values to be combined
to form a single word value
to allow a word value to be split into several
component 8 bit values

shift right(operation code 14)
Definition: AREG := AREG > > 1
Purpose: to shift the contents of the A

register one place right
shift left(operation code 15)
Definition: AREG := AREG < < 1
Purpose: to shift the contents of the A

register one place left

It will be seen that the above function set includes 40 The operand register 65 is used for several different
direct functions, indirect functions and prefixing func- purposes. The "data" which it receives with each in-
tions. At the start of execution of any instruction, re- struction may be a literal value for use in a computation
gardless of the function selected for that instruction, the or in the case of an indirect function, it is the definition
predetermined set of bit positions in the instruction of the required operation. A further important use is
buffer 63 which receive the function part of the instruc- 45 that for some functions, the data value in the operand
tion are used to provide an input to the decoder 64 register 65 will be combined with the data in the work-
whereas the other predetermined bit positions in the space pointer register 73 to locate an address where the
instruction buffer 63 which represent the data part of value of a particular variable is to be found or to be
each instruction are used to load the least significant stored. For example, the workspace pointer register 73
four bit positions of the operand register 65. If the func- 50 will contain the workspace pointer WFTR of the cur-
tion is a direct function, the processor then acts in ac- rent process. This points to a reference memory address
wrdance with the selected function on the wntents of for the workspace. Variables or other points will be
the operand register 65. If the function is an indirect defmed and stored in that workspace at address loca-
function, the contents of the operand register 65 are tions which are offset by known amounts from the ad-
used to determine the nature of the operation to be 55 dress pointed to by the workspace pointer WPTR. That
camed out and the operation is effected on data held in offset will generally be specified by an instruction por-
other registers. At the end of any instruction in which tion and stored in operand register 65. Indeed, the load
the function is direct or indirect, the operand register 65 and store from workspace instructions will implicitly
is cleared to zero. If the function is a prefix function, the refer to a memory location defined by the combination
processor operates to transfer existing data in the oper- 60 (illustratively the additive sum) of the contents of
and register 65 to positions of higher significance and WFTR register 73 and the operand register 65. Further-
then load into the vacated positions of lower signifi- more, the contents of the operand register 65 will be
cance data derived from the data part of the instruction. combined with the contents of other registers such as
At the start of each instruction, the instruction pointer is the A register 71 or the IPTR register 67, for accessing
incremented. Consequently the instruction pointer al- 65 vectors or for branching in the program. Examples of
ways points to the next instruction to be executed. As this will be given below.
mentioned, the instruction pointer IPTR is stored in It will be seen that the direct functions are selected to
register 67. cover the most commonly required actions within the

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 28 of 99

4,680,698
23 24

microcomputer in order to maximise efficiency of oper- instruction to be exectuted in the sequence. The least
ation. By using 4 bits to represent the function element significant two bits of the MIR 80 may be conditionally
of each instruction, the function set uses codes 0 to 15 set, so that the next minor instruction is selected as a
although no function has been allocated to code 12. result of conditions produced by a previous minor cy-
Code 13 is used to indicate the indirect function which 5 cle, and fed back through the multiplexor 9 to effect the
in this case is the "operate" function causing the least address in the MIR 80. This allows the next micro-
significant 4 bits of the instruction to be loaded into the instruction to be selected from four possible options
operand register 65 in the usual way but the contents of depending on for example the values in the various
that operand register are then used by the processor to registers shown in FIG. 3. If the two conditional bits of
determine an operation on data held in other registers. 10 the MIR 80 are not set conditionally then the next mi-
It will be appreciated that in this way the number of cro-instruction indicated by the address in the MIR 80 is
operations can be extended whilst maintaining unifor- unconditionally executed. When all micro-instructions
mity of an 8 bit instruction. By use of the prefix or have been executed in order to achieve operation of the
negative prefix functions before the "operate" instruc- instruction in the instruction buffer 63, the control sig-
tion, the contents of the operand register 65 can be 15 nal "NEXT" is generated in a field of the micro-word
varied to provide a much greater selection of operations output of the ROM 13, thereby demanding the next
than is set out above. The use of pfix and nfix will be instruction from the memory 19 to the instruction buffer
described in more detail below with reference to FIG. 8 63.
but first it is necessary to describe further the operation Each minor cycle consists of two phases, a source
of the micro-instruction program 13. 20 phase and a destination phase. The control signals gen-

The micro-instruction program is the means of gener- erated from the ROM 13 fall into three groups; those
ating control signals which control the switches 56 and which are active only during the source phase, those
inferface control logic 15 (FIG. 3) in order to carry out which are active only during the destintion phase and
the required "function" of each sequential instruction those which are active throughout the whole minor
arriving in the instruction buffer 63 from the microcom- 25 cycle. In order to control the occurrence and duration
puter program. The micro-instruction program consists of the control signals, the timing control is arranged to
of a list of micro-instructions stored in rows and col- provide four different strobe signals indicated in FIG. 6.
umns in the ROM 13. The ROM 13 provides an output, These are a source strobe 150, a destination strobe 151,
called a rnicro-word, which may consist of 68 bits each a column precharge strobe 152 and a micro-instruction
providing a control signal and divided up into a plural- 30 strobe 153. The source strobe is a timing signal which
ity of different fields, each field consisting of a predeter- allows a register to place its contents onto a bus and its
mined group of bit positions. The output at any one time duration is long enough to allow the arithmetic logic
is provided at selected bit positions depending on the unit to form a result. The destination strobe signals are
micro-instruction selected. Each field may relate to a arranged to allow registers to accept data from a bus.
specific area of control, such as for example, one field 35 The micro-instruction strobe is used to generate the
controls which register is connected to the X bus, an- address of the next micro-instruction from the condition
other field controls which register is connected to the Y multiplexor 9. The column precharge strobe is used to
bus, another field controls which register is connected precharge the bus lines X and Y to a high state ready for
to the Z bus, another field controls the action of the the next source strobe. The relative timing and duration
ALU 55 and another field controls feed back signals to 40 of these strobes is shown in FIG. 6. They are generated
the multiplexor 9 and MIR 80. One field controls the by the arrangement shown in FIG. 7. The clock pulses
interface control logic 15 and provides micro-instruc- from pin 28 (FIG. 1) generate a GO signal for the begin-
tion output signals such as "Read", "Write" and "'Next ning of each minor cycle. This signal is passed through
instruction required (NEXT)" to allow the micropro- four successive delay units within the CPU 12 so that
gram to control communication between registers and 45 the micro-instruction strobe 153 is derived from the
the memory 19 through the interface 14. output of the first delay unit 154, the destination strobe

The particular micro-instruction selected in the ROM 151 is derived from the output of the second delay unit
13 depends on the address in the MIR 80, which is a 7 155, the column precharge signal 152 is derived from
bit register providing a row and column selection in the the output of the thud delay unit 156 and the source
ROM 13. At the beginning of each instruction received 50 strobe 150 is derived from the output of the fourth delay
by the instruction buffer 63 the "function" is decoded unit 157. The operation of the processor is therefore
by the decoder 64 and is passed through the condition synchronised to the external clock input 28.
multiplexor 9 to provide & address fo; selection of the
micro-instruction in the ROM 13. Some functions may USE OF VARIABLE LENGTH OPERANDS

require only one micro-instruction to carry out the 55
function, in which case the ROM 13 provide a micro-
word output dependent on the address decoded by the
decoder 64 and the function is completed in one cycle of
operation, herein called a minor cycle, of the ROM 13.
Other functions require a succession of micro-instruc- 60
tions, and therefore minor cycles. In this case, the de-
coder 64 provides the MIR 80 with an address for the
ROM 13 to select the first micro-instruction necessary
for that function. Thereafter the microprogram pro-
ceeds to execute a sequence of micro-instructions, each 65
taking one minor cycle, and each micro instruction
provides in a field of its output micro-word 7 bits for the
MIR 80 so as to identify the address of the next micro

As already explained above, the microcomputer is
capable of operating with a variable length operand.
Although each instruction allocates 4 bit locations to an
operand, it is possible to build up in the operand register
65 an operand up to 16 bits by use of the functions pfix
and nfix corresponding to codes 14 and 15 in the func-
tion set set out above. This operation can best be under-
stood with reference to FIG. 8. This indicates the oper-
and register 65 having four sections each with 4 bits.
The arithmetic logic unit 55 is indicated having four
sections corresponding to 4 bits of increasing signifi-
cance and the connection between the 0 register 65 and
the arithmetic logic unit 55 is controlled via a gate 90
selectively controlling transmission through the Y bus

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 29 of 99

to the arithmetic logic unit. The Y and Z buses are each tion are supplied on lines 100, 101, 102 and 103 and in
shown separated into four parts, each handing four bits this way, the 4 bits of operand in the least significant
of data of different significance, e.g. Y[3:0] represents section of the operand register 65 are advanced through
the part of the Y bus handling the four digits of least the arithmetic logic unit to the next significant stage of
significance whereas Y[15:12] handles the four digits of 5 the operand register 65 thereby allowing a further 4 bits
greatest significance, and similarly for the Z bus. Each of operand to be loaded into the least significant posi-
section of the operand register 65 other than the least tions of the operand register 65. This operation is re-
significant 4 bits, can be supplied through a gate 91 from peated each time an instruction is derived with pfix
the Z bus or alternatively it can be fed with a zero from function up till a maximum of 16 bits of operand. Simi-
the gate 92. The instruction from the instruction buffer 10 larly if the function is nfix, the process is generally
63 in FIG. 8 is divided so that the least significant 4 bits similar in allowing each successive 4 bits of operand to
are fed to the least significant 4 bit position of the 0 be moved up into a higher stage of the 0 register 65
register 65 and the function element is used to select an without zeroes being written in after each instruction.
address in the micro-instruction program 13 as previ- This allows a negative operand to be built up to a maxi-
ously described with reference to FIG. 3. The truth 15 mum of 16 bits. The truth table indicates that if the
table of FIG. 8 indicates three alternativi possibilities function is neither pfix nor nfix, the control signal on
where the function corresponds to pfix or nfix or nei- line 100 causes zeroes to be fed into the three upper
ther. It also lists the corresponding control signals significant stages of the 0 register 65 (representing
which are fed onto lines 100 to 104 from the micro- bits15 to 4)at the end of that instruction.
word output of the ROM 13, and the duration of those 20
signals. SCHEDULING OF PROCESSES

The micro-word output control signals used in this As already indicated, the microcomputer may oper-
case are as follows: ate a number of concurrent processes. It therefore pro-

1. OPD NOT 0-meaning that the operand register vides a system of scheduling to determine which pro-
65 is not supplied with zeroes if the truth table has a "1" 25 cess shall be performed at any particular time. At any
but is supplied with zeroes if the truth table has a "0". one time the WPTR register 73 (FIGS. 3 and 4) holds

2. NEXT-meaning that the operand register 65 will the workspace pointer of the process currently being
be loaded with the next operand from the instruction executed. However the workspace of the current pro-
buffer 63 if the truth table has a "1" but not if the truth cess and the workspaces of other processes waiting to
table has a 'V'. 30 be executed form a list in which one location of each

3. Y FROM OPD-meaning that the Y bus receives workspace holds the workspace pointer of the next
the operand from the operand register 65 if the truth process on the list. Another location in each process
table has a "1" but not if the truth table has "0". workspace holds the instruction pointer identifying the

4. Z FROM Y-meaning that the Z bus output from next instruction which is to be carried out for that pro-
the ALU 55 will receive data from the Y bus if the truth 35 cess when it becomes the current process. Furthermore
table has a "l", but not if the truth table has a "0". the LPTR register 74 contains the address of the work-

5. Z FROM NOT Y-meaning that the ALU 55 will space for the last process currently waiting to be exe-
cause the signal on the Y bus to be inserted and passed cuted. In this way new processes can be added to the
to the Z bus if the truth table has a "1" but not if the end of the list and the LPTR register 74 always indi-
truth table has an 'Yl". 40 cates the current end of the list. The processor normally

The duration of these five control signals in each executes the processes on the list in sequence only ad-
minor cycle is indicated in FIG. 8 wherein S indicates vancing to a subsequent process when the current pro-
duration in the source phase only, D indicates duration cess executes a "pause" operation (code 9 in the opera-
only in the destination phase and S + D indicates dura- tions list) or when the current process deschedules itself
tion in both. 45 by executing a "join" operation (code 10 in the opera-

The micro-word control signal on line 100 operates tions list) or a synchronise operation (code 11 in the
the gates 91 and 92 to allow the Z bus to unload into the operations list). In any of those situations, the current
operand register 65 in response to the functions pfix and process ceases to carry out further instructions and the
nfix whereas any other function causes the three most processor save the instruction pointer IPTR in the pro-
significant stages of the operand register 65 to be zeroed 50 cess workspace as indicated at 36 in FIG. f , and moves
by an input through the gate 92. All instructions gener- onto the next process which has been identified by the
ate the control signal NEXT on the last minor cycle and address of the next process, shown as 35 in FIG. 2 and
this is applied to line 101 to cause the operand register then loads into the IPTR register 67 the IPTR for the
65 to be loaded with the next operand. Line 102 receives new process. So that there is always at least one process
the signal "Y FROM OPD" and causes the operand 55 running, a null process is provided and the null process
register to be connected through the gate 90 to the Y is run when no other process is active.
bus for both ptix and nfix. Line 113 receives the control The procedures "run", "wait", and "moveto" defined
signal "Z F'ROM Y" and causes the arithmetic logic above are used in scheduling. A process will be "sched-
unit 55 to transmit to the Z bus the signal on the Y bus uled" when it is the current process or is on the linked
for pfix but not for nfix. Line 104 receives "Z FROM 60 list of processes which are waiting to be executed. A
NOT Y" and allows the signal on Y to be inverted and process becomes "descheduled" when it is taken off the
supplied through the ALU 55 to the Z bus for nfix but linked list. A descheduled process will never be exe-
not for pfix. The signals on lines 100, 103 and 104 exist cuted unless some other process or instruction sched-
throughout the source and destination phases of each ules it, i.e. adds it to the end of the linked list. It will be
minor cycle whereas the signal on line 101 exists only in 65 recalled that LPTR register 74 (FIG. 3) is used to store
the destination phase and the signal on line 102 exists the workspace pointer for the last process on the list.
only in the source phase. When the function is pfix, it Hence, it must be adjusted whenever a process is added
can be seen that signals corresponding to a truth condi- to the linked list. Also, when a process is to be sched-

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 30 of 99

4,680,698
27 28

uled, the CPU 12 must be able to determine which 12000, PROC run (w) would enter 12000 in memory
instruction is to be executed next for the process. This is [I09981 and enter 12000 into register 74.
done by storing in memory the appropriate instruction The procedure called "wait" can be used alone or in
pointer IPTR, which is in IPTR register 67 while the combination with PROC run (w). By itself, PROC wait
process is current. Such storage is done, for example at 5 deschedules the current process and enables the system
memory location 36 (FIG. 2). to execute the next scheduled process, executing it

In describing these procedures, it will be convenient where appropriate in its program instead of at its first
to refer to FIG. 4 which illustrates workspaces 32 and instruction. In sequence with PROC run (w), PROC
33 more particularly, as well as registers 65, 67, 71, 73 wait causes the microcomputer to stop the current Pro-
and 74. FIG. 4 shows representative memory addresses 10 cess, schedule it at the end of the list of processes to be
and contents of the workspaces. executed, and proceed to the next scheduled process.

~h~ process which has the workspace 32 is made the Reference will now be made to the previous definition
current process by inserting its workspace pointer of PROC wait. When procedure "wait" is called (line
WPTR into register 73. In this case, WPTR equals 1). a Sequence is commenced (line 2) having four steps
10000. When the process becomes the current process 15 (lines 3,4,8 and 9). Lines 4-7 relate to external requests,
the processor finds the next instruction to be executed and discussion of this can be deferred* although link

by examining WPTR-1, i.e. the contents at memory [~ ' o c ~ s] represents the contents of process register 47

location 9999, to find a pointer 84 to an instruction and serial link 25 2). In line 3, [WPTR-ll

loads this pointer in the IPTR register 67. While this is is the 'pace at the address WPTR-l~ which
the current process, the processor will use the contents 20 based on the reference address WPTR of the current

of IPTR register 67 to point to the next instruction. process. That memory location is, in the preferred em-

During the processing, it will use variables whose bodiment, used to point to the next instruction to be

addresses are formed by combining a reference value, executed when the process is recommenced. The con-
tents of IFTR register 67 always points to the instruc- such as the WPTR Or the the A register 71' 25 tion to be executed next for the current process. Hence,

and an in register "' In a load from line 3 simply stores in memory (preferably on-chip) the
workspace 'peration an 'perand of "2" refer to pointer to the next instruction to be executed when, if
whatever is at memory location 1 0 ~ 2 while the process ever, the process being descheduled becomes current.

workspace 32 is current' When pro- Assume that the current process is process w. If the
cessing is to stop, the linked list is consulted. Elements 30 procedure PROC - (w) has preceded PROC wait,
85 and 86 are part of the linked list. The processor then at this time, the current process (w) will have been
look at WPTR3 WPTR 85 at location added at the end of the linked list (by PROC run (w)),
9998, pointing to the next workspace. Pointer 85 will L- register 74 will have been updated (also by
contain the number 11000 which points to workspace PROC run (w)), and now the pointer to the next in-
33. If the process corresponding to workspace 33 is the 35 struction for process will have been stored at a
last process on the linked list, the LFTR register 74 will known location, memory [WPTR-l], with respect Po
contain the pointer 11000. No pointer 86 will be stored the workspace pointer address (WPTR) for process w.
at memory location 10998 until some process is added to nus, process is ready now to be deactivated. ~i~~ 8
the linked list. of PROC wait looks to the linked list for the next pro-

Turning m~~ the three procedures* m (w) 40 cess. Its workspace will be pointed to by the contents at
is used the schedule a process defined by W i.e., add it to address WPTR-~ of the current workspace w. Hence,
the linked list. This procedure has been defined above line 8 of PROC wait assigns to WPTR register 73 the
and reference will now be made to that definition and workspace pointer for the next process on the linked
the line numbers used in the definition. list. Now the reference address WPTR has advanced,

If the value of w is the special value ''READ? no 45 and the system next finds out what the next instruction
action 1s performed. Further ex~lanabon of this will is for this next process by looking at the pointer stored
follow later with reference to CORUn~ni~titions between at the memory whose address is WPTR-1. To use FIG.
different microcomputers. Otherwise w is a pointer to a 4, consider that workspace 32 is current and its process
process workspace, and lines 5 and 6 will be executed in receives an instruction which includes pROC wait.
sequence. In line 5, LPTR means the contents of LPTR 50 Initially, WPTR is 10000. At line 8, register 73 is set to
register 74, which is a pointer to the reference address the contents found at memory address 9998, which will
for the workspace for the last process on the linked list. be the pointer 11000. At line 9, register 67 is set with the
The memory whose address is LPTR-2 would contain instruction pointer found at memory address 10999.
the address of the workspace pointer for the next pro- Thus, if PROC run (w) is followed by PROC wait, the
cess, but as yet there is none because L m corre- 55 current process is added to the end of the list (its work-
sponds to the last process. Line 5 now assigns w (the space pointer is stored on the linked list), the pointer to
workspace pointer in the process w) to memory loca- its next instruction is stored in memory, it is deactivated,
tion LPTR-2, so process w is now at the end of the and the next process on the linked list is commenced
linked list. At this point, the contents of LPTR register beginning at the proper instruction. All of this is done
74 points not to the last process w, but to the penulti- 60 using only four registers. This arrangement permits the
mate process. This is corrected in line 6 which enters scheduling and descheduling of processes which are
into LPTR register 74 the workspace pointer for pro- limited in number by only the amount of memory in the
cess w. Because of this step, further processes can be system.
added to the linked list without deleting process w The procedure named "moveto" can be used to set
unintentionally, which would happen if LPTR register 65 the workspace reference pointer to a different address
74 were not updated. With reference to FIG. 4, if there in the workspace for the current process, without neces-
are only two processes scheduled, as shown, and pro- sarily changing to a new IPTR. Thus, if a process has its
cess w corresponds to a workspace whose pointer is reference workspace pointer af 10000, moveto (10200)

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 31 of 99

could be used to set the registers to change the refer- referring to FIG. 4 a workspace 32 will be referred to
ence pointer to 10200 for this same process. This will be by the workspace points WPTR which is 10000. At a
described as follows with reference to the previous known location within the workspace, there can be a
definition of PROC moveto (w). Line 2 of the definition vector. The vector will have a plurality of locations
declares this a sequence of steps. Lines 3 and 8 are 5 such as 10200, 10201 and 10202. The beginning of the
equally offset from the left margin, so they both will be vector will be a particular offset (200) away from the
done in sequence. Assume that the system is not on the workspace pointer (10000). Thus, to find the beginning
last process. Hence, line 4 will be false, so the system of the vector, the offset (200) will be loaded into the
will jump to line 6. The condition at line 6 will be true, operand register 65 and then the instruction "load
so line 7 will be executed. Line 7 sets the contents at 10 pointer into workspace" will add these two numbers to
memory addres w-2 to the workspace pointer for the obtain a sum 10200 which is an address. This function
next process on the linked list. Next, line 8 changes the will place the address 10200 into the A register, which
contents of the WPTR register 73 to the value w. Now point to the beginning of the vector. Thereafter, the
register 73 points to a new reference address for the "load from vector" operation will be used to find partic-
current process. At the customary offset (minus 2) from I5 ular memory locations with respect to the beginning of
this new reference address will be found a pointer to the the vector, and therefore it uses the offset in the oper-
workspace for the next process to be scheduled. In the and register 65 but in combination with the A register
event that there is no next process, then line 4 will be 71 instead of the workspace pointer register 73.
true and LPTR register 74 will have its contents ad- load literal
justed to point to w as the reference address for the last 20 The "load literal" function (function code 6) literally
process (line S), after which the register 73 for holding loads whatever is in the operand register 65 into the A
a pointer to the reference address of the current process register 71 (the top of the evaluation stack). With re-
will be adjusted to point to w. spect to FIG. 5, the last four bits of any given instruc-

Having now described FIG. 4 with reference to tion will be loaded into the operand register 65, but by
scheduling, some functions and operations will be fur- 25 use of the prefixing functions, more than 4 bits can be
ther described with reference to FIG. 4. stored in the operand register Illustratively, however,

load from workspace an instruction having the codes in decimal notation of 6
The load from workspace function (function code 0) 13 has two parts, a function part and a data part, as

copies the contents at a specific memory location and explained referring to FIG. 5. The first number " 6 is
puts it implicitly into the A register. This function and 30 the function code, indicating that this is a "load literal"
configuration of the preferred embodiment implicitly function. The second part of the instruction is the data
refers also to the memory whose address is defined by value "13". Accordingly this instruction T 6 13" would
an offset from the current workspace pointer which mean load the number 13 into the A register 71 and shift
serves as a reference. This reference address is always the previous contents of the A register into the B regis-
stored in the WPTR register 73, and the offset is con- 35 ter 72.
tained in the operand register 65. The expression, jump
"memory [WPTR+OREG]" therefore refers to the The "jump" function (function code 8) is used for
contents of the memory whose address is found by branching in a program. The instruction to be executed
adding (summing) the contents of WPTR register 73 next by the processor for the current process is pointed
and register 65. A "load" refers to the A register 71, and 40 to by the contents of the IPTR register 67 which con-
the contents of the stack will be shifted down by one tains the instruction pointer. The jump instruction adds
register, i.e. the contents of the A register will be shifted the contents of the operand register 65 to the instruction
into the B register (to make room for the data to be pointer. Through use of the prefixing functions, the
loaded into AREG), and the contents of BREG will be instruction pointer can have values added to it or sub-
loaded into the C register, if any. With reference to 45 tracted from it, to jump forward or backward in a pro- -

FIG. 4, if WPTR is 10000, then "load from workspace" gram.
using codes 0 2 will mean load variable 2 into the A call procedure
register. The "call procedure" function (function code 11)

store to work space uses the "moveto" procedure which was described
This "store to workspace" function (function code 1) 50 above. "Call procedure" first stores IPTR in memory at

implicitly means whatever is in the A register 71 into the customary location for the instruction next to be
the memory space whose address is offset from the executed (e.g. memory location 9999 in FIG. 4). Next it
reference address (contained in WPTR register 73) by transfers into the instruction poiliter register 67 the
the offset contained in the operand register 65. Also, the contents of the A register 71 which will have been
stack moves up (BREG moves into AREG, and CREG 55 loaded with the pointer to an instruction next to be
moves into BREG). Referring to FIG. 4 if executed after the "call procedure" function is com-
WPTR=10000 and OREG= 1, then this function pleted. Then the A register 71 is loaded with the work-
means store the contents of the A register 71 into mem- space pointer. Following this, the "moveto" procedute
ory location 10001, which is the location for storing changes the reference pointer WPTR so that usually it
variable 1. 60 points to a different address in the current workspace. It

load pointer into workspace will be remembered to "moveto ()" procedure will set
The function "load pointer into workspace" (function the contents of the WPTR register 73 to whatever is

code 2) does not store any data into the workspace. within the parenthesis following the word "moveto".
Instead, it load the A register 71 with a pointer to a Thus, after a "call procedure," the system now has the
particular location in workspace. This will be used, for 65 workspace pointer pointing to a different location
example, in connection with the "load from vector" within the same workspace for the current process and
instruction which references a particular portion of a is prepared to execute a different instruction which was
vector which can be stored in the workspace. Thus, previously contained in the A register 71. The converse

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 32 of 99

4,680,698
31 32

operation is effected by use of the RETURN operation nel by the first process to reach its sync operation, such
(operation code 12). process will place its workspace pointer into the first

run process part of the channel and then will deschedule itself. As-
This operation 37 run process" (operation code 8) is sume that it is process X which first reaches "sync".

generally used in the creation of a process which will 5 Process X now waits for process Y to reach its "sync"
have its own workspace and set of instructions. The A operation. When this happens, process Y will check the
register 61 will have been loaded with a workspace first part of the same channel, and it will not find NIL
pointer for the workspace for the new process, and the but will instead find the workspace pointer for process
B register 72 will have been loaded with a suitable in- X. In response, it schedules process X (adds it to the end
struction pointer for the new process. Operation "run 10 of the linked list). The first part of the channel returns to
process" stores the instruction pointer in memory at the NIL. Generally there will be at least a second part to
proper offset from the workspace pointer, and then it the channel where data for transfer from one process to
calls the procedure PROC run (), discussed above, the other will be placed. Also, synchronise operations
using the workspace pointer in the parentheses. As generally occur in pairs. The first "sync" operations in
discussed, this will schedule the new process, i.e. it will 15 two processes can cause the process to wait for data and
add the new process to the linked list. then transfer it when it is ready. The second "sync"

pause instructions cause acknowledgments. Thus, a process
The "pause operation (operation code 9) appears in a which is inputting data from a process will "sync". If

program to prevent any single process from using the the data is not ready, it will "wait". When the data is
ALU 55 to the exclusion of other processes. This opera- 20 ready by the supply process, that supplying process will
tion is inserted into loops by the compiler. This opera- schedule the receiving process, which will then take the
tion adds the current process to the end of the linked data. Then "sync" instructions by each acknowledge
list, stores the necessary pointers, causes the current the transfer. The first "sync" by the process supplying
process to cease execution for the time being, and makes the data will indicate that the data is ready to be taken.
ihe next process on the linked list the current process. 25
The contents of the evaluation stack are not preserved COMMUNICATION BETWEEN PROCESSES ON

because "~ause" is executed at a time when such con- THE SAME MICROCOMPUTER

tents can be discarded without harming the process. As already explained, the microcomputer permits
join communication between processes which may be on the
This "join" operation (operation code 10) is used for 30 same microcomputer or on different microcomputers.

example when there are concurrent processes, and it is For example, one process may be the measurement of
intended that they should all be at a point in the pro- distance travelled by a motor car and a second process
gram at the same time. Consider an original process P(0) the measurement of consumption of fuel relative to
which at a certain point in the program spreads into n distance travelled for that vehicle. The first process
concurrent subprocesses P(1), P(2), P(3). . . P(n). When 35 may receive as an input, data representating rotations of
these are done, a final process P(n+l) is to execute. the vehicle wheel and provide an output representing
However, such final process should not occur until all miles travelled. The second process may receive as an
of P(1). . . P(n) have terminated. The "join" operation input data relating to fuel quantity consumed but it also
is used for this. A counter is set up in the workspace, needs to communicate with the first process to derive
and the A register 71 points to the memory location 40 information about distance travelled before it can pro-
where the count is stored. The count corresponds to the vide a useful output regarding fuel consumption relative
number of subprocesses (which are still active (not to distance. In the case of process to process wmmuni-
terminated). Each subprocess ends with a "join" opera- cations on the same microcomputer communication is
tion. After a subprocess reaches its "join" operation, it camed out in this example through the channels 40 to
checks the count. If the wunt is zero, then the program 45 43 indicated on FIG. 2. This operation involves the use
moves to the final process using the "moveto" proce- of the synchronise operation, this requires a program
dure. If the count is not zero, the count is decremented instruction consisting of function code 13 and operation
by one count, and then the subprocess is caused to code 11 from the above list of functions and operations.
"wait" as described above. The other subprocesses are Each channel 40 to 43 consists of two consecutive word
executed until zero count is reached. 50 locations in memory, one providing a "process loca-

synchronise tion" and the other a "data location". The channel is a
The 'kynchronise" operation (operation code 11) is unidirectional communication channel which is shared

quite important to concurrent processing, for its use by two and only two processes at any one time. When
assures that two processes will be at the same point at an active process x wishes to communicate with a pro-
some time. This will be discussed further in connection 55 cess y on the same microcomputer, it follows a se-
with FIG. 9 and the discussion entitled, "Comrnunica- quence which will be described with reference to
tion Between Processes On the Same Microcomputer." FIGS. 9a to 9e. Firstly, process x identifies the address
Briefly however, if two processes X and Y on the same of the channel (marked 40) and loads the data it wishes
chip wish to communicate, presumably because one to communicate into the data location of the channel. It
process is computing data which the other process 60 also executes an instruction for a synchronise operation.
needs, a channel 40,41,42 or 43 (FIG. 2) is used. Each Provided the process location of channel 40 does not
process will have a "synchronise" operation. The first already have the workspace pointer of the process y
process to reach its "sync" operation will look at the awaiting to receive the data, the synchronise operation
channel. The channel address will have been loaded causes the work space pointer of process x to be re-
into the A register 71, so "memory [AREG]" refers to 65 corded in the process location of channel 40 and uses a
the channel. The expression "NIL" in the definition of "wait" procedure of deschedule process x. This is the
this operation refers to a predetermined datum recog- position shown in FIG. 96. In FIG. 9, the work space
nised as a nil. If NIL is found in a first part of the chan- pointer of process X is referred to as "X" and the data

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 33 of 99

4,680,698
33 34

being communicated is referred to as "DATA." Process -continued
x now waits until process y is ready to receive the data.
When process y wishes to receive the data it carries out 8. rotations:= rotations + 1

9. mile ! ANY
an instruction for a synchronise operation to see if the
communication channel 40 is ready to transmit data. In 5
carrying out this instruction, process y locates the Line numbers are not Part of the Program but have been
workspace pointer of process in the process loca- added to facilitate explanation. Line 1 declares a vari-
tion of channel 40 and as can be seen from the synchro- able to exist; it is called "rotations". Line 2 is an endless
nise operation set out in the list of operations, the execu- loop because the condition TRUE is always true. Start
tion of a synchronise operation causes a "runw pro,--- 10 with zero rotations (line 4). Line 7 waits for any input
dure to remove the workspace pointer of process from from the channel named "rotation." When one is re-
channel 40 and add process to the end of the list of ceived, the variable "rotations" is incremented by one.
processes waiting to be executed. This is the position of Eventually there will have been 1000 rotations, and
FIG. gc. Process then reads the data from the data Line 5 will be false. Lines 6,7 and 8 will then be skipped
location of channel 40 and then operates a further in- 15 and Line 9 will output a datum to the channel named
struction for a synchronise operation to indicate that it "mile".
has received the data. This loads the workspace pointer The compiler will convert these OCCAM statements
uy" of process into the process location of 40 to the following machine instructions:
and causes process y to wait. This deschedules process
y leaving the channel 40 in the condition shown in FIG. 20 Instruction Sauence
9d. Once the list on which process x is waiting reaches Function Program in OCCAM
process x so that process x is reactivated, it performs a code Data language
further instruction for a synchronise operation which VAR rotations:
now locates the workspace pointer "Y" of process y in WHILE TRUE
the process location of channel 40 and this allows pro- 25 SEQ
cess x to continue to be operated. At the same time it 1 . L1:

causes a "run" procedure on process y so that process y :: Id1 0 6 0 rotations : = 0
stw 0 1 0

is again added to the end of the waiting list of processes 4, ~ 2 : WHILE rotations
and is ready to run. The communication channel 40 is < looo SEQ
then in the condition shown in FIG. 9e with process x 30 5. I ~ W o o o
continuing the process y waiting on the list. In this way, :: pfix 14 3

pfix 14 14
synchronisation of communication is achieved by both 8, Id1 1000 6 8
processes operating a "handshake" operation in which 9. opr gt 13 2
both processes execute two instructions for synchronise 10. JUZ ~3 9 9

operations one of which deschedules the process and 35 ii: Idw I 0 I rotation ? A N Y
opr sync 13 1 I

that descheduled process is only put back onto the list 13, I ~ W 1 o I
when an appropriate signal has been received from the 14. opr sync 13 I I
other of the communicating processes. 15. ldw o o o rotations: = rotations

A specific example of programs and instruction se- + 1
40 16. ad1 1 7 I

quences necessary to carry out two communicating 17. stw o I o
processes on the same microcomputer will now be de- 18. O ~ I pause 13 9
scribed with reference to FIG. 10. This illustrates the 19. nfix IS o
two processes referred to above for measuring miles L3:

j L2 8 0

travelled and fuel consumption of a motor vehicle. The I ~ W 2 o 2 mile ! ANY
microcomputer 170 has in its memory space a first " ii: opr sync 13 I I
workspace 171 for the first process which is counting 24. I ~ W 2 o 2

the variable "rotations" and a second workspace 172 for ;:: opr sync 13 1 1
opr pause 13 9

the second process which is counting the variable 27. nfix IS 2
"miles". Workspace 171 has a word location 173 con-

SO 28.
j L1 8 7

taining the address of the input channel 174 called "ro-
tation" which forms part of a se'''' link arranged t' once line numbers have been added for explana-
receive a message for each wheel revolution from an tory purposes only. Lines and 21 are simply refer-
external revolution detector (not shown). The work- ence locations in the program. ~i~~ 2 loads the value 0
space 171 has a further location 175 containing 55 into A register 71. Line 3 stores the data in the A
the address of a word "led ter into workspace. Because the data part of the instruc-

which in t '~ case receives an Output tion is 0, there is no from the reference address for
from the Process of workspace 171 indicating 1 mile of this process. n u s , the pointer register 73
travel for each 1000 revolutions of the vehicle wheel. now contains a workspace winter WPTR which

For this first process the program using OCCAM 60 to a reference address in memory where 0 is stored for
language is as follows: the variable "rotations". Line 5 loads the A register 71

from workspace. Because the data portion of the in-
I . VAR rotations: struction (which would be loaded into operand register
2. WHILE TRUE 65) is 0, the offset from the reference address WPTR of
3. SEQ 65 the workspace is 0. In lines 6, 7 and 8 the decimal value
4. rotations: = 0
5. WHILE rotations < 1000 1000 is to be added. This requires a prefixing operation
6. SEQ because 1000 cannot be represented using four binary
7. rotation ? ANY bits in the data portion of the instruction. Thus, function

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 34 of 99

4,680,698
35 36

code 14 (pfix) is used. The decimal number 1000 in communicate with the process in workspace 171 in
binary is 11 11 101000. Because this requires ten bits, and order to obtain via channel 176 messages indicating the
the data portion of standard instructions is four bits, number of miles travelled. The instruction sequence and
three steps are required to load this value into the oper- program from the process in workspace 172 are as fol-
and register. Line 8 includes the code for the "load 5 lows:
literal" function, so at this time, the A register 71 will be
loaded with the binary value of 1000. This causes the
transfer of the contents of the A register (which are 0) lnstruction sequence

to the B register 72. Function Program in above defined
code Data OCCAM

Line 9 calls for an indirect function, the operation 10
"greater than". This causes a comparison of the A and VAR miles:

B-registers. Unless the B register contents are greater ~ 1 :
SEQ

than the A register contents, this operation will result in Id1 o 6 o miles := 0
FALSE (0). stw 0 1 0 WHILE TRUE

Line 10 is the "jump nonzero" operation. If the re- 15 L2' ALT
Idw I 0 I mile ? ANY

sults of line 9's operation were true, then the A register I ~ V o 4 o
would be set to a nonzero value, and line 10 would ~ P C cqz 13 I
cause a jump of 9 lines forward, indicated by the num- ~ n z 13 9 9

ber "9" in the data part of the code. This should jump Idw 1 0 1
opr sync 13 1 1

the program ahead to line 21, the output portion. As- 20 I ~ W I o I
suming that 1000 rotations have not yet been counted, opr sync 13 1 1
line I 1 is next executed. This load from workspace ~ d w o o o miles : = mila + I
function has an operand of + 1, which means the offset d l 1 7 1

stw 0 1 0
from the reference address is + 1. At this memory ad- pfin 14 I
dress will be found the address of the channel named 25 j u 8 o
"rotation" and this address will be loaded from the L3:

workspace into the A register 71. Line 12 causes a syn- Idw 2 0 2 fuel ? ANY
Idv 0 4 0

chronise operation. Line 13 again loads the address of ppr eqz I3 I
the channel "rotation" and line 14 again synchronises to p z L4 9 1 2
complete the input operation. In this simple example, no 30 ldw 2 o 2
data is transferred. Line 15 now loads the variable opr sync . 13 I 1

Idw 2 0 2
which is in workspace, offset 0, into the A register, i.e. opr sync 13 1 1
loads the current value of "rotations" into the A regis- SEQ
ter. Line 16 literally adds the data value 1 to the con- I ~ W 3 o 3 consumption ! miles

tents of the A register. Line 17 stores the contents of the 35 Idw 0 0 0
stv 1 5 I

A register in the workspace at an offset equal to 0. opr sync 13 1 1
Hence, the variable "rotations" has now been incre- Idw 3 o 3
mented in response to receipt of data from the channel opr sync 13 1 1
"rotation". Line 18 is a pause operation which allows Idl 0 6 0 mila := 0

stw 0 1 0
the next process to be executed, adding this present 40 ~ 4 :
process to the end of the list. Note that at this point in opt pause 13 9
the program, the contents of the A register 71 and B nfix I S I
register 72 are not relevant to the process. Lines 19 and j L2 8 0

20 execute a iumr, backwards using the negative urefut
function. ~ i i e 2i loads the contents of th; worGpace 45
which is offset 2 locations from the reference location. COMMUNICATION BETWEEN PROCESSES ON

This will be the address of the channel named "mile" DIFFERENT MICROCOMPUTERS

and it will be loaded into the A register. A sync opera- A network of interconnected microwmputers is
tion is performed at line 23. The output is completed by shown in FIG. 11 in which four microcomputers are
a further "sync" which occurs at lime 25. At line 26 50 illustrated. It will be understood that the network may
another pause is inserted to cause the next process to be extended in two or three dimensions as required.
schedule and to add this process to the end of the linked Each of the microcomputers is of similar structure and
list. At lines 27 and 28, a jump backwards is executed is interconnected with the serial l i i of another mi-
using negative prefuting. The second process relating to crocomputer by two unidirectional wires 185 and 186
the variable "miles" uses the workspace 172. The work- 55 each of which extends between the output pin 27 on one
space 172 has a word location 177 containing the ad- microcomputer and the input pin 26 of another mi-
dress for the "mile" channel 176 which is used to pro- crocomputer. The wires 185 and 186 are each used
vide an input to the process of workspace 172. A further solely for these two pin to pin connections and are not
word location 178 has the address of a second input shared by other microcomputers or memory connec-
which in this case is a channel 179 called channel "fuel" 60 tions. Communication between processes in different
forming part of a serial link arranged to receive a mes- microcomputers is effected in generally similar manner
sage from an external fuel gauge (not shown) each time using an identical sequence of synchronise operations
a gallon of fuel is consumed. The workspace 172 has a and this will be described with reference to FIGS. 2,11,
further word location 180 having the address of an 12 and 13. In place of the channel 40 (FIG. 2), a serial
output channel 181 called channel "consumption" 65 link has an input channel 45 and an output channel 46
forming part of a serial link arranged to output the each consisting of a process register 47 and data register
distance travelled while the last gallon of fuel was con- 48 which can be addressed in the same way as the word
sumed. Clearly the process in workspace 172 needs to locations for the memory channels 40 to 43. They are

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 35 of 99

4,680,698
37 38

however operated by control logic 50 which will be chonises with the process again using the process regis-
described further with reference to FIGS. 15 and 16. In ter in the output channel. The output control logic 50
FIG. 11, an output channel is shown with a data register performs this operation repeatedly. The input control
187 and a process register 188. An input channel is logic in a link first waits for data from the input pin 26
shown having a process register 189 and a data register 5 to arrive in the data register in the input channel, then
190. The control logic shown in FIG. 2 is not shown in synchronises with a process using the process register in
FIG. 11, but it will be understood that such logic is the input channel, then synchronises again with the
present. process using the process register in the input channel,

When data is transmitted through serial links between then transmits the acknowledge packet signal to the
two microcomputers, it is in the form of a series of data 10 output pin 27. The input control logic performs this
strings transmitted serially in the form of packets as operation repeatedly.
shown in FIGS. 130 and 13b. A data packet is transmit- In the following, it is assumed that a process x oper-
ted by an output pin 27 to an input pin 26 and has the ated by microcomputer 1 in FIG. 11 wishes to output
form shown in FIG. 13a. It starts with two successive data through a serial link to a process y operated by
bits of value 1 followed by 16 data bits and a final stop 15 microcomputer 2. To effect this output, the process x
bit of value 0. An acknowledge packet, as shown in stores the data to be output in the data register 187 of
FIG. 136 is sent from the output pin 27 of a microcom- the output channel and executes a sync operation on the
puter receiving a data packet to the input pin 26 of the process register 188 to cause the serial link to start trans-
microcomputer which sent the data packet. The ac- mission of the data through the pin 27. The process then
knowledge packet consists of a start bit of value one 20 executes a further sync operation on the same process
followed by a stop bit of value 0. The output control register 188 to wait until an acknowledge packet is
logic of each serial link arranges for each output pin 27 received through the input pin 26 of microcomputer 1.
to transmit bits of value 0 continuously when it is not The acknowledge packet signifies that the process y
sending data or acknowledge packets and consequently operated by microcomputer 2 has input the data. To
the input control logic ignores all signals on the input 2 5 input, the process y executes a sync operation on the
pins 26 until it receives a "1" start bit of a packet. process register 189 of the input channel of microcom-

When the process register 47 (FIG. 2) of the input or puter 2 to wait for the data packet to arrive from the pin
output channel 45, 46 holds the workspace pointer 26 of the microcomputer 2. It then takes the data from
(WPTR) of a process, the control logic 50 is able to the data register 190 and executes a further sync opera-
generate requests (called input or output requests) to the j0 tion to cause the acknowledge signal to be transmitted
CPU (12) for the CPU 12 to schedule the process by from the output pin 27 of microcomputer 2.
adding its workspace pointer to the list awaiting execu- FIG. 12 shows sequentially the contents of the pro-
tion. The sync logic 10 provides a selector which is used cess registers 188 and 189 during a typical sequence of
by the CPU 12 to examine each of the request signals operations occurring when the process x and y commu-
from the serial links in turn. Whenever an active process 35 nicate via the serial link. Reference numerals 188a-e
is descheduled by execution of the "wait*' procedure, represent successive states of the contents of the process
the CPU 12 looks to see if there are any requests from register 188 and reference numerals 189a-e similarly
a serial link. If there are several external requests, the represent successive states of the contents of the process
CPU 12 services all of them in sequence before execut- register 189. First, process x addresses the output chan-
ing the next process on the list. The CPU 12 services 40 nel of microcomputer 1 and loads the data to be output
any requests by scheduling the process held in the pro- to the data register 187 and performs a sync operation
cess register of the channel which generated the re- on the output process register 188. Assuming that the
quest, the resetting the process register 47 to NIL. The process register 188 contains the special value READY
process register 47 of the input or output channels in a 188u, indicating that the serial link is ready to output,
link 25 contains the special value READY when that 45 the sync operation resets the value of the process regis-
channel is ready to perform communication. The sync ter 188 to NIL l88b. As a result the control logic causes
operation will cause the procedure "run" which detects the data from the data register 187 to be transmitted via
the special value READY and instead of scheduling a the single wire connection 185 to the input data register
process, activates the control logic 50 in the link. The 190 in the microcomputer 2. Provided that process y is
control logic in a link may perform a synchronise opera- 5 0 not yet waiting for the input, the control logic in mi-
tion on a channel. The synchronise operation tests the crocomputer 2 changes the value of the process register
process location of the channel. If the value is NIL, it 189 from NIL 18% to READY 1896, indicating that the
replaces the value with the special value READY and data has been received. Process y then executes a sync
waits until a sync operation caused by a process instmc- operation on the process register 189, which has the
tion on the process register resets the value to NIL. 55 effect of changing the value of the process register from
Otherwise, it generates a request to the CPU 12 to READY 189b to NIL 189c. Assuming that microcom-
schedule the process in the process register as described puter 2 is ready to transmit an acknowledge signal to
above, and the CPU then resets the value of the process microcomputer 1, the control logic changes the value of
register to NIL. As a result, a process may use the sync process register 189 back to READY 189d. Process y
operation to synchronise with the control logic 50 in a 60 then takes the data from the data register 190 of the
link 25 in the same way as it is used to synchronise with input channel and executes a further sync operation on
another process. the process register 189. This resets the process register

The output control logic 50 in a link 25 first synchro- 189 to NIL 189e. As a result the control logic transmits
nises with a process using the process register in the an acknowledge signal through the single wire connec-
output channel, when transmits data in data packets 6 5 tion 186. This acknowledge signal is received by the
from the data register in the output channel via the input pin 26 of the microcomputer 1 operating process
output pin 27 (FIGS. 2 and ll), then waits for an ac- x. Assuming that process x executes a second sync oper-
knowledge packet signal on the input pin 26, then syn- ation before the acknowledge signal is received, process

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 36 of 99

4,680,698
39 40

x is descheduled by the procedure "wait", and its work- signal is used to ensure that both the CPU and the link
space pointer "X" is stored in the process register 188 control logic do not attempt to change the value of the
(188~). When the acknowledge packet is received the process register simultaneously.
control logic of the serial link generates a request to the Each process register 47 in a link incorporates logic
CPU of microcomputer 1 to schedule process x. This 5 194 to detect if the value in the process register is
request is serviced by the CPU of microcomputer 1 as READY, NIL or a workspace pointer.
soon as the current process is descheduled and the CPU The output data register 48 (FIG. 15) is connected to
adds process x to the end of the list and resets the pro- the output pin 27 through an AND gate 195 and an OR
cess register to NIL (188d). The control logic now gate 196. The input data register 48 (FIG. 16) is con-
resets the process register to READY (188e), thereby 10 nected directly to the input pin 26.
indicating that the link is ready for a further output. The Associated with each process register in a link is a
state of the serial links is now the same as it was before request latch 197 which may be tested by the CPU.
the communication took place, as shown in the se- Whenever the CPU performs a WAIT procedure, the
quence of FIG. 12, ready for the next communication. state of all request latches is tested. If a request latch is
FIG. 14 illustrates the operation on two separate mi- 15 set, the process whose workspace pointer is held in the
crocomputers of the processes previously described cor;esponding process register is scheduled by adding
with reference to FIG. 11. In this case however the its workspace pointer to the end of the list. The request
workspace 171 for counting rotations is on a microcom- latch is cleared whenever the CPU writes to the process
puter 191 whereas the workspace 172 for counting miles register.
is on a separate microcomputer 192. The two mi- 20 The input and output of data through the link is con-
crocomputers 191 and 192 are interc~nnected through trolled by four state machines 282, 283, 284 and 285.
respective serial liiks 25. Similar reference numerals are ~ a ~ h state machine consists of a state register to hold
used in FIGS. 14 and 10 for similar Paas. The only the current state, and a programmable logic array. The
change is that channel "mile" 176 in FIG. 10 is replaced logic array responds to the value of the
in FIG. 14 by a channel "'mile" 176a f0Mlklg an Output 2 5 state register and the input signals to the state machine,
channel of a serial link in microcomputer 191 and chan- and produces a pattern of output signals
nel "mile" 176b forming an input channel of a serial link and a new .due for the state register. A counter 286 is
in microcomputer 192. The sequence of instructions and used PO count bits as they are transmitted through the
Program used to Operate the Processes in l4 link, and a further counter 287 is used to count bits as
are generally similar to those already described for 30 they are received through the link.
FIG. 10 except that the address of channel "mile" used ne input and output channel control and data state
by each the Processes now be the address a machines have the following inputs and outputs,
channel of a serial link rather than a channel in memory. wherein the name of the input or output indicates the

DESCRIPTION OF LINK CONTROL LOGIC ,5 Purpose the signal-

The control logic 50 (FIG. 2) for each of the input
and output channels of the serial links will now be de- OUTPUT CONTROL STATE MACHINE 285

scribed in further detail with reference to FIGS. 15 and (FIG. 15)
16 in which FIG. 15 shows the control logic for the 'eference

output channel 46 and FIG. 16 shows the control logic 40 name Purpose

for the input channel 45. inputs:

To output, the control logic 50 (FIG. 2) of a link first 200 Mbusy Memory bus busy

synchronises with a process using the output process 201 Reset Transputer reset
202 Pregready Process Register = READY

register 47 (FIG. IS), then transmits the data from the 203 Pregnil Process Register = NIL
output data register 48 to the p h 27, then waits for the 45 204 Pregwptr Process Register holds a
acknowledge signal from the pin 26, then synchronises workspac+ pointer

with a process again using the output process register 205 Datagone Data transmittad from
output data register

47. The control logic 50 performs this operation repeat- 264 Ackready Acknowledge received
edly. by input state machine

To input, the control logic 50 (FIG. 2) of a link first 50 outputs:

waits for data to arrive from the input pin 26 and trans- 210 Setrequest Set cpu request

fers it to the input data register 48, then synchronises 21 I Datago Initiate data transmission
212 SetPregready Set Process Register to READY with a process using the input process register 47 (FIG. 213 SetPregnil Set Process Register to NIL

16), then synchronises again with the process using the 265 Acktaken Confirm receipt of acknowledge
input process register, then tranmits the acknowledge 55
signal to the pin 27. The control logic 50 performs this
operation repeatedly.

The values taken by the output and input process OUTPUT DATA STATE MACHINE 284
registers 47 may be NIL indicating that neither a pro- (FIG. 15)
cess nor the control logic is waiting to synchronise, 60 reference signal
READY indicating that the control logic is waiting to numeral name PUTO=

synchronise, or it may be the workspace pointer of a inputs:
process waiting to synchronise. 201 Reset Transputer reset

In a link, each process register 47 and each data regis- 21 I Datago Initiate data transmission

ter 48 is connected to the bus 16 through an address 65 ig zz r ~ ~ ~ a ~ ~ ~ ~ ~ ~ t r a n s m i s s i o n
decoder 193. The bus 16 incorporates signal lines for the
address, data, and control. Control includes a "write" 221 Loadcount Set Bit Counter to number of
signal, a "read" signal and a "busy" signal. The "busy" bits to be transmitted

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 37 of 99

-continued -continued
OUTPUT DATA STATE MACHINE 284 OUTPUT CONTROL STATE MACHINE 285

(FIG. 15) State Inputs Outputs Next state
reference signal

5 numeral name purpose syncl (AMbusy) / \pregwptr Setrequest syncreql
222 Deccount Decrease bit counter by one
223 Onwut Set output pin to one
224 Dataout Set output pin to least significant

bit of shift register
225 Shiftout Shift data register one place
205 Datagone Transmission of data complete
260 Ackgone Transmission of acknowledge wmplete

syncreql APregnil
syncreq 1 Pregnil
send l ADatagone
send l Datagone

lo send2 Datagone
send2 ADatagone
waitackl AAckready
waitackl Ackready
waitack2 Ackready

15 waitack2 AAckready
INPUT CONTROL STATE MACHINE 283 sync2 Mbusy

syncreql
send l
send l
send2
send2
waitack 1
waitack I
waitack2

Acktaken waitack2
sync2
sync2

(FIG. 16)
reference signal sync2 (AMbusy) / \Pregnu xrrregreaoy synsreqL

numeral name PUrpoSe
sync2 (AMbusy) / \pregwptr Setrequest syncreq2

inputs:
200 Mbusy Memory bus busy
201 Reset Trans~uter reset

outputs:
220
222
222
26 1
263

Dataready
Pregready
Pregnil
Pregwptr

Ackgone

Setrequest
SetPregready
SetPregnil
Ackgo
Datataken

Data k e i v e d from pin
Process Register = READY
Procars Register = NIL
Procars Register holds a
workspace pointer
Transmission of acknowledge
wmplete

Set cpu request
Set Process Register to READY
Set Process Register to NIL
Initiate acknowledge transmission
Confirm recei~t of data

20 syncreq2 APregnil syncreq2
syncreq2 Pregnil sync1

25 OUTPUT DATA STATE MACHINE 284

State Inouts Outouts Next state

any Reset idle

idle (ADatago) / \ (A A c ~ ~ o) idle

30 idle Ackgo Onmut ackflag

idle (AAckgo) / \ Datago Oneout dataflag

ackflag
dataflag

35 databits ACounturo

INPUT DATA STATE MACHINE 282

ackend
Onwut databits
Loadcount
DecCount databits
Shiftout
Dataout

(Flu. LO)

reference signal databits Countzero dataend

numeral name PUrpoSe dataend Datago Datagone dataend
dataend ADatago idle

inputs: 40 ackend Ackgo Ackgone ackend
201 Reset Transputer reset ackend AAckgo idle
230 Datain Data from pin
231 Countzero Test if bit count zero

outputs:
240 Loadcount Set Bit Counter to number of

bits to be received 45 INPUT CONTROL STATE MACHINE 283
241 Deccount Decrease bit counter by one State lnputs outputs ~ c x t m t e
244 Shiftin Shift data register one place

taking leest significant bit any Reset SetPregnil receive1
from pin receive l ADataready receive1

245 Setdataready Reception of data complete receive 1 Dataready sync1
246 Setackready Reception of acknowledge complete 50 sync1 Mbusy sync1

syncl (AMbusy) /\pregnil SetPregready syncreql
The sequences of each state machine are set out

below with reference to present state, next state, input sync1 (AMbusy) /\pregwptr Setrequest s~nc req l

and output of each machine. 55 syncreql APregnil syncreql
In any state, the outputs listed under the "outputs" Syncreql Pregnil sync2

column are one, and all other outputs are zero. All Sync2 Mbusy sync2

inputs are ignored except those mentioned in the "in- sync2 (AM~USY) / \ ~ r e g n i ~ SetPregready syncreq2
puts" column. The symbols A , V and A are used to
denote the boolean operations and, or and not respec- 60 wc2 (AMbusy) /\pregwptr Setrequnt 'yncreq2
tively. syncreq2 APregnil syncreq2

syncreq2 Pregnil receive2
receive2 Dataready Datataken receive2

OUTPUT CONTROL STATE MACHINE 285 receive2 ADataready acksend l
State Inputs Outputs Next state acksendl AAckgone Ackgo acksendl

65 acksendl Ackgone acksend2
any Reset SetPregnil sync1 acksend2 Ackgone acksend2
sync1 Mbusy sync1 acksend2 AAckgone receive l

syncl (AMbusy) / \ Pregnil SetPregready syncreql

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 38 of 99

4,680,698
43 44

nises with an inputting process using the input process
register 47. It then synchronises again with the input-

INPUT DATA STATE MACHINE 282
Next state ting process using the process register 47 to confirm State Inputs Outputs that the process has taken the data from the data register

any Reset idle
~ d l e ADatain idle

5 48, and then uses the "ackgo" signal 261 to cause the
idle Datain start output data state machine to transmit an acknowledge
start ADatain SetAckready idle packet via the pin 27. When the output data state ma-
start Datain Loadcount databits chine 284 is not transmitting data it generates the start
dafabits ACountzero Shiftin databits

DecCount and stop bits which constitute the acknowledge packet
databits Countzero Shiftin dataend lo described in FIG. 136. The input data state machine 282
dataend - SetDataready idle of the microcomputer which transmitted the data

packet detects the acknowledge packet and sets the
AS shown in FIG. 16, the input control logic includes "acknowledge received" latch 280. AS described above,

a flip-flop 280 connected to the output 246 of the input the output control state machine 285 of the transmitting
data state machine 282. A further flip-flop 281 is con- l 5 -microcomputer has been waiting for this and on detect-
nected to the output 245 of the input data state machine ing the signal resets the latch 280 and performs a second
282. Both control state machines are controlled by synchronise operation. The state of the link logic in
clock pulses derived from the clock 28. For some of the both the output and input links is now the same as it was
links, both data state machines are also controlled by before the communication took place so that it is ready
clock pulses derived from the clock 28. For the link 20 for the next transmission.
shown-in FIGS. 15 and 16, the data state machines are
controlled by clock pulses derived from a different CHIP AND MEMORY FORMATION

clock 22 related in phase to clock 28, which allows this As mentioned above, the microcomputer of this ex-
link to operate at a lower speed. Two different clock ample is particularly advantageous in having sufficient
frequencies can be obtained in order to achieve maxi- 25 memory in the form of RAM on the chip (integrated
mum efficiency depending on the type of microcom- circuit device) to enable the microcomputer to operate
Puter network which is operated. When microcom~ut- without the necessity for external memory, although
ers are grouped closely together ~~n~municat ions be- external memory can be used when required. There are
tween thern can be carried out quickly in which a number of problems in providing suficient space for
case a higher frequency can be used. A lower 30 adequate memory on the same chip as the processor. It
clock frequency can be used to enable satisfactory com- is necessary to minimise the area required for each
munication where the microcomputers are more remote memory cell as well as noise interference in
and require a lower operating speed. the RAM from asynchronously operating circuitry

In both the and Output the control such as a processor on the same chip, while at the same
state machine monitors the content of the process regis- time providing a satisfactory manufacturing yield of
ter 47 and when generates a CPU request acceptable microcomputers from a number of silicon
on line 199 by setting the latch 197. chips, particularly as the memory may be the largest

The output control state machine 285 first synchro- and densest component created on the chip. nises with a process using the output process register 47. In order to minimise the chip area required for each It then uses the "datago" signal 211 to cause the output 40 memory cell, this example uses static RAM cells
data state machine 282 to output the data in the output
data register 48 through the pin 27. The output data (SRAM) using high impedance resistive Ioad rather

state mnachine sends the data in the manner de- than the more conventional depletion transistor loads or
scribed with reference to FIG. 130 and shifts the data in mm~lementar~ The manufacturing

the register 48 until a count in the counter 286 expires. 45 used in this a high

When it has done this it returns the 66datagone99 signal resistivity polycrystalline silicon in which the resistive

205 to the output control state machine to indicate that loads are The -3' have 32K bits of

the transfer of data is complete and that the datago go^ SRAM where each cell consists of transistors Raving
signal should be removed. The output control state gates formed in a polycrystalline silicon. The
machine then waits for the ~ a c k r ~ y ~ signal 264 from 50 transistor gates and resistive loads may be formed in the
the latch so, signifying that the input data state ma- Sme, Or different films of Pol~cr~stalline silicon.
chine 282 has received an acknowledge packet as de- Resistor load SRAMs are susceptible to interference
scribed FIG. 13b from the pin 26. response to fie from electrical noise injected into the silicon material in.
"ackready" signal 264, the output control state machine which they are formed and stored data can be corrupted
outputs an "acktaken" signal 265, which resets the latch 55 by any minority carriers which may be present. In order
380. The output control logic then uses the output pro- to shield the SRAM from noise generated by other on
cess register 47 to synchronise again with the outputting chip circuitry and from minority carriers injected by
process. other on chip circuitry the SRAM is formed in an elec-

The input data state machine 282 and the microcom- trically isolated area of silicon as shown in FIG. 17. An
puter at the other end of the link is waiting for "start 60 n-channel substrate 300 is formed with separate p-wells
bit" to appear on the input pin 26. When a data packet 301, and 302. The arry of RAM cells are isolated from
is detected, the input data state machine 282 of that other circuitry and associated substrate noise by locat-
microcomputer shifts data into the data shift register 48 ing the RAM array in the p-well marked 301. This
until the counter 287 indicates that the appropriate num- isolates the RAM cells from minority carriers generated
ber of bits have been received, and then sets the "data 65 in the substrate by the well-to-substrate potential barrier
received" latch 281. The input control state machine and any minority carriers generated within the well
283 detects the "dataready" signal 262 and responds by have a high probability of being collected in the sub-
resetting the "data received" latch 281. It then synchro- strate. In FIG. 17, the RAM array will be an n-channel

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 39 of 99

4,680,698
45 46

array located in the p-well 301. Any n-channel transis- processors having a word length of 8 bits or multiples of
tors of peripheral circuitry are isolated from the RAM 8 bits may use these instructions. The invention is par-
array by placing them in a further p-well 302. ticularly applicable to 32 bit word microcomputers.

This technique is fully compatible with either NMOS The CPU may include further registers, in an evalua-
or P-well CMOS manufacturing technology. In the 5 tion stack, such as a CREG or even DREG in addition
current example P-well CMOS is used and any p-chan- to the A and B registers. Some functions and operations
nel transistors of peripheral circuitry are placed on the may then be modified to allow the additional registers.
n-substrate and isolated from the RAM array by the For example:
well-to-substrate potential barrier. Each well contain-
ing a memory array is surrounded by a metal ground 10
which contacts the memory array well around its pe- Areg = Breg may be replaced by SEQ

riphery via a heavily doped p diffusion. Within the Areg Breg = = Creg Breg
memory array there is a p diffusion contacting the well Creg = Dreg
to ground for each pair of cells. Substrate bias is unnec- Breg = Areg may be replaced by SEQ
essary. 15 Dreg = Creg

In order to provide acceptable manufacturing yield Creg . = Breg
Breg -= Areg

of products from silicon chips, memory redundancy is
incorporated. The memory is divided into rows and
columns accessible respectively by row and column Other functions or operations may of course be added
decoders. In addition to the normal rows and normal 20 to exploit the extra registers. Although the illustrated
columns the redundancy provides some additional rows embodiment described herein and shown in FIG. 3
and columns together with spare row and column de- includes only an A register and a B register, in a Pre-
coders in order to obtain access to the spare rows and ferred embodiment of the present invention, three regis-
columns. The spare column decoders and spare row ters are used in a stack.
decoders each incorporate fuses which for example can 25 It will be appreciated that in the above description,
be open circuited by use of a laser so that when any the function set lists a plurality of functions followed by
defective rows or columns are determined during test, an extendable list of operations which may be selected
fuses can be open circuit4 by laser techniques to dis- by use of the indirect function "operate". In all cases
able the row or column decoder of any normal rows or these functions and operations can be considered as
columns which have been found to be defective and the 30 forms of instruction usable in the program to operate
replacement row or column from the redundant rows the microcomputer. However in order to obtan the
and columns can be brought into an enabled position by advantages discussed above for a fixed format of "in-
programming the appropriate spare row decoder or struction" as shown in FIG. 5, the list of functions and
spare column decoder with the address of the defective operations can be considered as a set of primary instruc-
row or column. 35 tions (consisting of the direct functions, prefixing func-

In order to allow N-well CMOS manufacturing tech- tions and indirect functions) and a set of secondary
nology to be used the following alternative isolation instructions (consisting of the operations which may be
technique may be employed. Referring to FIG. 18 a low selected by use of the indirect function). To maximise
resistivity P type substrate (405) is used on which a high efficiency, the primary instructions which are most
resistivity P type epitaxial layer is formed. 40 commonly used require only 4 bits of the instruction

The cell array is formed in this epitaxial layer in re- format shown in FIG. 5 and so the other 4 bits can be
gion (401) and is entirely surrounded by a deep N-well used for data to be loaded into the operand register 65
diffusion (402). Minority carriers generated by other and used as an operand for the instructions. For the
circuitry in region (403) will be attracted to the N-wells secondary instructions which are less commonly used,
(402) where they become harmless majority carriers, or 45 all 8 bits of the instruction format shown in FIG. 5 are
will recombine in the heavily doped P-type substrate needed to identify the instruction required. Conse-
(405). P-channel transistors are placed in N-wells (404) quently the fixed format of the instruction shown in
where they are isolated by the well to substrate poten- FIG. 5 allows no data to accompany a secondary in-
tial barrier. struction and secondary instructions therefore operate

ADDITIONAL MATERIAL
50 on data held in registers other than the operand register

65.
The invention is not limited to the details of the fore- Although the instruction format shown in FIG. 4

going example. For instance, although the serial links comprises 8 bits divided into two halves, it will be un-
shown in FIG. 2 have separate process registers 47, the derstood that other bit lengths may be used and the
function provided by the registers 47 may be effected by 55 division into function and data need not necessarily
memory locations in the RAM 19. In this case the CPU provide equal bit lengths for the two parts.
must be able to identify the serial link which it is serving It is to be appreciated that the present arrangement
and this may be achieved by connecting each channel of described herein provides a combination which dramat-
each serial link separately to the sync logic 10 in FIG. 2. ically improves the efficiency and throughput of the

One set of data registers and buses is shown in FIG. 60 microcomputer. By using instructions having a constant
3 and in some cases it may be desirable to include two format, by having a function set where the most often
such sets in one microcomputer, or even to have two used functions are directly available whereas other
CPUs in one microcomputer. functions are indirectly available, by arranging for com-

The principle described above of using pfix and nfix munication between processes and synchronisation
functions to vary the length of operand is applicable to 65 among them, by permitting point-to-point communica-
a microcomputer of any word length. tion between microcomputers, and by providing mem-

The invention is not limited to a machine operating ory on the same chip as each microprocessor, a mi-
with 16 bit words nor to 16 bit operand registers, e.g. crocomputer according to various aspects of the inven-

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 40 of 99

tion can achieve a speed of 10 million instructions per (b) an instruction receiving circuit coupled to said
second. An array housed on a board of only 10 inches RAM for receiving said instructions from said pro-
by 20 inches should be able to achieve a speed of 1000 gram stored in said RAM,
million instructions per second. A Transputer (trade (c) an instruction decoder circuit coupled to said
mark) microcomputer array using OCCAM (trade 5 instruction receiving circuit for decoding instruc-
mark) should be able to achieve speeds approximately tions received by said instruction receiving circuit,
two orders of magnitude faster, than, for example, a (d) a plurality of on-chi~ transistors comprising cir-
Motorola 68000 using PASCAL. A single Transputer cuitry operable independently of the operation of
programmed in OCCAM should be about two or three said RAM,

faster than a single 68000 m~croprocessor using 10 (e) first isolation well means formed in said substrate

PASCAL. In the prior art, when microcomputers are of a semiconductor material of different type than

added in an array, the incremental gain in performance said substrate, said first isolation well means con-

is progressively less and less with an increase in proces- taining all of said memory cells of said high density

sors. However, by using the microcomputer of this RAM array, and

example, the increase in performance is a linear function 15 (f) second isolation well means separate from said first
isolation well means and formed in said substrate of of the number of processors. Thus it will be appreciated a semiconductor material of different type than

that the present combination achieves dramatically in- said substrate, said second isolation well means
creased performance over the state of the art. containing some of said transistors which are oper-

We claim: 20 able independently of said operation of said RAM,
1. A network of interconnected microcomputers, whereby said high density RAM is located on the same

each microcomputer comprising: chip as independently operating transistors and is pro-
(a) a single integrated circuit chip having a substrate tected from noise due to independent operation of said

of semiconductor material of a first type, transistors.
(b) an on-chi~ high density RAM array having at 25 3. A microcomputer according to claim 2 wherein

least one K byte for holding a Program containing said memory provides at least four K bytes of RAM.
instructions for execution by said on-chip proces- 4. A microcomputer according to claim 3 wherein
SOT, said memory comprises a plurality of RAM cells

(c) a plurality of communication links each forming formed with high impedance resistive loads and transis-
an interconnection with an adjacent microcom- 30 tors.
puter in the network, 5. A microcomputer according to claim 4 on which

(d) an instruction pointer circuit for addressing said said resistive loads are formed in a film of polycrystal-
RAM to obtain program instructions therefrom, line silicon.

(e) an instruction receiving circuit coupled to said 6. A microcomputer according to claim 2 comprising
RAM for receiving said instructions from said pro- 35 a CMOS structure having an n-type substrate with one
gram stored in said RAM, or more isolation wells of p-type semiconductor.

(f) an instruction decoder circuit coupled to said re- 7. A microcomputer according to claim 6 in which
ceiving circuit for decoding instructions received said memory cells include n-channel transistors located
by said instruction receiving circuit, within said p-type well or wells.

(g) a plurality of on-chip transistors comprising cir- 40 8. A microcomputer according to claim 2 having a
c,jtry operable independently of the operation of substrate of low resistivity p-type semiconductor on
said RAM, which a high resistivity p-type epitaxial layer is located,

(h) first isolation well means formed in said substrate said memory cells being located within said epitaxial
of a semiconductor material of different type than layer and surrounded an n-type regi0n lhe
said substrate, said first isolation well means con- 45 memory
taining all of memory cells of said high density 9. A microcomputer according to claim 2 in which

RAM array, and said memory array comprises a main memory array and

(i) second isolation well means separate from said first a redundant memory together with means for
isolation well means and formed in said substrate of enabling use of redundant memory if defective memory

50 elements occur in said main memory array. a semiconductor material of different type than A microcomputer according to claim in which
said substrate, said second isolation well means said redundant memory array incorporates redundant

said transistors which are Oper- rows and columns of memory elements interconnect-
able said 'aid RBM, able with said main memory array through fuse ele-

whereby each microcomputer in the network operates 55 ments.
in accordance with instructions from program in its ll. A m,crocomputer according to claim 2 compris-
on-chip RAM and each on-chip RAM is protected from ing a single silicon chip on which is located said proces-
noise due to operation of independently operating tran- sor and further comprising communication channels,
sistors. said programmable RAM together with said communi-

2. A microcomputer comprising an on-chi~ Processor 60 cation channels permitting message transmission to or
and on-chip memory on a single integrated circuit chip from a process executed by said processor.
having a substrate of semiconductor material of a first -12. A microcomputer according to claim 11 wherein
type, wherein said onchip memory comprises a high said communication channels include communication
density RAM array having at least 1K bytes for holding links permitting process to process communication with
a program containing instructions for execution by said 65 other microcomputers.
on-chip processor, said microcomputer including: 13. A microcomputer according to claim 12 further

(a) an instruction pointer circuit for addressing said comprising control means for said processor responsive
RAM to obtain program instructions therefrom, to functions selected from a function set which include

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 41 of 99

4,680,698
49 50

data transfer between registers, between memory and the processor, said registers each having a bit length
registers, and which enable synchronization of message which is an integral number of bytes.
transfer through said communication channels.

14. A microcomputer according to claim 2 wherein IS. A microcomputer according to claim 2 in which

said processor executes a sequence of instructions-each 5 said program is in said memory On the same
one byte long and each having the same format of bit integrated circuit chip as the Processor-
positions, thereby reducing the chip area required by * * * + *

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 42 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 1 o f 26

DATED : J u l y 1 4 , 1987

INVENTOR(S) : May, e t a1 .
I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below: T i t l e Page:

Correct the title to read --MICROCOMPUTER WITH
HIGH DENSITY RAM IN SEPARATE ISOLATION WELL ON SINGLE CHIP--.

Column 11, lines 23 through 28 delete exist-
ing text and insert in its place --

Column 11, lines 36 through 40, delete
existing text and insert in its place --

SEQ
in ? x
x : = x + 1
out ! x

Column 11, lines 45 through 50, delete
existing text and insert in its place --

PAR
P1
P2
P3

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 43 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,680,698 Page 2 of 26

DATED : July 14, 1987

INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 11, lines 57 through 61, delete
existing text and insert in its place --

PAR
in ? x
out ! y

Column 12, lines 5 through 13, delete exist-
ing text and insert in its place --

IF
condition 1

P1
condition 2
P2

condition 3
P3

Column 12, lines 20 through 25 delete exist-
ing text and insert in its place --

IF
x >= 0

y := y+l
X C O

SKIP

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 44 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4 , 6 8 0 , 6 9 8 Page 3 of 26

DATED : J u l y 1 4 , 1 9 8 7

INVENTOR(S) : May, e t a l .

I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 1 2 , lines 30 through 3 8 delete exist-
ing text and insert in its place --

ALT
input 1

P 1
input 2

P2
input 3
P3

Column 1 2 , lines 48 through 55 delete exist-
ing text and insert in its place --

ALT
count ? ANY
counter := counter + 1

total ? ANY
SEQ
out ! counter
counter :=0

Column 1 3 , lines 1 through 3 , delete existing
text and insert in its place --

WHILE x > 5
x : = x - 5

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 45 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4 , 6 8 0 , 6 9 8

DATED : July 1 4 , 1 9 8 7

Page 4 of 26

INVENTOR(S) : May, e t a1 .
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

Column 1 3 , lines 15 through 18 delete exist-
ing text and insert in its place --

VAR v :
P

Column 1 3 , lines 25 through 27 delete exist-
ing text and insert in its place --

PROC square (n, sqr)
sqr := n * n

Column 1 4 , lines 6 3 through 70; column 15,
lines 1 through 1 5 ; and column 1 6 ,
lines 1 to 6, delete existing text and
insert in its place --

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 46 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,680,698

DATED : J u l y 14, 1987
Page 5 of 26

It is certified that error appears in the above-identified patent and that said Letten Patent is hereby
corrected as shown below:

1 PROC run (w)
2 I F
3 w o READY
4 SEQ
5 m e m o r y [LPTR - 2] := w
6 LPTR := w
7 w = READY
8 S K I P

PROC w a i t
SEQ

m e m o r y [WPTR - 1] := IPTR
for each external request f r o m a serial l i n k

SEQ
run (l i n k [process])
l i n k [process] := N I L

WPTR := m e m o r y [WPTR - 2]
IPTR := m e m o r y [WPTR - 1]

1 PROC m o v e t o (w)
2 SEQ
3 I F
4 WPTR = LPTR
5 LPTR := w
6 WPTR <> LPTR
7 m e m o r y [w - 2] := m e m o r y [WPTR - 2]
8 WPTR := w --

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 47 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENTNO. : 4,680,698 Page 6 of 26

DATED : July 14, 1987

INVENTOR(S) : May, et a1

It is certified that error appears in the above-identified patent and that raid Letters Patent is hereby
corrected as shown below:

Columns 15, lines 17 through 70 and Columns 17-22
lines 1 through 39, delete existing text and insert in its
place --
load from works~ace (function code 0)

~efinition: SEQ
BREG := AREG
AREG := memory [WPTR + OREG]

Purpose: to load into the A register the value
of a location in the current process
workspace.

store to workspace (function code 1)

Definition: SEQ
memory [WPTR + OREG] := AREG
AREG := BREG

Purpose : to store a value in a location in
the current process workspace

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 48 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENTNO. : 4,680,698
DATED : July 14, 1987

Page 7 of 26

INVENTOR(S) : May, et a1 .
I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

load Dointer into works~ace (function code 2)

Definition: SEQ
BREG := AREG
AREG := WPTR + OREG

Purpose : to load into the A register a pointer
to a location in the current process
workspace

to load a pointer to the first location
of a vector of locations in the current
process workspace.

load from works~ace and increment (function code 3)

~efinition: SEQ
BREG := AREG
AREG := memory [WPTR + OREG]
memory [WPTR + OREG] := AREG + 1

Purpose : to load into the A register the value
of a location in the current process
workspace, and increment the location

to facilitate the use of workspace
locations as loop counters, incrementing
towards zero

to facilitate the use of workspace
locations as incrementing pointers to
vectors of words or bytes

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 49 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENTNO. : 4,630,698

DATED : July 14, 1987

INVENTOR(S) : May, et alD

Page 8 of 26

I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

load from vector (function code 4)

Definition: AREG := memory [AREG + OREG]

Purpose : to load into the A register a value
from an outer workspace

to load a value from a vector of values

to load a value, using a value as a
pointer (indirection) - in this case
OREG = 0

store to vector (function code 5)

Definition: SEQ
memory [BREG + OREG] := AREG
AREG := BREG

Purpose : to store a value in a location in
an outer workspace

to store a value in a vector of values

to store a value, using a value
as a pointer (indirection) - in
this case OREG = 0

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 50 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,680,698 Page 9 of 26

DATED : July 14, 1987

INVENTOR(S) : May, e t al.

I t is certified that error appzars in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

load literal (function code 6)

Definition: SEQ
BREG := AREG
AREG := OREG

Purpose : to load a value

add literal (function code 7)

Definition: AREG := AREG + OREG

Purpose : to add a value

to load a pointer to a location
in an outer workspace

to load a pointer to a location
in a vector of values

jump (function code 8)

Definition: IPTR := IPTR + OREG
Purpose : to transfer control forward or

backwards, providing loops, exits
from loops, continuation after
conditional selections of program

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 51 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698

DATED : July 1 4 , 1987

INVENTOR(S) : May, e t al.

Page 10 of 26

I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

iump non zero (function code 9)

Definition: I F
AREG 0 0
IPTR := IPTR + OREG

AREG = 0
S K I P

Purpose : to transfer control forwards or
backwards only if a non-zero value
is loaded, providing conditional
execution of sections of program
and conditional loop exists

to facilitate comparison of a value
against a set of values

load pointer into code (function code 10)

Definition: SEQ
BREG := AREG
AREG := IPTR + OREG

Purpose : to load into the A register the
address of an instruction to load
the address of a vector of data
forming part of the program

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 52 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,680,698 Page 11 of 26

DATED : July 14, 1987

INVENTOR(S) : May, et al.

I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

call procedure (function code 11)

Definition: SEQ
memory [WPTR - 1] := IPTR
IPTR := AREG
AREG := WPTR
moveto (WPTR + OREG)

Purpose : to provide an efficient procedure
call mechanism

to facilitate code sharing, where
two identical procedures are
executed on the same processor

Indirect Functions (function code 13)

operate

Definition: operate (OREG)

Purpose : perform an operation, using the
contents of the operand register
(OREG) as the code defining the
operation required.

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 53 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 12 of 26

DATED : July 14, 1987

INVENTOR(S1 : May, e t al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Prefixina Functions

prefix (function code 14)

Definition: OREG := OREG << 4

Purpose: to allow instruction operands which
are not in the range 0 - 15 to be
represented using one or more
prefix instructions

nesative prefix (function code 15)

Definition: OREG := (NOT OREG) << 4

Purpose : to allow negative operands to be
represented using a single negative
prefix instruction followed by zero
or more prefix instructions.

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 54 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4 , 6 8 0,698 Page 13 of 26

DATED : July 14, 1987

INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Owerations (function code 13)

reverse (o~eration code 0)

Definition: SEQ
OREG := AREG
AREG := BREG
BREG := OREG

Purpose : to exchange the contents of the
A and B registers

to reverse operands of asymmetric
operators, where this cannot
conveniently be done in a compiler

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 55 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,680,698

DATED : July 14, 1987

Page 14 of 26

INVENTOR(S) : May, e t al.

I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

eaual to zero (operation code 1)

Definition: I F
AREG = 0

AREG := TRUE
AREG 0 0
AREG := FALSE

Purpose: to test that A holds a non zero value

to implement logical (but not
bitwise) negation

to implement

A = O as eqz
A o 0 as eqz, eqz
if A = 0 .,. as jnz
if A o 0 ... as eqz, jnz

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 56 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,680,698 Page 15 of 26

DATED : July 14, 1987

INVENTOR(S) : May, e t al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

sreater (operation code 2)

Definition: IF
BREG > AREG
AREG := TRUE

BREG < = AREG
AREG : = FALSE

Purpose : to compare A and 3 (treating them
as twos complement integers), loading
-1 (true) if B is greater than A, 0
(false) otherwise

to implement B < A by reversing
operands

to implement B <= A as (gt, eqz),
and B >= A by reversing operands
and (gt, eqz)

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 57 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,680,698 Page 16 of 26

DATED : July 1 4 , 1987

INVENTOR(S) : May, e t al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

and (oweration- code 3) -
Definition: AREG := AREG / \ BREG

Purpose : to load to bitwise AND of A and B,
setting each bit to 1 if the
corresponding bits in both A and B
are set to 1, 0 otherwise

to logically AND two truth values

or (operation code 4) -

Definition: AREG := BREG \ / AREG

Purpose: to load the bitwise OR of A and
B, setting each bit to 1 if either
of the corresponding bits of A and
B is set, 0 otherwise

to logically OR two truth values

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 58 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENTNO. : 4 , 6 8 0 , 6 9 8

DATED : July 1 4 , 1987
Page 17 of 26

/ INVENTOR(S) : May, e t a1 .
It is certified that error appears in the above-identified patent and that r i d Letten Patent is hereby

corrected as shown below:

1 exclusive or (omration code 5)

~efinition: AREG := BREG >< AREG

Purpose: to load the bitwise exclusive OR
of A and B setting each bit to 1
if the corresponding bits of A
and B are different, 0 otherwise

to implement bitwise not as
(ldl -1, xor)

I a (operation code 6)
Definition: AREG := BREG + AREG

Purpose : to load the sum of B and A

to compute addresses of words
or bytes in vectors

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 59 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698

DATED :July 1 4 , 1 9 8 7
Page 18 of 26

INVENTOR(S) : May, e t al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

subtract (operation code 7)

Definition: AREG := BREG - AREG
Purpose : to subtract A from B, loading

the result

to implement
A = B as sub, eqz
A o B as sub, eqz , eqz
i f A = B as sub, jnz, ...
if A o B as sub, eqz, jnz, ...

run Drocess (operation code 8)

Definition: SEQ
memory [AREG - 1 J := BREG
run (AREG)

Purpose : to add a process to the end of the
active process list

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 60 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698
DATED : July 14, 1987

INVENTOR(S1 : May, et al.

Page 19 of 26

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

pause (o~eration code 9)

Definition: SEQ
run (WPTR)
wait ()

Purpose : to temporarily stop executing
the current process

to share the processor time
between the processes currently
on the active process list

join (o~eration code 10)

Definition: IF
memory AREG] = 0

moveto (memory [AREG + 1])
memory [AREG] o 0

SEQ
memory AREG : = memory [AREG] - 1
wait ()

Purpose : to join two parallel processes; two
words are used, one being a counter,
the other a pointer to a workspace.
When the count reaches 0, the
workspace is changed

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 61 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4 , 6 8 0 , 6 9 8 Page 20 of 26

DATED : J u l y 1 4 , 1987

INVENTOR(S) : May, e t al.

I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

synchronize (operation code 11)

Definition: IF
memory [AREG] = NIL

SEQ
memory [AREG] := WPTR
wait ()

memory [AREG] o NIL
SEQ

run (memory [AREG])
memory [AREG] := NIL

Purpose : to allow two processes to
synchronize and communicate
using a channel

return (o~eration code 12)

Definition: SEQ
move to (AREG)
IPTR := memory [WPTR - 1]
AREG := BREG

Purpose : to return from a called procedure

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 62 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,680,698 Page 21 of 26

DATED : J u l y 14, 1987

IMVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

rotate bvtes (o~eration code 13)

Definition: AREG := (AREG << 8) V (AREG >> (bitsperword - 8))
Purpose : to rotate the bytes in the A register

to allow 8 bit byte values to be combined
to form a single word value
to allow a word value to be split
into several component 8 bit values

shift riaht (o~eration code 14)

Definition: AREG := AREG >> 1

Purpose : to shift the contents of the A
register one place right

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 63 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,680,698 Page 22 of 26

DATED : July 14, 1987

INVENTOR(S) : May, e t al.

I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

shift left (operation code 15)

Definition: AREG := AREG << 1

Purpose : to shift the contents of the A
register one place left --

Column 33, lines 63 through 70, and column 34, lines I
to 4, delete the existing text and insert in its place --

VAR rotations:
WHILE TRUE

SEQ
rotations:= 0
WHILE rotations < 1000

SEQ
rotation ? ANY
rotations := rotations +1

mile ! ANY

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 64 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4 , 6 8 0 , 6 9 8 '4
Page 23 of 2'R

DATED : J u l y 14, 1987

INVENTOR(S) : May, e t a1 .
I t is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

Column 34, lines 20 through 50, delete existing
text and insert in its place --
Instruction Sequence Proqram in OCCAM Lanauaqe

Function
Code Data

VAR rotations:
WHILE TRUE

SEQ

1. L1:
2. Id1 0 6 0 rotations := 0
3. stw 0 1 0
4. LZ: WHILE rotations <lo00

SEQ
5. ldw 0 0 0
6. pfix 14 3
7. pi ix 14 14
8. Id1 1000 6 8

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 65 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENTNO. : 4,680,698 Page 24 of 26

DATED : July 14, 1987

INVENTOR(S) : May, et a1 .
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

Instruction Seauence Prosram in OCCAM Lansuase

Function
Code Data

9. opr gt
10. j nz L3
11. ldw 1
12. OPr sync
13. ldw 1
14. OPr sync
15. ldw 0
16. adl 1
17. stw 0
18. OPr pause
19. nf ix
20. j ~2
21. L3:
22. ldw 2
23. OPr sync
24. ldw 2
25. OPr sync
26. OPr pause
27. nfix
28. j LI

2
9
1 rotation ? ANY

11
1
11
0 rotations:=rotations + 1
1
0
9
0
0

mile ! ANY

I

Column 36, lines 7 through 43, delete existing text
I and insert in its place --

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 66 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
P A T E N T NO. : 4,680,698

D A T E D : July 1 4 , 1 9 8 7

lNVENTOR(S) : May, et al.

Page 25 of 26

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Instruction Semence Program in above defined
Function OCCAM Lansuase
Code Data

VAR miles:
SEQ

L1:
Id1 0 6
stw 0 1

L2 :
ldw 1 0
ldv 0 4
*Pr eqz 1 3
j nz 1 3 9
ldw 1 0
OPr sync 1 3
ldw 1 0
OPr sync 1 3
ldw 0 0
ad1 1 7
stw 0 1
pf ix 1 4
j ~4 8

L3:
ldw 2 0
ldv 0 4
OPr eqz 1 3
jnz L4 9
ldw 2 0

miles := 0
WHILE TRUE

ALT
mile ? ANY

miles := miles + 1

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 67 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENTNO. : 4,680,698 Page 26 of 26

DATED : July 14, 1987

INVENTOR(S) : May, e t a1 .
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

Instruction Sequence
Function
Code

OPr sync 13
ldw 2 0
OPr sync 13

ldw
ldw
stv
opr
ldw
opr
Id1
stw

L4:
opr
nifx
j

3 0
0 0
1 5
sync 13
3 0
sync 13
0 6
0 1

pause 13
15

L2 8

Program in above defined
OCCAM Lansuase

Data

I
SEQ

3 I consumption ! miles ~
0 1

1
I

11 I

3 I

11 I

0 miles := 0
0

9
1
0 --

Signed and Sealed this

Fifteenth Day of November, 1988

DONALD I. QUICG

Attesting Oficer C~:mmissir~~~c~r of' P<~rcrtrs m d ~i-rr</t,nrrr~-~.y

-
. .- . -. . .

i
I

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 68 of 99

Exhibit O

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 69 of 99

749FH-181

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 70 of 99

749FH-182

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 71 of 99

749FH-183

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 72 of 99

749FH-184

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 73 of 99

749FH-185

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 74 of 99

749FH-186

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 75 of 99

749FH-187

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 76 of 99

749FH-188

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 77 of 99

749FH-189

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 78 of 99

749FH-190

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 79 of 99

749FH-191

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 80 of 99

Exhibit P

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 81 of 99

749FH-202

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 82 of 99

749FH-203

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 83 of 99

749FH-204

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 84 of 99

749FH-205

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 85 of 99

749FH-206

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 86 of 99

749FH-207

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 87 of 99

749FH-208

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 88 of 99

749FH-209

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 89 of 99

749FH-210

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 90 of 99

749FH-211

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 91 of 99

749FH-212

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 92 of 99

749FH-213

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 93 of 99

749FH-214

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 94 of 99

749FH-215

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 95 of 99

749FH-216

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 96 of 99

749FH-217

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 97 of 99

749FH-218

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 98 of 99

749FH-219

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 99 of 99

	Exhibit N.pdf
	US 4680698.pdf

	Exhibit O.pdf
	Exhibit P.pdf

