Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 1 of 99

Exhibit N

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 2 of 99
United States Patent [(1] Patent Number: 4,680,698
Edwards et al. (451 Date of Patent: Jul. 14, 1987

[54] HIGH DENSITY ROM IN SEPARATE Memories,” Electronic Engineering, vol. 54, No. 663, pp.
ISOLATION WELL ON SINGLE WITH CHIP 101-109 (Mar. 1982).
. R Ohzone, et al., “An 8K X 8 Bit Static MOS RAM Fabri-
[75] Inventors: Jonathan Edward§, Bristol; David L. cated by n-MOS/n-Wel CMOS Technology,” IEEE
Waller, Avon; Michael D. May, Journal of Solid State, Circuits, vol. SC-15, No. 5, pp.
Bristol, all of England 854-861 (1980).
[73] Assignee: Inmos Limited, Bristol, England Primary Examiner—Archie E. Williams, Jr.
Assistant Examiner—William G. Niessen
(21] Appl. No.: 552,601 Artorney, Agent, or Firm—Edward D. Manzo
[22] Filed: Nov. 16, 1983 [57] ABSTRACT
[30] Foreign Application Priority Data A programmable, high speed, single chip microcom-
. : puter includes 4K of RAM, ROM, registers and an
Nov. 26, 1982 [GB] United Kingdom 8233733 ALU. Program can be stored in the on-chip RAM. The
[51] Imt. CLé ..., GOGF 13/00; GO6F 15/16; first local variable of each process to be executed is a
GO6F 7/48; HOIL 27/02 workspace pointer (WPTR), and each process has a
[52] US. CL coooiiriieccetirmeninne 364/200; 364/712; respective workspace identified by its WPTR. For each
357/40 process, addressing of other variables is relative to the

[58] Field of Search ... 364/200 MS File, 900 MS File,
364/700, 706, 712; 365/200; 371/8, 10;
361/400; 357/40, 45

current WPTR, which is stored in a workpiece pointer
register (WPTR REG). Instructions are constant bit
size, having a function portion and a data portion
loaded, respectively, into an instruction buffer (IB) and

[56] References Cited an operand register (OREGTR). Memory address loca-
U.S. PATENT DOCUMENTS tions are formed by combining the contents of the
workspace pointer register and the operand register, or

gggg’ggi l?j :g;g]};:::re;t ﬂl """""""""""""" gg‘:ﬁ% the contents of the A Register and the operand register.
4074293 2/1978 Krawitz asyao A setof “direct functions” obtains data from OREG.
4:| 44:563 3/1979 Heuer et al. 3647200 “Indirect functions” use the OREG contents to identify
4,153,933 5/1979 Blume, Jr. et al, 364200 Other functions, obtaining data from registers other than
4,191,996 3/1980 CResleycooommmrreemmrrenerinenns 3647200 the operand register. A “prefixing” function (PFIX)
4,346,459 0/0000 Sud et al. . develops operands having long bit lengths. Scheduling
4,349,870 9/1982 Shaw et alceirviennes 364/200 and descheduling of processes are achieved by forming
4,467,420 8/1984 Murakami et al. 364/200 alinked list within the several workspaces for the active
4,482,950 11/1984 Dshkhunian et al. 3647200 processes. Each workspace identifies the workspace
4,491,907 1/1985 Koeppenetal. ... - 3647200 nointer of the next process to be executed. Each work-

4,546,454 10/1985 Gupta et al.cocorriveeren 371/10X

OTHER PUBLICATIONS

Intel Microcomputer Handbook, Jan. 1983, pp. 16-26.
Electronic Design, Oct. 14, 1982, pp. 131-139.
Electronic Design News, Oct. 27, 1982, p. 165.
Barron, “The Transputer,” The Microprocessor and Its
Application, pp. 343-357 (1978).

“Growing Microfamilies Show Off New Strengths,”
Electronics Design, vol. 29, No. 1, pp. 64-68 (1981).
Tominage, et al., “High Performance 3 Micrometer

space contains in memory the identification of the next
instruction to be executed for that respective process. A
“last pointer” register (LPTR REG.) cooperates in the
scheduling operations. Each microcomputer chip can
be coupled serially to other such chips on a respective
pair of only two wires, each a unidirectional channel.
Each channel also has two registers, one for process
identification and one for data. Communications are
synchronized.

15 Claims, 19 Drawing Figures

2 9 20 2
r————————— ————
:)
% Tk~ REDUNDANCY '
SERIAL g
A e RAM |ROM|FUSE|COLUMNS
27 S&ggL FUSE] ROWS
% EXTERNAL
7 i "L L MEMORY
—EUS T INTERFACE : PINS
ove—] & [1
SYSTEM MEMORY
sv—'Bs [SeRvice ROM | NTERFACE STNC .
CPU [INTERFACE |00
RESETo—] e ; 4.
[

; / L

tLocK;J_ / E /
28 " IS AS——
17 W B 2

Al

14 5 W 23

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

Page 3 of 99

25 19 20
r———\ — — 0 - R 1
| |
T 7 7
2% Tk REDUNDANCY |
27 SERIAL
% //i N RAM [ROM|FUSE|COLUMNS
27~ SERIAL FUSE| ROWS
NG k- kL L MEMORY
| INTERFACE
> BUS PINS
ov | | |
INPUT| | SYSTEM MEMORY
5V1pINS [T SERVICE ROM | INTERFACE [SYNC ,
RESETo—l CPU /| INTERFACE J100IC |
,) ___||coNTROL LOGIC| |, ‘ A
£ Al i
28 L/ ———~—J~——— YA o
18 7 ————

17

W

13

12 % 15 10

Fig.1.

23

L861 V1 T Juared ‘SN

S1JO 131934S

869°089°Y

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

Page 4 of 99

3}0 3{5 0.2
WPIR WPTR OF | [WPTR OF cLocke |
PROGRAM OF NEXT NEXT NEXT 28
PROCESS PROCESS PROCESS 2
5 S - B
PRoLEs T || 1PTR2 IPTR3 SERIAL LINK
IPTR1 B K
WORK SPACE | [WORK SPACE| [WORK SPACE ’ 2%
. OATA FOR P?OCESS FOR PROCESS| |FOR PROCESS 5 ”
T 3 SERIAL LINK 4 J,
I
25
L0-{+ CHANNEL 1_ 4 2]
SERIAL LINK
CHANNEL 2
O e e I'] Y
CHANNEL L7 ST paorre o
42| CHANNEL 3 17, [INPUT PROCESS | 45!
———— I N REGSTER !
b3 DA Y INPUT DATA 26
| §-4] ‘ |
I g \ S T REGISTER d:z.a—r({
u £7) 33 34 ' !
| | @
1| [EEE]
70 '
EXTERNAL — | [T Touteur DATA | 21
MEMORY VNI 7 I A
NEMORY ik DATA) CONTROD i REGISTER ,
- ROM MEMORY |4 &
INTERFACE - |
; SYNC +—{={ (ONTROL LOGIC |L_;_
Flgz CPU |NTEEFACE LOGIC L p——
124 LOGIC . F—=—" OUTPUT REQUEST
8CLOCK 28 15 0 | INPUT REQUEST

L861‘v1 Tnf Judked ‘SN

S1JO ¢3S

869089

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

Page 5 of 99

U.S. Patent Jjul 14, 1987 Sheet3 of 15 4,680,698
'r']l» [15
RUMNG LATCH 10
IB LAIC ——tm
MEMORY INTERFACETMADDR LATCH 4+~ syne EI3
INTERFACE | (LT FOLIMEN ENABLE LATCH | [0GIC [~ "eedesIe
WRITE LATCH \—/10
BYTE LATCH \ |
UPPERALOWER LATCH\I\‘ e
17 [t} 15 F,'g 3
| DATA BUS 62
-ADDRESS
7 PATH 61 y
l |_/ J
i MADDR T
63 1
——1 IB *,/ N | o
65 DECODER
Y~ OREGTR T
e P 66 VY =
b | INC | CONDITION
1| Tl &7 9—{ MULTIPLEXOR
F"\'L IPTR
MIR
69
=T BYTE ALIGNER Y v 80
70 INSTRUCTION
- DATA OUT ¥ |zeus | PROGRAM
., W, 1 .
1 17 T
LAJCSHFT) AREGIR _ (SHED>F~—t 13
X {1 72 S6
B o BREGTR 4 /
o WPTR REG =4 =3 koL
s -+ SWITCHES
7817 b -
T L PTR REG. -
?{ ~55
-
% ALU 5
L \

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007 Page 6 of 99

o5~ {OREGH |

T
73 WPTR REG -~
J

WORK SPACE WORK SPACE
ADDRESS (ONTENTS ADDRESS CONTENTS
[10300 [ADDRESS OF CHANNEL 40]| | [11300 [ADDRESS OF CHANNEL 41 |
1

10202} VECTOR VARIABLE 2

1
[11200] ADDRESS OF CHANNEL 40 |

10201| VECTOR VARIABLE 1
10200| VECTOR VARIABLE 0

|
|
L

|
|
|
|
!
1100] VARWUBLE N
T
|
|
i
|
|

]
67~ IPTR REG |——

U~ LPTR REG

T A REGIR

8/5 (32 84

Fig 4.

1000] _ VARIABLE N
!
&
|
|
f |
10002] __ VARIABLE 2 1002] VARIABLE 2
10001 VARIABLE 1 11001 VARIABLE 1
-[0000] VARWABLE 0 || {~{11000] VARWABLE 0
19999 [WPTR-11_ = 1PTR_ 11| [10999 IPTR
%998 [WPTR-21=,NWP%¢5¢> 10998] WPTR OF NEXT PROCESS
i

]
5

L861 VI ™I Juded ‘SN

S1J0 $31394S

869°089°t

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 7 of 99

U.S. Patent jul 14, 1987 Sheet5of 15 4,680,698
FUNEUQN DAJA
Fig.5.
INSTRUCTION
0 154\ 155\ 156\7 157\
o— DELAY 1 i DELAY 2 l DELAY 3 DELAY1+——1
MICRO~INSTRUCTION DESTINATION COLUMN SOURCE
STROBE STROBE PRE-CHARGE STROBE
Fig.7
SOURCE £
STROBE—/ N/ N/ /S
151
DESTINATION
STROBE I\ C /N
COLUMN
PRE- CHARGE A N~ (g, \/
MICRO- '
INSTRUCTION —/"\ VAN AN /?x, /
153

STROBE
Fig.6

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

Page 8 of 99

104

33
B Fig.8 FUNCTION | pata | INSTRUETION
~
MICRO INSTRUCTION
PROGRAM
] Z11:8] Z17:4) Z (3:0]
' CONTROL N N O
PFIX|NFIX|NEITHER| “giGNAL : , GATE |
IDURATI : | LA
OPD ZERO [ZERO 2€R0] |
1 1 0 NOT | S+ D | i ’ 92
0 100 : I , 65
1 | l J
i ¥
: _ ' ! : — 0 REG
101 I | !
: i |
. i 1
1| 1| ooy [VERM s it ; i : GATE 90
102 H : :
, 0 |7 Yinel YIT4 Y[3:0]
11 0| oor1 FROM | S+D ﬁ | ! l >
| : : — ALY
Z FROM i ']
011 0ot ygry| SO PN L] L] L__]
Z2(15:12] Z[11:8] Z(7:4) - Z13:0]

L861 ‘b1 T0f Juded ‘SN

S1J0 9139yS

869°089‘¢

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 9 of 99

U.S. Patent jul 14, 1987 Sheet 7 of 15 4,680,698

-
o|£|®
J
<o
>
_~
- Bl
E\.
2 5
= =
<{ < [
ES, = | ©
a =5 g
* =
Z‘-‘
>
- b4
_
x|z = .
g2 v =
E‘— T
& ;
}-—
: &
3 |3 -
=
i :
3133 ,%’
1554 I ~
2|5 1Sy
a Ll\

Fig.9

Page 10 of 99

Filed 04/02/2007

Case 2:05-cv-00494-TJW Document 225-6

4,680,698

Sheet 8 of 15

U.S. Patent jul 14, 1987

08l
 NOILAWNSNGD, \ ||||||||||||||||||| _
- " TINNYHD q R
_ 40 SS3Yday !
|
 NOLLAWNSNOD, 1304, | .,
TINNVHD INNVED Lo TINNVHD
\ 40 SS}0av
/ 8Ll LI, R)
18 TNNYH) - — ~=91 TINYH Sl oLt
/| Ho'Ssxidav 40 SSAaV
m
I ..p_m:soﬁ:
ST D |) o T —
— |
71 oLl €Ll - NOILYION,
TIVASSRIOM SNOILVIOY TRNVHD
7
I Ll
JIVASHIOM
J
o oL b1y

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007

Page 11 of 99

|

21 1! 2% 1
PROCESS REGIST FI'!‘\IR%UI ESCSHRA!?JC:NISTER'
d DATAREGISTER
M[R(I?MPLHER '[INPUT CHAN N7 5 OUTPUT CHANNEL | MICROCOMPUTER]

o IPROCESS REGISTER] PROCESS REGISTER
i DATA REGISTER DATA REGISTER

% B 27

—0- 0

MICROCOMPUTER MICROCOMPUTER
.

L861 ‘P1 Tnf Judled ‘SN

S1J0 619948

869089

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 12 of 99

U.S. Patent Jul 14, 1987 Sheet 10 of 15 4,680,698
188 189
/ /
OUTPUT PROCESS REGISTER INPUT PROCESS REGISTER
OF MICROCOMPUTER 1 OF MCROMOMPUTER 2
{ i
| I
i 168 !
a
READY |/ l |
: } 189a
| h /
I 188b NIL
NIL) T
. |
189b
I SEQUENCE I Bj
)J(READY
: ~\188¢ I
! ! 1{89[
| NIL
| s
| |
| | 189d
| j /
} READY
|
1884 |
NIL / |
. | 189
:] /
! 188e - NIL
READY |/

Fig.12

Page 13 of 99

Filed 04/02/2007

Case 2:05-cv-00494-TJW Document 225-6

Sheet 11 of 15 4,680,698

U.S. Patent Jul 14, 1987

08l

<

«NOLLAHANSNGD,,

TINNVH)
40 SS3¥aav

-ldu3& ”
TINNVH)

_.l.'

NOLLIWNSNO) |
13NNVH)

" I—qu "
TINNVH)
40 SS34aav

L8l
Lu

\ mP\

W31,
13NNVH)
40 SS34aav

| — — -

ST

" u..d—z-
T3NNVH)D

Ll
FIVISHIOM

Q9LL

26l

71 b1

PER
1INNYH)
40 SS3y0av

Sl

p~———

PERIS
TINNVHI

+NOLVIOY.
TINNYHD
40 SS3¥0av

7/
09/l Ll

SNOLV10d

LNOIVLOY,,
1INNVH)

1l
JIVISHIOM

L —\

Case 2:05-cv-00494-TJW Document 225-6

BUS
16

Filed 04/02/2007

Page 14 of 99

DATA Fio 15
ADDRESS
READ 19.15.
CONTROL ZWRITE
\BUSY ADDRESS OUTPUT
u
193—{ DECODER DATA _|AND OR |-=027
! REGISTER 48 A }
output L4y 195 196
PROCESS
REGISTER |
PROCESS REGISTER
OUTPUT 199+ REQUEST LoGIC .
REQUEST LATCH [M97 [
194,
286
BIT COUNTER
202 210 224
(203 | Cl2124 222\8 [1220,
20k IN| ouTeuT |Y [2135 23, Y1 ourput [N
200,10 | CONTROL | p 20| p| DATA | 20t
201 U 2115 225\| U | STATE | 7L21m
2057 L | MACHINE |7 |2 205, T [MACHINE | s [,
264 1Pl 26007 |
C285 2847
RESET ‘ :
ACK READY CLOCK 28 ACK TAKEN ACK GONE (LOCK22 ACKGO

L861 V1 TOf Juded ‘SN

869°089°‘4 S130 T11°94S

Case 2:05-cv-00494-TJW Document 225-6

DATA

Filed 04/02/2007 Page 15 of 99

ADDRESS -
BUS READ Fig.16.
CONTROLWRITE
BUSY
L ADDRESS INPUT —02%
193— DECODER DATA
' REGISTER 48
INPUT |
PROCESS 4
REGISTER |o—
PROCESS REGISTER
INPUT 199+ REQUEST LOGIC |
REQUEST LATCH |97 [
194
1287
BIT COUNTER
(242 220 24,0
23]| 0 [222¢ 81 2405] 0 | L23n
26h IN| NeuT |9 1223, 26l Y| npuT N[220,
20 2P| CONTROL | p 2651 p| DATA |f
201 |Ul STATE LATCHI - Ul STATE
Ja T U T
262 | o |MACHINE 17 {263, T [MACHINE |5 [700
260 e 261 — 266> 1,)
RESET A \1— ! 280
ACKGONE CLOCK28 ACKGO ACK READY ACK TAKEN CLOCK 22

L861 110 Juded 'S'N

8690894 S1J0 €1394US

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 16 of 99

‘U.S. Patent Jul 14, 1987 Sheet 14 of 15 4,680,698
_/\
\
4 13
=N
_
\
3
-
N &
T~ N E
. >0 —_ +
D 3 S
& & i
=N
L
T

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 17 of 99

U.S. Patent jul 14, 1987 Sheet 15 of 15 4,680,698

~3
+ 3
A

p—type epitaxial (ayer
p-type substrate

=

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

1

HIGH DENSITY ROM IN SEPARATE ISOLATION
WELL ON SINGLE WITH CHIP

The invention relates to microcomputers. This appli-
cation is one of five applications assigned to Inmos
Limited, each filed on Nov. 16, 1983 having Ser. Nos.
552,601; 552,602; 553,027; 553,028; and 553,029. These
five applications have identical descriptions from pages
6 through 85.

BACKGROUND OF THE INVENTION

Microcomputers generally comprises a processor and
memory, the processor being arranged to operate in
accordance with the sequence of instructions derived
from a stored program. In operation the processor will
normally need to make data transfers between registers
and between registers and memory. It may also wish to
transmit messages to or from processes carried out on
other microcomputers. The speed of access to memo-
ries located external to the processor chip is much
slower. Furthermore, microcomputers have commonly
arranged for external communications to take place
through a shared bus which can act as a bottleneck
causing slower operation of the microcomputer.

Although the development of integrated circuit tech-
nology has led to more components being provided on
a microcomputer chip, difficulties arise in providing a
useful amount of memory on the same chip as the pro-
Cessor.

The size available on a single silicon chip is limited
and memory arrays may comprise the largest and dens-
est component required for a microcomputer. Conse-
quently the incorporation of any memory on the same
chip as a pdrocessor may occupy excessive area and
may lead to too low a yield of satisfactory components
from a silicon chip due to the increased risk of defective
components arising from the incorporation of memory
on the chip.

Furthermore, difficulties arise in trying to avoid un-
acceptable noise interfering with the operation of a
memory array when an asynchronous circuit such as a
processor is incorporated on the same chip.

OBJECTS OF THE PRESENT INVENTION

It is an object of the present invention to provide an
improved microcomputer with satisfactory combina-
tion of memory and processor on a single chip.

It is a further object of the invention to provide im-
proved speed of operation of a microcomputer by re-
ducing delay in transfers between processor and mem-
ory.

It is a further object of the present invention to pro-
vide an improved microcomputer in which a program
for operating the microcomputer can be stored in a
memory on the same chip as the processor.

It is a further object of the present invention to pro-
vide memory and processor on a chip with minimum
noise interference.

1t is a further object of the present invention to pro-
vide an improved microcomputer which incorporates
memory and processor on the same chip with an accept-
able yield in manufacturing processes.

SUMMARY OF THE PRESENT INVENTION

The present invention provides a microcomputer
comprising a single chip having a processor and mem-
ory formed on the same chip, the memory comprising

20

25

30

35

40

45

50

55

65

2
an array of memory cells providing at least one K bytes
(BK bits) of programmable RAM.
The present invention also provides a microcomputer
comprising a single integrated circuit device providing
a processor and memory, said processor being arranged
to execute a number of operations on data in response to
a program consisting of a plurality of instructions for
sequential execution by the processor, each instruction
including a set of function bits which designate a re-
quired function to be executed by the processor,
wherein:
(a) said processor includes:
(i) plurality of registers and data transfer means for
use in data transfers to and from said registers,
(ii) means for receiving each instruction and load-
ing into one of the processor registers a value
associated with the instruction, and

(iii) control means for controlling said data transfer
means and registers responsive to said function
bits to cause the processor to operate in accor-
dance with said function bits and

(b) said memory comprises an array of memory cells
providing at least one K bytes of RAM for storing a
program to be executed by the processor.

Preferably the memory provides at least four K bytes
of RAM.

Preferably said memory comprises a plurality of
RAM cells formed with high impedance resistive loads
and transistors.

In one embodiment said high impedance resistive
loads are formed in a film of polycrystalline silicon.

Preferably the microcomputer has a substrate of
semiconductor material and said memory is located in
an isolation well formed of semiconductor material of
different type from the substrate to reduce noise inter-
ference between the memory and processor.

Preferably the microcomputer comprises a CMOS
structure having an n-channel substrate with one or
more isolation wells of p-type semiconductor.

Preferably a plurality of isolation wells are provided
in the substrate, the memory array being located in one
isolation well and transistors of other circuitry used in
the microcomputer being located in other isolation
wells.

In order to achievea satisfactory yield in manufac-
ture, said memory array preferably comprises a main
memory array and a redundant memory array, together
with means for enabling use of redundant memory if
defective memory elements occur in the main memory
array.

Preferably said redundant memory array incorpo-

rates redundant rows and columns of memory elements

interconnectable with the main memory array through
fuse elements.

Preferably a single silicon chip on which is formed
the processor, programmable RAM together with com-
munication channels permitting message transmission to
or from a process executed by the processor. Preferably
said control means for the processor is arranged to
respond to functions selected from a function set which
include data transfer between registers, memory and
registers and which enable synchronisation of message
transfer through said communication channels.

Preferably said processor is arranged to execute a
sequence of instructions each one byte long and each
having the same format of bit positions, thereby reduc-
ing the chip area required by the processor registers,

Page 18 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

3

said registers each having a bit length which is an inte-
gral number of bytes.

The invention also provides a network of microcom-
puters as aforesaid, the microcomputers being intercon-
nected to execute a plurality of concurrent processes.

It will be understood that the term microcomputer
does not impose any lower limit on how small the com-
puter may be.

An example of a microcomputer in accordance with
the present invention will now be described by way of
example and with reference to the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing the main features
of the microcomputer,

FIG. 2 is as more detailed block diagram of some of
the components shown in FIG. 1 and in particular illus-
trates more fully the memory and serial links for exter-
nal communication,

FIG. 3 shows further detail in block diagram form of
part of the microcomputer and particularly illustrates
the registers, data paths and arithmetic logic unit of the
central processing unit as well as the interface between
the central processing unit and other units of the mi-
crocomputer,

FIG. 4 illustrates the use of workspaces within the
memory,

FIG. 5 illustrates schematically a form of instruction
used in the microcomputer,

FIG. 6 shows in wave form the relative timing and
duration of a plurality of timing control signals,

FIG. 7 illustrates the generation of timing control
signals,

FIG. 8 illustrates the operation of the microcomputer
of FIGS. 1 to 3 with variable length operands.

FIGS. 9a to 9¢ illustrate successive operations in one
manner of communicating using a two word channel
between two processes which are executed by the same
microcomputer,

FIG. 10 illustrates the operation of two communicat-
ing processes on one microcomputer,

FIG. 11 shows a mnetwork of interconnected mi-
crocomputers, including detail of the serial link connec-
tion between two of them,

FIG. 12 illustrates a sequence of operations for effect-
ing communication via serial links between two pro-
cesses carried out on different microcomputers,

FIGS. 13a and 13b illustrate the format of data and
acknowledge packets for transmission through serial
links between two microcomputers,

FIG. 14 illustrates the operation of the same two
communicating processes of FIG. 10 on two intercon-
nected microcomputers,

FIG. 15 shows a logic diagram of one output serial
link,

FIG. 16 shows a logic diagram of one input serial
link,

FIG. 17 shows the chip formation which may be used
for the microcomputer of FIG. 1, and

FIG. 18 shows an alternative chip formation which
may be used for the microcomputer of FIG. 1.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The microcomputer described herein is an example of
a Transputer (Trade Mark of Inmos International plc)
microcomputer and comprises a single silicon chip hav-

0

—

5

20

25

30

35

45

50

65

4

ing both a processor and memory as well as links to
permit external communication. It is capable of carry-
ing out a plurality of concurrent processes and effecting
scheduling and communication between processes both
on the same chip or separate chips. Each microcom-
puter has at least one K byte of memory in the form of
programmable RAM on the same chip as the processor
and the processor is capable of obeying programs in the
chip’s memory. The microcomputer has a plurality of
communication links, herein called serial links, to enable
it to be connected into a network of interconnected
microcomputers so that any one microcomputer can be
used as a building block for a network. The communica-
tion between any two microcomputers is effected by a
serial link which provides one or more specific pin to
pin connections each interconnecting two and only two
microcomputers. Each link is not shared with other
microcomputers or with any external memory. The
microcomputer is provided with means for synchroni-
sation in data transmission between microcomputers
within the network so that communication through a
link between two microcomputers can be initiated by
either the receiving or transmitting microcomputer.

The microcomputer contains a program with a plu-
rality of sequential instructions each consisting of two
parts, one part representing the function of the instruc-
tion and the other part representing data which is
loaded into an operand register. In this way the function
part of each instruction is of the same bit length regard-
less of the word length of the processor and in this way
uniformity of function format and function bit length is
achieved regardless of the word length of the processor.
A further important feature of the microcomputer is
that its operation is effected by use of a function set
which is simple and efficient. The function set consists
of a minimum number of functions. The function set
includes direct functions which cause the processor to
carry out an operation on the contents of the operand
register. In a preferred arrangement it also includes one
indirect function and two prefixing functions. The use
of the indirect function allows a large number of proces-
sor operations to be used without increasing the number
and size of data registers to perform the operations.
Furthermore the use of a prefixing function provides for
variable length operands.

By use of a microcomputer in accordance with this
example, any required network of microcomputers can
be formed by interlinking a number of microcomputers
and the resulting network operates in the same way as
any single microcomputer.

GENERAL DESCRIPTION OF THE
STRUCTURE

The main elements of the microcomputer are illus-
trated in FIG. 1 on a single silicon chip 11 using p-well
complementary MOS technology, which will be de-
scribed in more detail with reference to FIG. 17. The
components provided on the chip have been indicated
in block form in FIG. 1 although it will be appreciated
that the blocks are not intended to represent the relative
size and positioning of the various components. On the
chip there is provided a central processing unit (CPU)
12 which includes some read-only memory (ROM) 13.
The CPU 12 is coupled to a memory interface 14 con-
trolled by interface control logic 15. The CPU 12 incor-
porates an arithmetic logic unit (ALU), registers and
data paths which will be described in more detail with
reference to FIG. 3. The CPU 12 and memory interface

Page 19 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

5

14 are connected to a bus 16 which provides intercon-
nection between the elements on the chip 11. A service
system 17 is provided with a plurality of input pins 18
including a zero volt supply, a 5 volt supply, a reset pin
which may be activated to reset the microcomputer to
a defined state, and a clock pin 28. The microcomputer
is provided with a substantial amount of memory on the
chip 11 and this is represented by a random-access
memory RAM 19 and the ROM 20. The amount of
memory on the chip should not be less than 1K byte so
as to provide sufficient memory capacity to allow the
processor 12 to be operated without external memory.
Preferably the memory on the chip is at Jeast 4K bytes.
The division between RAM and ROM on the chip may
be selected to suit the particular requirements for the
microcomputer. The memory also includes redundancy
21 (this may be as described in U.S. Pat. No. 4,346,459
entitled “Redundancy Scheme For An MOS Memory;”
U.S. Pat. No. 4,389,715 entitled “Redundancy Scheme
For A Dynamic RAM;” or U.K. Patent application
8231055, all owned by Inmos Corporation. This region
21 of memory has rows and columns selectively con-
nectable by fuses as shown to replace defective regions
of the memory 19 or 20 and thereby increase the pro-
duction yield of chips which are satisfactory for use.
The operation of the microcomputer includes timing
control responsive to clock pulses from the pin 28. An
external memory interface 23 is provided and con-
nected to a plurality of pins 24 for connection to an
optional external memory (not shown). In order to
allow the microcomputer to be linked to other similar
microcomputers to form a network, a plurality of serial
links 25 are provided and in this example four are
shown. Each serial link 25 has an input pin 26 and an
output pin 27 each of which can be used to form a single
pin to pin connection to corresponding output and input
pins respectively of a further microcomputer. Each
serial link is connected to a synchronisation logic unit
10 comprising process scheduling logic which will be
described in more detail below. Although the drawings
show four serial links 25, three links, or even twa links,
may be used to form a single network but preferably at
least six, and for example seven, such links are provided
so that they may be fully interconnected in any desired
array.

GENERAL DESCRIPTION OF USE OF CHIP
MEMORY AND COMMUNICATION CHANNELS
AND LINKS

FIG. 2 shows some of the elements of the microcom-
puter in more detail and in particular it illustrates the
use of the memory on the chip. The microcomputer
may be used to carry out a plurality of concurrent pro-
cesses on the same chip and in FIG. 2 the operations of
three concurrent processes have been shown. The mem-
ory is used to store the program 30 which may be stored
in either ROM 20 or RAM 19. In this particular exam-
ple the microcomputer is a 16 bit word device although
it will be understood that other word lengths may be
used. The program 30 consists of a sequence of instruc-
tions which in this example are each of 8 bit length and
this instruction length may remain the same even if the
processor is of word length other than 16 bits. Each
instruction is of the format shown in FIG. 5§ where the
most significant 4 bits represent the function of the
instruction and the least significant 4 bits represent data.
The program 30 incorporates no data other than that
held in the designated part of each instruction. The

10

20

25

30

35

40

45

50

55

60

65

6

manner in which the processor responds to each func-
tion and the way in which the data is handled depend on
the particular function selected from a set of functions
which will be described below, but the format of the
function and data parts of each instruction is always the
same. The memory also stores data 31 which may be
stored in either the ROM 20 or RAM 19.

The microcomputer carries out a number of pro-
cesses together, sharing its time between them. Pro-
cesses which are carried out together are called concur-
rent processes. At any time, only one of the processes is
actually being executed by the microcomputer and this
process is called the current process. Each concurrent
process to be effected by the microcomputer uses a
region of memory called a workspace for holding the
local variables and temporary values manipulated by
the process. The address of the first local variable of
each workspace is indicated by a workspace pointer
(WPTR). Similarly for each concurrent process, an
instruction pointer (IPTR) is used to indicate the next
instruction to be executed from the sequence of instruc-
tions in the program relating to that particular process.
In FIG. 2, which shows three concurrent processes, the
workspace for process 1 is indicated by the numeral 32
and the corresponding workspaces for processes 2 and 3
have been marked 33 and 34. Each workspace consists
of a plurality of addressable word locations and one
word location 35 of each workspace is used to store the
workspace pointer (WPTR) of the next process to be
executed on a list of processes waiting to be executed.
Thus, a linked list is formed in memory containing
pointers to a sequence of workspaces for processes to be
executed. If the processor is working on process 1 (see
FIG. 2) and reaches a point where it is instructed that
for the time being it is to stop executing that process, the
CPU 12 will begin work on the next process, e.g. pro-
cess 2. It will be directed to that next process by reading
the workspace pointer in memory at location 35. In the
preferred embodiment there is a known relationship
between workspace pointer for any process and the
address of the workspace pointer of the next process on
the linked list, so that the next part of the linked list will
be easily available from the current process workspace.
For each process workspace, a further word location 36
stores the instruction pointer (IPTR) for that process. It
will be appreciated that although workspaces for only
three processes are shown in FIG. 2, the number may be
varied depending on the number of concurrent pro-
cesses to be carried out.

In order to allow communication between different
processes carried out by the same microcomputer, a
plurality of communication channels indicated by the
numerals 40, 41, 42 and 43 are provided in the RAM
section 19 of the memory. In this example each commu-
nication channel consists of two word locations in mem-
ory, one for use in identifying the process wishing to use
the channel and the second for holding the data to be
communicated through the channel. The operation of
these channels will be described more fully with refer-
ence to FIGS. 9a-9¢. FIG. 2 also shows in more detail
the formation of one serial link 25. It is to be understood
that each of the serial links is similarly formed. As indi-
cated, the link 25 incorporates two channels 45 and 46
each forming a uni-directional communication channel.
In this way the channel 45 is used as an input channel
and the channel 46 as an output channel. Each channel
consists of two registers each addressable in a manner
similar to the two word locations of each of the chan-

Page 20 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

7

nels 40 to 43. The two registers consist of a process
register 47 used to indicate the process involved in the
communication and a data register 48 for holding the
data to be transmitted. The data register 48 in the input
channel is connected to pin 26 and the data register 48
in the output channel is connected to pin 27. The opera-
tion of the two registers 47 and 48 is controlled by
control logic 50 coupled to the synchronisation unit 10.
The operation of the serial links, control logic 50 and
unit 10 will be described in more detail with reference
to FIGS. 12 to 16.

The RAM section 19 of the memory is used to pro-
vide the workspaces 32 to 34 as well as the communica-
tion channels 40 to 43 and it may also be used for hold-
ing the program and data if required. The ROM 20 may
be used for a variety of purposes such as for example
holding an interpreter for a high level programming
language or for storing “look-up™ tables for standard
operations. It may also be used to hold control pro-
grams for peripheral devices where the microcomputer
is intended for a specific purpose.

CPU DATA PATHS AND REGISTERS

The central processing unit 12 and its operation will
be more fully understood with reference to FIG. 3.

The CPU 12 includes an arithmetic logic unit (ALU)
55 and a plurality of data registers connected to three
data buses, X bus, Y bus and Z bus. The operation of the
registers and their interconnections with the buses is
controlled by a plurality of switches diagrammatically
represented by the reference numeral 56 and controlled
by signals derived from a micro-instruction program
contained in the ROM 13. It will be understood that
these are switch means integrally formed in the chip
construction. Communication between the CPU and
the memory (19, 20, 21) is effected via a unidirectional
address path 61 leading to the memory interface 14 and
a bidirectional data bus 62 also connected to the inter-
face 14. The registers, buses 61 and 62, and the X, Y and
Z buses are connected as shown in FIG. 3. The registers
are as follows:

Abbrevi-

ation Register

MADDR Memory address register 60 containing the address of
the memory location required.

iB Instruction buffer 63 for receiving sequentially from
memory instructions of the form shown in FIG. 5.

OREGTR An operand register 65 for receiving the data derived
from an instruction in the instruction buffer 63.

IPTR A register 67 which holds the instruction pointer

REG (IPTR) of the current process.

DATA A register 70 for supplying data to the memory on the

ouT data bus 62.

AREGTR A first (A) register 71 for holding an operand for the
ALU 55. -

BREGTR A second (B) register 72 arranged as a stack with the
AREG for holding operands for the ALU 55.

WPTR A register 73 for holding the workspace pointer

REG (WPTR) of the current process.

LPTR A register 74 for holding a pointer to the

REG workspace of the last process on the

list of processes waiting to be executed.

As shown in FIG. 3, an incrementer 66 and a byte
aligner 69 are also provided.

The data bus 62 is provided with a switch 75 operable
to precharge the data bus line 62. The X and Y buses are
respectively provided with similar switches 76 and 77
operable to precharge the X and Y buses. A further

20

35

45

50

55

65

8

switch 78 is provided between the X and Y buses and is
operable to cause signals on the two buses to merge.

The arithmetic logic unit 55 receives inputs from both
the X and Y buses and is arranged to output to the Z
bus. It provides a further output 8 to the micro-instruc-
tion program ROM 13, through a condition multiplexor
9, so as to control the operation of the data path in
dependence on the output of the ALU 55.

The instruction buffer 63 is arranged to receive from
the memory (19, 20, 21) via interface 14 and bus 62 a
sequence of 8 bit words, herein called instructions, each
of which has the format shown in FIG. 5 and consists of
two parts. One part represents a “function” selected
from the function set described below and the other
part represents data. The instruction buffer 63 provides
an output to a decoder 64 which separates the instruc-
tion into the function and data halves. The data half is
loaded into the operand register 65 and the function half
is decoded to provide an address to a micro-instruction
register (MIR) 80. The identical procedure is followed
for all instructions, regardless of function selected. Each
instruction received by the instruction buffer 63 loads
into the MIR 80 an address which causes the micro-
instruction program in the ROM 13 to execute one or
more micro-instructions controlling the switches 56 and
interface control logic 15 so that at the end of each
sequence of micro-instructions, an operation has been
effected by the registers, control logic 15, and data
paths of FIG. 3 corresponding to the selected function
in the instruction. The operation of the micro-instruc-
tion program will be described more fully below.

All the registers shown in FIG. 3 apart from the
instruction buffer 63 and the micro-instruction register
80 are 16 bit registers. It will be appreciated that in this
example in which the processor is a 16 bit word proces-
sor, each 16 bit word location in the program contains
two instructions, as each instruction is only 8 bits long.
It is therefore necessary for the instruction pointer,
which is held in the register 67 to be capable of pointing
to a specific 8 bit byte in order to identify a single in-
struction from a program word location which incorpo-
rates two instructions. For this reason the program 30
(FI1G. 2), in this example, is written into the bottom half
only of the memory 19. In this example the memory has
64K words and consequently the program 30 is written
into locations 0 to 32767 as the addresses of these loca-
tions can be represented by 15 bits only. This leaves an
additional bit in the instruction pointer which can be
used to identify which of the two bytes at each word
address is necessary in order to identify a specific in-
struction. The micro-instruction ROM 13 contains 122
words, each of 68 bits. Each row of the ROM 13 con-
tains 68 bits so that the ROM is arranged to provide 68
output signals at any time. The operation of the micro-
instruction program will be described more fully below.

As can be seen from FIG. 3, the interface logic con-
troller 15 is provided with a plurality of single bit state
latches which are used to record the state of the mem-
ory interface. A latch 110, called a running latch, de-
fines the source of instructions to be executed. If the
latch 110 has state 1 the source of instructions is mem-
ory (this may be an external memory via the external
memory interface 23 if desired). If the latch has state 0,
the source of instructions is one of the serial links 25 to
allow instructions to be received from an external
source. It may be necessary to go repeatedly to the same
serial link 25 for two or more successive instructions
whereas when the instructions are derived from mem-

Page 21 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

9

ory, the instruction pointer IPTR is advanced for each
instruction. An IB latch 112 records the state of the IB
register 63. An MADDR latch 113 records the state of
the MADDR register. A MEM ENABLE latch 114
records the state of the memory interface and has state
1 whenever the memory interface 14 is occupied. A
WRITE latch 115 records that a write request has been
made to the memory. The BYTE latch 116 records that
a byte request has been made to the memory. An UP-
PER/LOWER latch 117 holds the least significant bit
of byte addresses and is loaded from the least significant
bit of the A register 71 when the content of the A regis-
ter is shifted one place to the right.

FUNCTION SET

The function elements of the instructions which are
received by the instruction buffer 63 are determined by
the function set for the microcomputer. The function
set is the list of available functions which can be se-
lected when writing a program and to which the mi-
crocomputer is capable of responding.

There are three types of function in the function set.

Direct functions which use the contents of the
operand register 65 as data (the contents of other
registers may also be used as data).

Indirect functions which use the contents of the
operand register 65 to select one of a variety of
“operations” using data in registers other than
the operand register 65. The selectable “opera-
tions” are listed below the function set.

Prefixing functions which accumulate operands
into the operand register 65.

The function set is as follows:

Code No Abbreviation Name
FUNCTIONS
Direct Functions
0 idw load from workspace
1 stw store to workspace
2 ldpw load pointer into workspace
3 Idwi load from workspace and increment
4 idv load from vector
5 stv store to vector
6 1d1 load literal
7 adt add literal
8 J Jjump
9 jnz jump non zero
10 ldpc load pointer into code
11 call call procedure
INDIRECT FUNCTIONS
i3 opr operate
PREFIXING FUNCTIONS
14 pfix prefix

15 nfix negative prefix

The operations which may be effected by use of indi-
rect functions are as follows:

_OPERATIONS
Code No Abbreviation Name
0 rev reverse
1 eqz equal to zero
2 gt greater
3 and and
4 or or
5 xor exclusive or
6 add add
7 sub subtract
8 run run process
9 pse pause

—

0

25

30

35

45

50

55

65

-continued
OPERATIONS
Code No Abbreviation Name
10 join Jjoin
11 sync sychronise
12 ret return
13 rot rotate bytes
14 sr shift right
15 sl shift left

Prior to describing these functions and operations,
the notation which is used herein will be set forth. The
Transputer microcomputer is used preferably with
OCCAM (Trade Mark of Inmos International plc) lan-
guage, which is set forth more particularly in the book-
let entitlted Programming Manual-OCCAM published
and distributed by Inmos Limited in 1983 in the United
Kingdom, a copy of which is attached to this specifica-
tion as Appendix 1 as well as Taylor and Wilson, “Pro-
cess—Oriented Language Meets Demands of Distrib-
uted Processing”, Electronics (Nov. 30, 1982), both of
which are hereby incorporated herein by reference.
OCCAM language is particularly well suited to concur-
rent processing. Because the preferred embodiment is
particularly suitable for concurrent processing, the use
of OCCAM language with the present example is quite
appropriate.

Other languages can be used with an appropriate
compiler. In actual application, the programmer will
write a program using OCCAM language and a com-
piler will convert this to particular instructions in cus-
tomary fashion. Nevertheless, the functions and opera-
tions in the instructions are susceptible of description
using OCCAM language to show what happens within
the preferred embodiment of the microcomputer de-
scribed herein. Thus, in describing these functions and
operations, as well as examples of use, the following
notation will be used:

NOTATION

1. PROCESS

A process starts, performs a number of actions, and
then terminates. Each action may be an assignment, an
input or an output. An assignment changes the value of
a variable, an input receives a value from a channel, and
an output sends a value to a channel.

At any time between its start and termination, a pro-
cess may be ready to communicate on one or more of its
channels. Each channel provides a one way connection
between two concurrent processes; one of the processes
may only output to the channel, and the other may only
input from it.

An assignment is indicated by the symbol *:=". An
assignment

vi=¢

sets the value of the variable v to the value of the ex-

pression e and then terminates. For example, x:=0 sets

x to zero, and x:=x+ 1 increases the value of x by 1.
An input is indicated by the symbol “?”. An input

cx
inputs a value from the channel “c”, assigns it to the
variable x and then terminates. An input

c?ANY

Page 22 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

11
inputs a value from the channel “c”, and discards the
value.
An output is indicated by the symbol “I”. An output

cle

outputs the value of the expression e to the channel “c”
and then terminates. An output

clANY

outputs an arbitrary value to the channel “c”.

The process SKIP terminates with no effect.

2. CONSTRUCT

A number of processes may be combined to form a
sequential, parallel, conditional or alternative construct.
A construct is itself a process, and may be used as a
component of another construct. Each component pro-
cess of a construct is written two spaces further from
the left hand margin, to indicate that it is part of the
construct.

A sequential construct is represented by

SEQ

P1
P2
P3

The component processes P1, P2, P3 . . . are executed
one after another. Each component process starts after
the previous one terminates and the construct termi-
nates after the last component process terminates. For
example

SEQ

in?x
xi=x+1
out!x

inputs a value, adds one to it, and then outputs the re-
sult.
A parallel construct is represented by

PAR

P1
P2
P3

The component processes P1, P2, P3 . . . are executed
together, and are called concurrent processes. The con-
struct terminates after all of the component processes
have terminated. For example,

PAR

in?x
out!y

allows an input to x and output from y to take place
together.

Concurrent processes communicate using channels.
When an input from a channel “c”, and an output to the
same channel “c” are executed together, communica-
tion takes place when both the input and the output are
ready. The value is assigned from the outputting pro-

15

20

25

30

35

45

S5

65

12
cess to the inputting concurrent process, and execution
of both concurrent processes then continues.
A conditional construct

IF

condition 1
P!
condition 2
P2
condition 3
P3

means that process P1 is executed if condition 1 is true,
otherwise process P2 is executed if condition 2 is true,
and so on. Only one of the processes is executed, and
the construct then terminates. For example

IF

x>=10
y:=y+1
x <0
SKIP

increases y only if the value of x is positive.
An alternative construct

ALT

input 1
P1
input 2

input 3
P3

waits until one of input 1, input 2 . . . is ready. If input
1 first becomes ready, input 1 is performed, and then
process Pl is executed. Similarly, if input 2 first be-
comes ready, input 2 is performed, and then process P2
is executed. Only one of the inputs is performed, and
then the corresponding process is executed and the
construct terminates. For example:

ALT

count ? ANY
counter := counter 4+ 1
total ? ANY
SEQ
out ! counter
counter : =0

either inputs a signal from the channel “count”, and

increases the variable “counter” by 1, or alternatively

inputs from the channel “total”, and outputs the current

value of the variable “counter”, and resets it to zero.
3. REPETITION

WHILE condition
P

repeatedly executes the process P until the value of the
condition is false. For example

Page 23 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007 Page 24 of 99

4,680,698
13 14
WHI‘LE x> 5 X NOT x
X:=%x—35 0 1
5 1 0

decreases x by 5 until its value is less than §.

4. VARIABLES

A variable is either a simple variation, corresponding
to a single word in store, or is one of a numbered set of
variables called a vector. For example, v [3]: =0 sets the 0
value of variable number 3 in the vector v to 0, and
v[0]+ 1 increases the value of variable number O by 1.

A variable is introduced by a declaration such as

15
VAR v:
P
which introduces v for use in the process P. 20
5. PROCEDURES
A procedure definition allows a process to be given a
name. For example
25

PROC square (n, sqr)
sqr:=n*n

defines the procedure “‘square”.
The procedure name may be used as an abbreviation 30
for the process. For example

square (x, sqrx)

means 35

sqrx: =x*x

6. EXPRESSIONS

An expression is constructed from operators, vari- 40
ables, numbers, the truth values TRUE and FALSE
and the brackets (and).

TRUE is a value consisting entirely of 1 bits, and
FALSE is a value consisting entirely of 0 bits.

The operators +, —, *, / represent addition subtrac-
tion, multiplication and division as usual.

For the operators =, <>, > and < =, the result is
produced as shown below:

x=y true if x is equal to y

x< >y true if x is not equal to y

x>y true if x is greater than y

x < =Yy true if x is less than or equal to y

For the operators \ /, /\ and > <, each bit of the
result is produced from the corresponding bits of the
operands according to the following table:

45

55

x y \N/y x/\y A><y 60
0 0 0 0 0
0 1 1 0 1
1 0 1 0 i
1 1 1 1 0

65
For the NOT operator, each bit of the result is pro-
duced from the corresponding bit of the operand, ac-
cording to the following table:

For the operators < < and > >
x< <y is the value of x moved y bits to the left,
vacated bit positions being filled with O bits
x> >y the value of x moved y bits to the right va-
cated bit positions being filed with O bits
The above general OCCAM language notation will
now be applied to the microcomputer of the example.
The register variables are defined as follows:
IPTR represents the contents of the instruction
pointer register 67
WPTR represents the contents of the workspace
pointer register 73
LPTR represents the contents of the list pointer reg-
ister 74
AREG represents the contents of the A register 71
BREG represents the contents of the B register 72
OREG represents the contents of the operand regis-
ter 65
A transfer from one register to another is represented
by an assignment, eg:

BREG:=AREG

which means that the contents of the A register are
copied to the B register, replacing the previous contents
of the B register.

The memory in the transputer is represented by a
vector:

memory

An individual word in memory is identified by sub-
scripting the vector eg:

memory [AREG]

which means the contents of the word in memory
whose address is the contents of the A register.

A transfer between memory and a register is similarly
represented by an assignment eg:

memory [AREG]:=WPTR

which means that the contents of the word in memory
whose address is the contents of the A register is re-
placed by the contents of the workspace pointer regis-
ter.

Three procedures (PROC) “run”, “wait” and
“moveto” occur frequently in the following descrip-
tion. They are used in scheduling and will be explained
below in connection with scheduling. Meanwhile, they
are defined as follows, wherein link [process] represents
the contents of the process register 47 of a serial link 25
and NIL represents a special value which is not the
workspace pointer of any process. READY represents
a further special value used by the serial links:

PROC run (w)
IF
w <> READY
SEQ
_ memory [LPTR — 2] := w
LPTR := w

[- R I N

Case 2:05-cv-00494-TIJW

Document 225-6

Filed 04/02/2007

Page 25 of 99

LoV I RN - RV R N - IR |

4,680,698
15 16
-continued -continued
w = READY 5 LPTR := w
SKIP 6 WPTR <> LPTR
PROC wait 7 memory [w — 2] := memory [WPTR - 2]
SEQ 8 WPTR := w

memory [WPTR — 1 }:= IPTR

for each external request from a serial link
SEQ

run (link [process])

link [process] := NIL

WPTR := memory [WPTR - 2]

IPTR := memory | WPTR — 1]
PROC moveto (w)
SEQ

IF

WPTR = LPTR

10

In the above procedures, line numbers have been
added for reference purposes in explanation which will

be given below.

Function and QOperation Definitions

These are now set out below using the notation de-
fined above. These will be further explained below in

connection with FIG. 4 and scheduling.

load from workspace(function code 0)

Definition:

Purpose:

store to workspace(function code 1)
Definition:

Purpose:

load pointer into workspace(function code 2)
Definition:

Purpose:

joad from workspace and increment(function code 3)

SEQ

BREG := AREG

AREG := memory [WPTR + OREG]

to load into the A register the value of a location in
the current process workspace.

SEQ

memory [WPTR 4 OREG] := AREG
AREG := BREG

to store a value in a location in

the current process workspace.

SEQ

BREG := AREG

AREG := WPTR + OREG

to load into the A register a pointer to a location in
the current process workspace

to load a pointer to the first

location of a vector of locations in

the current process workspace.

Definition:

load from vector(function code 4)
Definition:
Purpose:

store to vector(function code 5)
Definition:

Purpose:

load literal(function code 6)
Definition:

Purpose:
add literal(function code 7)

Definition:

SEQ

BREG := AREG

AREG := memory [WPTR + OREG]
memory [WPTR + OREG] := AREG + 1
to load into the A register the value of a location in
the current process workspace, and

increment the location

to facilitate the use of workspace

locations as loop counters,

incrementing towards zero

to facilitate the use of workspace

locations as incrementing pointers

1o vectors of words or bytes.

AREG := memory [AREG + OREG]

to load into the A register a value from an outer
workspace

to load a value from a vector of

values

to Joad a value, using a value as a

pointer (indirection) - in this case

OREG =0 :

SEQ

memory [BREG + OREG) := AREG
AREG := BREG

to store a value in a location in an

outer workspace

10 store a value in a vector of

values

to store a value, using a value as a
pointer (indirection) - in this case
OREG =0

SEQ

BREG := AREG
AREG := OREG
to load a value

AREG := AREG + OREG

Case 2:05-cv-00494-TIJW

17

Document 225-6 Filed 04/02/2007

4,680,698
18

-continued

Purpose:

jump(function code 8)
Definition:
Purpose:

jump non zero{function code 9)
Definition:

Purpose:

load pointer into code(function code 10)
Definition:

Purpose:

call procedure(function code 11)
Definition:

Purpose:

Indirect Functions(function code 13)
operate

Definition:

Purpose:

Prefixing Functions

prefix(function code 14)

Definition:
Purpose:

negative prefix(function code 15)

Definition:
Purpose:

Operations(function code 13)
reverse{(operation code 0)

Definition:

Purpose:

equal to zero{(operation code 1)
Definition:

to add a value

to load a pointer to a location in
an outer workspace

to load a pointer to a location in a
vector of values

IPTR := IPTR + OREG

to transfer control forward or
backwards, providing loops, exits
from loops, continuation after
conditional sections of program

IF

AREG <> 0

IPTR := IPTR 4+ OREG
AREG =0

SKIP

to transfer control forwards or
backwards only if a non-zero value
is loaded, providing conditional
execution of sections of program and
conditional loop exits

to facilitate comparison of a value
against a set of values

SEQ

BREG := AREG

AREG := IPTR + OREG

to load into the A register the
address of an instruction to load
the address of a vector of data
forming part of the program

SEQ
memory [WPTR — 1] := IPTR
IPTR := AREG

AREG := WPTR

moveto (WPTR + OREG)

to provide an efficient procedure
call mechanism

to facilitate code sharing, where
two identical procedures are
executed on the same processor

operate (OREG)

perform an operation, using the
contents of the operand register
(OREG) as the code defining the
operation required.

OREG := OREG << 4

to allow instruction operands which
are not in the range 0-15 to be
represented using one or more prefix
instructions

OREG := (NOT OREG) << 4
to allow negative operands to be
represented using a single negative
prefix instruction followed by zero
or more prefix instructions.

SEQ

OREG := AREG

AREG := BREG

BREG := OREG

10 exchange the contents of the A
and B registers

10 reverse operands of asymmetric
operators, where this cannot
conveniently be done in a compiler

IF

AREG =0
AREG := TRUE
AREG <> 0

AREG := FALSE

Page 26 of 99

Case 2:05-cv-00494-TJW Document 225-6

19

Filed 04/02/2007

4,680,698
20

-continued

Purpose:

greater{operation code 2)
Definition:

Purpose:

and(operation code 3)

Definition:
Purpose:

or(operation code 4)
Definition:
Purpose:

exclusive or(operation code 5)

Definition:
Purpose:

add(operation code 6)
Definition:
Purpose:

subtract(operation code 7)
Definition:
Purpose:

run process(operation code 8)

Definition:

Purpose:

pause(operation code 9)
Definition:

Purpose:

join(operation code 10)
Definition:

to test that A holds a non zero value
to implement logical (but not
bitwise) negation

to implement

A = Oaseqz

A <> Oasegz, eqz
ifA=0...asjnz

ifA <> 0...aseqz, jnz

IF

BREG > AREG

AREG := TRUE

BREG < = AREG

AREG := FALSE

to compare A and B (treating them as
twos complement integers), loading
—1 (true) if B is greater than A, O
(false) otherwise

to implement B < A by reversing
operands

to implement B <= A as (gt, eqz),
and B > = A by reversing operands and
(gt, eqz)

AREG := AREG / \ BREG

to load the bitwise AND of A and B,
setting each bit to 1 if the
corresponding bits in both A and B
are set to 1, O otherwise

to logically AND two truth values

AREG := BREG \ /AREG

to load the bitwise OR of A and B,
setting each bit to 1 if either of

the corresponding bits of A and B is
set, O otherwise

to logically OR two truth values

AREG := BREG > < AREG

to load the bitwise exclusive OR of
A and B setting each bit to 1 if the
corresponding bits of A and B are
different, 0 otherwise

to implement bitwise not as

{idl —1, xor)

AREG := BREG + AREG

to load the sum of B and A

to compute addresses of words or
bytes in vectors

AREG := BREG — AREG

to subtract A from B, loading the
result

to implement

A = B assub, eqz

A <> B as sub, eqz, eqz

if A = B assub, jnz, ...

if A <> Bassub, eqz, jnz, . ..

SEQ

memory [AREG - 1} := BREG
run (AREG)

to add a process to the end of the
active process list

SEQ

run (WPTR)

wait ()

to temporarily stop executing the
current process

1o share the processor time between
the processes currently on the
active process list

IF
memory [AREG] =0
moveto { memory [AREG + 1])

Page 27 of 99

Case 2:05-cv-00494-TIJW

21

Document 225-6 Filed 04/02/2007

4,680,698
22

~continued

Purpose:

synchronise(operation code 11)
Definition:

Purpose:

return(operation code 12)
Definition:

Purpose:

rotate bytes(operation code 13)
Definition:

Purpose:

shift right(operation code 14)
Definition:
Purpose:

shift left(operation code 15)

Definition:
Purpose:

memory [AREG) <> 0

SEQ

memory [AREG] : = memory [AREG | — 1
wait ()

to join two parallel processes; two words

are used, one being a counter, the other a
pointer to a workspace. When the count
reaches 0, the workspace is changed

IF

memory { AREG] = NIL
SEQ

memory [AREG } := WPTR
wait ()

memory [AREG] <> NIL
SEQ

run (memory [AREG])
memory { AREG } := NIL
to allow two processes to
synchronise and communicate using a
channel

SEQ

moveto (AREG)

IPTR := memory [WPTR ~ 1]
AREG := BREG

to return from a called procedure

AREG := (AREG << B) \ /{AREG >> (bitsperword - 8))
to rotate the bytes in the A register

to allow B bit byte values to be combined

to form a single word value

to allow a word value to be split into several

component 8 bit values

AREG := AREG >> 1
to shift the contents of the A
register one place right

AREG := AREG << 1
to shift the contents of the A
register one place left

Page 28 of 99

It will be seen that the above function set includes 40 The operand register 65 is used for several different

direct functions, indirect functions and prefixing func-
tions. At the start of execution of any instruction, re-
gardless of the function selected for that instruction, the
predetermined set of bit positions in the instruction
buffer 63 which receive the function part of the instruc-
tion are used to provide an input to the decoder 64
whereas the other predetermined bit positions in the
instruction buffer 63 which represent the data part of
each instruction are used to load the least significant
four bit positions of the operand register 65. If the func-
tion is a direct function, the processor then acts in ac-
cordance with the selected function on the contents of
the operand register 65. If the function is an indirect
function, the contents of the operand register 65 are
used to determine the nature of the operation to be
carried out and the operation is effected on data held in
other registers. At the end of any instruction in which
the function is direct or indirect, the operand register 65
is cleared to zero. If the function is a prefix function, the
processor operates to transfer existing data in the oper-
and register 65 to positions of higher significance and
then load into the vacated positions of lower signifi-
cance data derived from the data part of the instruction.
At the start of each instruction, the instruction pointer is
incremented. Consequently the instruction pointer al-
ways points to the next instruction to be executed. As
mentioned, the instruction pointer IPTR is stored in
register 67.

45

50

55

65

purposes. The “data” which it receives with each in-
struction may be a literal value for use in a computation
or in the case of an indirect function, it is the definition
of the required operation. A further important use is
that for some functions, the data value in the operand
register 65 will be combined with the data in the work-
space pointer register 73 to locate an address where the
value of a particular variable is to be found or to be
stored. For example, the workspace pointer register 73
will contain the workspace pointer WPTR of the cur-
rent process. This points to a reference memory address
for the workspace. Variables or other points will be
defined and stored in that workspace at address loca-
tions which are offset by known amounts from the ad-
dress pointed to by the workspace pointer WPTR. That
offset will generally be specified by an instruction por-
tion and stored in operand register 65. Indeed, the load
and store from workspace instructions will implicitly
refer to a memory location defined by the combination
(illustratively the additive sum) of the contents of
WPTR register 73 and the operand register 65. Further-
more, the contents of the operand register 65 will be
combined with the contents of other registers such as
the A register 71 or the IPTR register 67, for accessing
vectors or for branching in the program. Examples of
this will be given below.

It will be seen that the direct functions are selected to
cover the most commonly required actions within the

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

23

microcomputer in order to maximise efficiency of oper-
ation. By using 4 bits to represent the function element
of each instruction, the function set uses codes 0 to 15
although no function has been allocated to code 12.
Code 13 is used to indicate the indirect function which
in this case is the “operate” function causing the least
significant 4 bits of the instruction to be loaded into the
operand register 65 in the usual way but the contents of
that operand register are then used by the processor to
determine an operation on data held in other registers.
It will be appreciated that in this way the number of
operations can be extended whilst maintaining unifor-
mity of an 8 bit instruction. By use of the prefix or
negative prefix functions before the “operate” instruc-
tion, the contents of the operand register 65 can be
varied to provide a much greater selection of operations
than is set out above. The use of pfix and nfix will be
described in more detail below with reference to FIG. 8
but first it is necessary to describe further the operation
of the micro-instruction program 13.

The micro-instruction program is the means of gener-
ating control signals which control the switches 56 and
inferface control logic 15 (FIG. 3) in order to carry out
the required “function” of each sequential instruction
arriving in the instruction buffer 63 from the microcom-
puter program. The micro-instruction program consists
of a list of micro-instructions stored in rows and col-
umns in the ROM 13. The ROM 13 provides an output,
called a micro-word, which may consist of 68 bits each
providing a control signal and divided up into a plural-
ity of different fields, each field consisting of a predeter-
mined group of bit positions. The output at any one time
is provided at selected bit positions depending on the
micro-instruction selected. Each field may relate to a
specific area of control, such as for example, one field
controls which register is connected to the X bus, an-
other field controls which register is connected to the Y

" bus, another field controls which register is connected
to the Z bus, another field controls the action of the
ALU 55 and another field controls feed back signals to
the multiplexor 9 and MIR 80. One field controls the
interface control logic 15 and provides micro-instruc-
tion output signals such as “Read”, “Write” and “Next
instruction required (NEXT)” to allow the micropro-
gram to control communication between registers and
the memory 19 through the interface 14.

The particular micro-instruction selected in the ROM
13 depends on the address in the MIR 80, which is a 7
bit register providing a row and column selection in the
ROM 13, At the beginning of each instruction received
by the instruction buffer 63 the “function” is decoded
by the decoder 64 and is passed through the condition
multiplexor 9 to provide an address for selection of the
micro-instruction in the ROM 13. Some functions may
require only one micro-instruction to carry out the
function, in which case the ROM 13 provide a micro-
word output dependent on the address decoded by the
decoder 64 and the function is completed in one cycle of
operation, herein called a minor cycle, of the ROM 13.
Other functions require a succession of micro-instruc-
tions, and therefore minor cycles. In this case, the de-
coder 64 provides the MIR 80 with an address for the
ROM 13 to select the first micro-instruction necessary
for that function. Thereafter the microprogram pro-
ceeds to execute a sequence of micro-instructions, each
taking one minor cycle, and each micro instruction
provides in a field of its output micro-word 7 bits for the
MIR 80 so as to identify the address of the next micro

—

0

20

25

40

45

50

60

65

24

instruction to be exectuted in the sequence. The least
significant two bits of the MIR 80 may be conditionally
set, so that the next minor instruction is selected as a
result of conditions produced by a previous minor cy-
cle, and fed back through the multiplexor 9 to effect the
address in the MIR 80. This allows the next micro-
instruction to be selected from four possible options
depending on for example the values in the various
registers shown in FIG. 3. If the two conditional bits of
the MIR 80 are not set conditionally then the next mi-
cro-instruction indicated by the address in the MIR 80 is
unconditionally executed. When all micro-instructions
have been executed in order to achieve operation of the
instruction in the instruction buffer 63, the control sig-
nal “NEXT” is generated in a field of the micro-word
output of the ROM 13, thereby demanding the next
instruction from the memory 19 to the instruction buffer
63.

Each minor cycle consists of two phases, a source
phase and a destination phase. The control signals gen-
erated from the ROM 13 fall into three groups; those
which are active only during the source phase, those
which are active only during the destintion phase and
those which are active throughout the whole minor
cycle. In order to control the occurrence and duration
of the control signals, the timing control is arranged to
provide four different strobe signals indicated in FIG. 6.
These are a source strobe 150, a destination strobe 151,
a column precharge strobe 152 and a micro-instruction
strobe 153. The source strobe is a timing signal which
allows a register to place its contents onto a bus and its
duration is long enough to allow the arithmetic logic
unit to form a result. The destination strobe signals are
arranged to allow registers to accept data from a bus.
The micro-instruction strobe is used to generate the
address of the next micro-instruction from the condition
multiplexor 9. The column precharge strobe is used to
precharge the bus lines X and Y to a high state ready for
the next source strobe. The relative timing and duration
of these strobes is shown in FIG. 6. They are generated
by the arrangement shown in FIG. 7. The clock pulses
from pin 28 (F1G. 1) generate a GO signal for the begin-
ning of each minor cycle. This signal is passed through
four successive delay units within the CPU 12 so that
the micro-instruction strobe 153 is derived from the
output of the first delay unit 154, the destination strobe
151 is derived from the output of the second delay unit
155, the column precharge signal 152 is derived from
the output of the third delay unit 156 and the source
strobe 150 is derived from the output of the fourth delay
unit 157. The operation of the processor is therefore
synchronised to the external clock input 28.

USE OF VARIABLE LENGTH OPERANDS

As already explained above, the microcomputer is
capable of operating with a variable length operand.
Although each instruction allocates 4 bit locations to an
operand, it is possible to build up in the operand register
65 an operand up to 16 bits by use of the functions pfix
and nfix corresponding to codes 14 and 15 in the func-
tion set set out above. This operation can best be under-
stood with reference to FIG. 8. This indicates the oper-
and register 65 having four sections each with 4 bits.
The arithmetic logic unit 55 is indicated having four
sections corresponding to 4 bits of increasing signifi-
cance and the connection between the O register 65 and
the arithmetic logic unit 55 is controlled via a gate 90
selectively controlling transmission through the Y bus

Page 29 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

25

to the arithmetic logic unit. The Y and Z buses are each
shown separated into four parts, each handing four bits
of data of different significance, e.g. Y[3:0] represents
the part of the Y bus handling the four digits of least
significance whereas Y[15:12] handles the four digits of
greatest significance, and similarly for the Z bus. Each
section of the operand register 65 other than the least
significant 4 bits, can be supplied through a gate 91 from
the Z bus or alternatively it can be fed with a zero from
the gate 92. The instruction from the instruction buffer
63 in FIG. 8 is divided so that the least significant 4 bits
are fed to the least significant 4 bit position of the 0
register 65 and the function element is used to select an
address in the micro-instruction program 13 as previ-
ously described with reference to FIG. 3. The truth
table of FIG. 8 indicates three alternativé possibilities
where the function corresponds to pfix or nfix or nei-
ther. It also lists the corresponding control signals
which are fed onto lines 100 to 104 from the micro-
word output of the ROM 13, and the duration of those
signals.

The micro-word output control signals used in this
case are as follows:

1. OPD NOT O—meaning that the operand register
65 is not supplied with zeroes if the truth table has a “1”
but is supplied with zeroes if the truth table has a “0”.

2. NEXT—meaning that the operand register 65 will
be loaded with the next operand from the instruction
buffer 63 if the truth table has a *“1” but not if the truth
table has a “0”,

3. Y FROM OPD—meaning that the Y bus receives
the operand from the operand register 65 if the truth
table has a “1” but not if the truth table has “0”.

4. Z FROM Y—meaning that the Z bus output from
the ALU 55 will receive data from the Y bus if the truth
table has a “1”, but not if the truth table has a “0.

5. Z FROM NOT Y—meaning that the ALU 55 will
cause the signal on the Y bus to be inserted and passed
to the Z bus if the truth table has a *“1” but not if the
truth table has an 0%,

The duration of these five control signals in each
minor cycle is indicated in FIG. 8 wherein S indicates
duration in the source phase only, D indicates duration
only in the destination phase and S+ D indicates dura-
tion in both.

The micro-word control signal on line 100 operates
. the gates 91 and 92 to allow the Z bus to unload into the
operand register 65 in response to the functions pfix and
nfix whereas any other function causes the three most
significant stages of the operand register 65 to be zeroed
by an input through the gate 92. All instructions gener-
ate the control signal NEXT on the last minor cycle and
this is applied to line 101 to cause the operand register
65 to be loaded with the next operand. Line 102 receives
the signal “Y FROM OPD” and causes the operand
register to be connected through the gate 90 to the Y
bus for both pfix and nfix. Line 113 receives the control
signal “Z FROM Y” and causes the arithmetic logic
unit 55 to transmit to the Z bus the signal on the Y bus
for pfix but not for nfix. Line 104 receives “Z FROM
NOT Y” and allows the signal on Y to be inverted and
supplied through the ALU 55 to the Z bus for nfix but
not for pfix. The signals on lines 100, 103 and 104 exist
throughout the source and destination phases of each
minor cycle whereas the signal on line 101 exists only in
the destination phase and the signal on line 102 exists
only in the source phase. When the function is pfix, it
can be seen that signals corresponding to a truth condi-

5

20

30

45

50

55

65

26

tion are supplied on lines 100, 101, 102 and 103 and in
this way, the 4 bits of operand in the least significant
section of the operand register 65 are advanced through
the arithmetic logic unit to the next significant stage of
the operand register 65 thereby allowing a further 4 bits
of operand to be loaded into the least significant posi-
tions of the operand register 65. This operation is re-
peated each time an instruction is derived with pfix
function up till a maximum of 16 bits of operand. Simi-
larly if the function is nfix, the process is generally
similar in allowing each successive 4 bits of operand to
be moved up into a higher stage of the O register 65
without zeroes being written in after each instruction.
This allows a negative operand to be built up to a maxi-
mum of 16 bits. The truth table indicates that if the
function is neither pfix nor nfix, the control signal on
line 100 causes zeroes to be fed into the three upper
significant stages of the 0 register 65 (representing
bits15 to 4)at the end of that instruction.

SCHEDULING OF PROCESSES

As already indicated, the microcomputer may oper-
ate a number of concurrent processes. It therefore pro-
vides a system of scheduling to determine which pro-
cess shall be performed at any particular time. At any
one time the WPTR register 73 (FIGS. 3 and 4) holds
the workspace pointer of the process currently being
executed. However the workspace of the current pro-
cess and the workspaces of other processes waiting to
be executed form a list in which one location of each
workspace holds the workspace pointer of the next
process on the list. Another location in each process
workspace holds the instruction pointer identifying the
next instruction which is to be carried out for that pro-
cess when it becomes the current process. Furthermore
the LPTR register 74 contains the address of the work-
space for the last process currently waiting to be exe-
cuted. In this way new processes can be added to the
end of the list and the LPTR register 74 always indi-
cates the current end of the list. The processor normally
executes the processes on the list in sequence only ad-
vancing to a subsequent process when the current pro-
cess executes a “pause” operation (code 9 in the opera-
tions list) or when the current process deschedules itself
by executing a “join” operation (code 10 in the opera-
tions list) or a synchronise operation (code 11 in the
operations list). In any of those situations, the current
process ceases to carry out further instructions and the
processor save the instruction pointer IPTR in the pro-
cess workspace as indicated at 36 in FIG. 2, and moves
onto the next process which has been identified by the
address of the next process, shown as 35 in FIG. 2 and
then loads into the IPTR register 67 the IPTR for the
new process. So that there is always at least one process
running, a null process is provided and the null process
is run when no other process is active.

The procedures “run”, “wait”, and “moveto” defined
above are used in scheduling. A process will be “sched-
uled” when it is the current process or is on the linked
list of processes which are waiting to be executed. A
process becomes “descheduled” when it is taken off the
linked list. A descheduled process will never be exe-
cuted unless some other process or instruction sched-
ules it, i.e. adds it to the end of the linked list. It will be
recalled that LPTR register 74 (FIG. 3) is used to store
the workspace pointer for the last process on the list.
Hence, it must be adjusted whenever a process is added
to the linked list. Also, when a process is to be sched-

Page 30 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

27
uled, the CPU 12 must be able to determine which
instruction is to be executed next for the process. This is
done by storing in memory the appropriate instruction
pointer IPTR, which is in IPTR register 67 while the
process is current. Such storage is done, for example at
memory location 36 (FIG. 2).

In describing these procedures, it will be convenient
to refer to FIG. 4 which illustrates workspaces 32 and
33 more particularly, as well as registers 65, 67, 71, 73
and 74. FIG. 4 shows representative memory addresses
and contents of the workspaces.

The process which has the workspace 32 is made the
current process by inserting its workspace pointer
WPTR into register 73. In this case, WPTR equals
10000. When the process becomes the current process
the processor finds the next instruction to be executed
by examining WPTR-1, i.e. the contents at memory
location 9999, to find a pointer 84 to an instruction and
loads this pointer in the IPTR register 67. While this is
the current process, the processor will use the contents
of IPTR register 67 to point to the next instruction.

During the processing, it will use variables whose
addresses are formed by combining a reference value,
such as the WPTR or the contentsof the A register 71,
and an operand placed in register 65. In a load from
workspace operation an operand of *2” will refer to
whatever is at memory location 10002 while the process
corresponding to workspace 32 is current. When pro-
cessing is to stop, the linked list is consulted. Elements
85 and 86 are part of the linked list. The processor will
look at WPTR-2 to find WPTR 85 at memory location
9998, pointing to the next workspace. Pointer 85 will
contain the number 11000 which points to workspace
33. If the process corresponding to workspace 33 is the
last process on the linked list, the LPTR register 74 will
contain the pointer 11000. No pointer 86 will be stored
at memory location 10998 until some process is added to
the linked Iist.

Turning now to the three procedures, PROC run (w)
is used the schedule a process defined by w i.e., add it to
the linked list. This procedure has been defined above
and reference will now be made to that definition and
the line numbers used in the definition.

If the value of w is the special value “READY” no
action is performed. Further explanation of this will
follow later with reference to communications between
different microcomputers. Otherwise w is a pointer to a
process workspace, and lines 5 and 6 will be executed in
sequence. In line 5, LPTR means the contents of LPTR
register 74, which is a pointer to the reference address
for the workspace for the last process on the linked list.
The memory whose address is LPTR-2 would contain
the address of the workspace pointer for the next pro-
cess, but as yet there is none because LPTR corre-
sponds to the last process. Line 5 now assigns w (the
workspace pointer in the process w) to memory loca-
tion LPTR-2, so process w is now at the end of the
linked list. At this point, the contents of LPTR register
74 points not to the last process w, but to the penulti-
mate process. This is corrected in line 6 which enters
into LPTR register 74 the workspace pointer for pro-
cess w. Because of this step, further processes can be
added to the linked list without deleting process w
unintentionally, which would happen if LPTR register
74 were not updated. With reference to FIG. 4, if there
are only two processes scheduled, as shown, and pro-
cess w corresponds to a workspace whose pointer is

25

30

35

45

50

55

65

28
12000, PROC run (w) would enter 12000 in memory
[10998] and enter 12000 into register 74.

The procedure called “wait” can be used alone or in
combination with PROC run (w). By itself, PROC wait
deschedules the current process and enables the system
to execute the next scheduled process, executing it
where appropriate in its program instead of at its first
instruction. In sequence with PROC run (w), PROC
wait causes the microcomputer to stop the current pro-
cess, schedule it at the end of the list of processes to be
executed, and proceed to the next scheduled process.
Reference will now be made to the previous definition
of PROC wait. When procedure “wait” is called (line
1), a sequence is commenced (line 2) having four steps
(lines 3, 4, 8 and 9). Lines 4-7 relate to external requests,
and discussion of this can be deferred, although link
[process] represents the contents of process register 47
of serial link 25 (FIG. 2). In line 3, memory [WPTR-1)
is the memory space at the address WPTR-1, which is
based on the reference address WPTR of the current
process. That memory location is, in the preferred em-
bodiment, used to point to the next instruction to be
executed when the process is recommenced. The con-
tents of IPTR register 67 always points to the instruc-
tion to be executed next for the current process. Hence,
line 3 simply stores in memory (preferably on-chip) the
pointer to the next instruction to be executed when, if
ever, the process being descheduled becomes current.
Assume that the current process is process w. If the
procedure PROC run (w) has preceded PROC wait,
then at this time, the current process (w) will have been
added at the end of the linked list (by PROC run (w)),
LPTR register 74 will have been updated (also by
PROC run (w)), and now the pointer to the next in-
struction for process w will have been stored at a
known location, memory [WPTR-1], with respect to
the workspace pointer address (WPTR) for process w.
Thus, process w is ready now to be deactivated. Line 8
of PROC wait looks to the linked list for the next pro-
cess. Its workspace will be pointed to by the contents at
address WPTR-2 of the current workspace w. Hence,
line 8 of PROC wait assigns to WPTR register 73 the
workspace pointer for the next process on the linked
list. Now the reference address WPTR has advanced,
and the system next finds out what the next instruction
is for this next process by looking at the pointer stored
at the memory whose address is WPTR-1. To use FIG.
4, consider that workspace 32 is current and its process
receives an instruction which includes PROC wait.
Initially, WPTR is 10000. At line 8, register 73 is set to
the contents found at memory address 9998, which will
be the pointer 11000. At line 9, register 67 is set with the
instruction pointer found at memory address 10999.
Thus, if PROC run (w) is followed by PROC wait, the
current process is added to the end of the list (its work-
space pointer is stored on the linked list), the pointer to
its next instruction is stored in memory, it is deactivated,
and the next process on the linked list is commenced
beginning at the proper instruction. All of this is done
using only four registers. This arrangement permits the
scheduling and descheduling of processes which are
limited in number by only the amount of memory in the
system.

The procedure named “moveto” can be used to set
the workspace reference pointer to a different address
in the workspace for the current process, without neces-
sarily changing to a new IPTR. Thus, if a process has its
reference workspace pointer af 10000, moveto (10200)

Page 31 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

29

could be used to set the registers to change the refer-
ence pointer to 10200 for this same process. This will be
described as follows with reference to the previous
definition of PROC moveto (w). Line 2 of the definition
declares this a sequence of steps. Lines 3 and 8 are
equally offset from the left margin, so they both will be
done in sequence. Assume that the system is not on the
last process. Hence, line 4 will be false, so the system
will jump to line 6. The condition at line 6 will be true,
so line 7 will be executed. Line 7 sets the contents at
memory addres w-2 to the workspace pointer for the
next process on the linked list. Next, line 8 changes the
contents of the WPTR register 73 to the value w. Now
register 73 points to a new reference address for the
current process. At the customary offset (minus 2) from
this new reference address will be found a pointer to the
workspace for the next process to be scheduled. In the
event that there is no next process, then line 4 will be
true and LPTR register 74 will have its contents ad-
justed to point to w as the reference address for the last
process (line 5), after which the register 73 for holding
a pointer to the reference address of the current process
will be adjusted to point to w.

Having now described FIG. 4 with reference to
scheduling, some functions and operations will be fur-
ther described with reference to FIG. 4.

load from workspace

The load from workspace function (function code 0)
copies the contents at a specific memory location and
puts it implicitly into the A register. This function and
configuration of the preferred embodiment implicitly
refers also to the memory whose address is defined by
an offset from the current workspace pointer which
serves as a reference. This reference address is always
stored in the WPTR register 73, and the offset is con-
tained in the operand register 65. The expression,
“memory {[WPTR+OREG]” therefore refers to the
contents of the memory whose address is found by
adding (summing) the contents of WPTR register 73
and register 65. A “load” refers to the A register 71, and
the contents of the stack will be shifted down by one
register, i.e. the contents of the A register will be shifted
into the B register (to make room for the data to be
loaded into AREG), and the contents of BREG will be
loaded into the C register, if any. With reference to
FIG. 4, if WPTR is 10000, then “load from workspace”
using codes 0 2 will mean load variable 2 into the A
register.

store to work space

This “store to workspace” function (function code 1)
implicitly means whatever is in the A register 71 into
the memory space whose address is offset from the
reference address (contained in WPTR register 73) by
the offset contained in the operand register 65. Also, the
stack moves up (BREG moves into AREG, and CREG
moves into BREG). Referring to FIG. 4 if
WPTR=10000 and OREG=1, then this function
means store the contents of the A register 71 into mem-
ory location 10001, which is the location for storing
variable 1.

load pointer into workspace

The function *“load pointer into workspace” (function
code 2) does not store any data into the workspace.
Instead, it load the A register 71 with a pointer to a
particular location in workspace. This will be used, for
example, in connection with the “load from vector”
instruction which references a particular portion of a
vector which can be stored in the workspace. Thus,

20

25

30

35

40

45

50

55

60

65

30

referring to FIG. 4 a workspace 32 will be referred to
by the workspace points WPTR which is 10000. At a
known location within the workspace, there can be a
vector. The vector will have a plurality of locations
such as 10200, 10201 and 10202. The beginning of the
vector will be a particular offset (200) away from the
workspace pointer (10000). Thus, to find the beginning
of the vector, the offset (200) will be loaded into the
operand register 65 and then the instruction *“load
pointer into workspace™ will add these two numbers to
obtain a sum 10200 which is an address. This function
will place the address 10200 into the A register, which
point to the beginning of the vector. Thereafter, the
“load from vector” operation will be used to find partic-
ular memory locations with respect to the beginning of
the vector, and therefore it uses the offset in the oper-
and register 65 but in combination with the A register
71 instead of the workspace pointer register 73.

load literal

The “load literal” function (function code 6) literally
loads whatever is in the operand register 65 into the A
register 71 (the top of the evaluation stack). With re-
spect to FIG. 5, the last four bits of any given instruc-
tion will be loaded into the operand register 65, but by
use of the prefixing functions, more than 4 bits can be
stored in the operand register Illustratively, however,
an instruction having the codes in decimal notation of 6
13 has two parts, a function part and a data part, as
explained referring to FIG. 5. The first number “6” is
the function code, indicating that this is a “load literal”
function. The second part of the instruction is the data
value “13”. Accordingly this instruction F6 13" would
mean load the number 13 into the A register 71 and shift
the previous contents of the A register into the B regis-
ter 72.

jump

The “jump” function (function code 8) is used for
branching in a program. The instruction to be executed
next by the processor for the current process is pointed
to by the contents of the IPTR register 67 which con-
tains the instruction pointer. The jump instruction adds
the contents of the operand register 65 to the instruction
pointer. Through use of the prefixing functions, the
instruction pointer can have values added to it or sub-
tracted from it, to jump forward or backward in a pro-
gram.

call procedure .

The “call procedure” function (function code 11)
vses the “moveto” procedure which was described
above. “Call procedure” first stores IPTR in memory at
the customary location for the instruction next to be
executed {e.g. memory location 9999 in FIG. 4). Next it
transfers into the instruction pointer register 67 the
contents of the A register 71 which will have been
loaded with the pointer to an instruction next to be
executed after the “call procedure” function is com-
pleted. Then the A register 71 is loaded with the work-
space pointer. Following this, the “moveto” procedute
changes the reference pointer WPTR so that usually it
points to a different address in the current workspace. It
will be remembered to *moveto () procedure will set
the contents of the WPTR register 73 to whatever is
within the parenthesis following the word “moveto”.
Thus, after a “call procedure,” the system now has the
workspace pointer pointing to a different location
within the same workspace for the current process and
is prepared to execute a different instruction which was
previously contained in the A register 71. The converse

Page 32 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

31

operation is effected by use of the RETURN operation
(operation code 12).

run process

This operation 37 run process” (operation code 8) is
generally used in the creation of a process which will
have its own workspace and set of instructions. The A
register 61 will have been loaded with a workspace
pointer for the workspace for the new process, and the
B register 72 will have been loaded with a suitable in-
struction pointer for the new process. Operation *‘run
process” stores the instruction pointer in memory at the
proper offset from the workspace pointer, and then it
calls the procedure PROC run (), discussed above,
using the workspace pointer in the parentheses. As
discussed, this will schedule the new process, i.e. it will
add the new process to the linked list.

pause

The “pause operation (operation code 9) appearsin a
program to prevent any single process from using the
ALU 55 to the exclusion of other processes. This opera-
tion is inserted into loops by the compiler. This opera-
tion adds the current process to the end of the linked
list, stores the necessary pointers, causes the current
process to cease execution for the time being, and makes
the next process on the linked list the current process.
The contents of the evaluation stack are not preserved
because “pause” is executed at a time when such con-
tents can be discarded without harming the process.

join

This “join™ operation (operation code 10) is used for
example when there are concurrent processes, and it is
intended that they should all be at a point in the pro-
gram at the same time. Consider an original process P(0)
which at a certain point in the program spreads into n
concurrent subprocesses P(1), P(2), P(3) ... P(n). When
these are done, a final process P(n+1) is to execute.
However, such final process should not occur until all
of P(1) . . . P(n) have terminated. The “join” operation
is used for this. A counter is set up in the workspace,
and the A register 71 points to the memory location
where the count is stored. The count corresponds to the
number of subprocesses (which are still active (not
terminated). Each subprocess ends with a “join” opera-
tion, After a subprocess reaches its “join” operation, it
checks the count. If the count is zero, then the program
moves to the final process using the “moveto” proce-
dure. If the count is not zero, the count is decremented
by one count, and then the subprocess is caused to
“wait” as described above. The other subprocesses are
executed until zero count is reached.

synchronise

The “synchronise” operation (operation code 11) is
quite important to concurrent processing, for its use
assures that two processes will be at the same point at
some time. This will be discussed further in connection
with FIG. 9 and the discussion entitled, *“Communica-
tion Between Processes On the Same Microcomputer.”
Briefly however, if two processes X and Y on the same
chip wish to communicate, presumably because one
process is computing data which the other process
needs, a channel 40, 41, 42 or 43 (FIG. 2) is used. Each
process will have a *“synchronise” operation. The first
process to reach its “sync” operation will look at the
channel. The channel address will have been loaded
into the A register 71, so “memory [AREG]” refers to
the channel. The expression “NIL” in the definition of
this operation refers to a predetermined datum recog-
nised as a nil. If NIL is found in a first part of the chan-

20

25

40

45

50

60

65

32

nel by the first process to reach its sync operation, such
process will place its workspace pointer into the first
part of the channel and then will deschedule itself. As-
sume that it is process X which first reaches “sync”.
Process X now waits for process Y to reach its “‘sync”
operation. When this happens, process Y will check the
first part of the same channel, and it will not find NIL
but will instead find the workspace pointer for process
X. In response, it schedules process X (adds it to the end
of the linked list). The first part of the channel returns to
NIL. Generally there will be at least a second part to
the channel where data for transfer from one process to
the other will be placed. Also, synchronise operations
generally occur in pairs. The first “sync” operations in
two processes can cause the process to wait for data and
then transfer it when it is ready. The second *“sync”
instructions cause acknowledgments. Thus, a process
which is inputting data from a process will “sync”. If
the data is not ready, it will “wait”. When the data is
ready by the supply process, that supplying process will
schedule the receiving process, which will then take the
data. Then “sync” instructions by each acknowledge
the transfer. The first “sync” by the process supplying
the data will indicate that the data is ready to be taken.

COMMUNICATION BETWEEN PROCESSES ON
THE SAME MICROCOMPUTER

As already explained, the microcomputer permits
communication between processes which may be on the
same microcomputer or on different microcomputers.
For example, one process may be the measurement of
distance travelled by a motor car and a second process
the measurement of consumption of fuel relative to
distance travelled for that vehicle. The first process
may receive as an input, data representating rotations of
the vehicle wheel and provide an output representing
miles travelled. The second process may receive as an
input data relating to fuel quantity consumed but it also
needs to communicate with the first process to derive
information about distance travelled before it can pro-
vide a useful output regarding fuel consumption relative
to distance. In the case of process to process communi-
cations on the same microcomputer communication is
carried out in this example through the channels 40 to
43 indicated on FIG. 2. This operation involves the use
of the synchronise operation, this requires a program
instruction consisting of function code 13 and operation
code 11 from the above list of functions and operations.
Each channel 40 to 43 consists of two consecutive word
locations in memory, one providing a “process loca-
tion” and the other a “data location”. The channel is a
unidirectional communication channel which is shared
by two and only two processes at any one time. When
an active process x wishes to communicate with a pro-
cess v on the same microcomputer, it follows a se-
quence which will be described with reference to
FIGS. 9a to 9e. Firstly, process x identifies the address
of the channel (marked 40) and loads the data it wishes
to communicate into the data location of the channel. It
also executes an instruction for a synchronise operation.
Provided the process location of channel 40 does not
already have the workspace pointer of the process y
awaiting to receive the data, the synchronise operation
causes the work space pointer of process x to be re-
corded in the process location of channel 40 and uses a
“wait" procedure of deschedule process x. This is the
position shown in FIG. 9b. In FIG. 9, the work space
pointer of process X is referred to as *“X” and the data

Page 33 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

33

being communicated is referred to as “DATA.” Process
X now waits until process y is ready to receive the data.
When process y wishes to receive the data it carries out
an instruction for a synchronise operation to see if the
communication channel 40 is ready to transmit data. In
carrying out this instruction, process y locates the
workspace pointer “X” of process x in the process loca-
tion of channel 40 and as can be seen from the synchro-
nise operation set out in the list of operations, the execu-
tion of a synchronise operation causes a “run’ proce-
dure to remove the workspace pointer of process x from
channel 40 and add process x to the end of the list of
processes waiting to be executed. This is the position of
FIG. 9¢c. Process y then reads the data from the data
location of channel 40 and then operates a further in-
struction for a synchronise operation to indicate that it
has received the data. This loads the workspace pointer
“y*” of process y into the process location of channel 40
and causes process y to wait. This deschedules process
y leaving the channel 40 in the condition shown in FIG.
9d. Once the list on which process x is waiting reaches
process x so that process x is reactivated, it performs a
further instruction for a synchronise operation which
now locates the workspace pointer “Y” of process y in
the process location of channel 40 and this allows pro-
cess x to continue to be operated. At the same time it
causes a “run” procedure on process y so that process y
is again added to the end of the waiting list of processes
and is ready to run. The communication channel 40 is
then in the condition shown in FIG. 9e with process x
continuing the process y waiting on the list. In this way,
synchronisation of communication is achieved by both
processes operating a “handshake” operation in which
both processes execute two instructions for synchronise
operations one of which deschedules the process and
that descheduled process is only put back onto the list
when an appropriate signal has been received from the
other of the communicating processes.

A specific example of programs and instruction se-
quences necessary to carry out two communicating
processes on the same microcomputer will now be de-
scribed with reference to FIG. 10. This illustrates the
two processes referred to above for measuring miles
travelled and fuel consumption of a motor vehicle. The
microcomputer 170 has in its memory space a first
workspace 171 for the first process which is counting
the variable “rotations” and a second workspace 172 for
the second process which is counting the variable
“miles”. Workspace 171 has a word location 173 con-
taining the address of the input channel 174 called “ro-
tation” which forms part of a serial link arranged to
receive a message for each wheel revolution from an
external revolution detector (not shown). The work-
space 171 has a further word location 175 containing
the address of a two word memory channel 176 called
channel “mile” which in this case receives an output
from the process of workspace 171 indicating 1 mile of
travel for each 1000 revolutions of the vehicle wheel.

For this first process the program using OCCAM
language is as follows:

VAR rotations:

WHILE TRUE

SEQ

rotations:= 0

WHILE rotations < 1000
SEQ

rotation ? ANY

N WD -

5

15

20

25

30

35

45

50

60

65

34

-continued

ad

rotations: = rotations + 1
9. mile ! ANY

Line numbers are not part of the program but have been
added to facilitate explanation. Line 1 declares a vari-
able to exist; it is called “rotations”. Line 2 is an endless
loop because the condition TRUE is always true. Start
with zero rotations (line 4). Line 7 waits for any input
from the channel named “rotation.” When one is re-
ceived, the variable “rotations” is incremented by one.
Eventually there will have been 1000 rotations, and
Line 5 will be false. Lines 6, 7 and 8 will then be skipped
and Line 9 will output a datum to the channel named
“mile”.

The compiler will convert these OCCAM statements
to the following machine instructions:

Instruction Seq e

Function Program in OCCAM
code Data language
VAR rotations:
WHILE TRUE
SEQ
1. LI
2, (1] SN 0 rotations := 0
3, stw 0 1 0
4, L2 WHILE rotations
< 1000 SEQ
5. ldw 0 0 0
6. pfix 14 3
7 pfix 14 14
8. 1dl 1000 6 8
9. opr gt 13 2
10. jnz L3 9 9
11 Idw 1 0 1 rotation ? ANY
12. opr sync 13 11
13. ldw 1 0 1
14. opr sync 13 11
15. ldw 0 0 0 rotations: = rotations
+1
16. adl 1 7 1
17. stw O 1 0
18. opr pause 13 9
19. nfix 0
20. i L2 B 0
21, L3
22, ldw 2 0 2 mile ! ANY
23. opr sync 13 11
24, ldw 2 0 2
25, opr sync 13 1n
26, opr pause 13 9
27. nfix 15 2
28, j L1 8 7

Once again, line numbers have been added for explana-
tory purposes only. Lines 1, 4 and 21 are simply refer-
ence locations in the program. Line 2 loads the value O
into A register 71. Line 3 stores the data in the A regis-
ter into workspace. Because the data part of the instruc-
tion is 0, there is no offset from the reference address for
this process. Thus, the workspace pointer register 73
now contains a workspace pointer WPTR which points
to a reference address in memory where 0 is stored for
the variable “rotations”. Line § loads the A register 71
from workspace. Because the data portion of the in-
struction (which would be loaded into operand register
65) is 0, the offset from the reference address WPTR of
the workspace is 0. In lines 6, 7 and 8 the decimal value
1000is to be added. This requires a prefixing operation
because 1000 cannot be represented using four binary
bits in the data portion of the instruction. Thus, function

Page 34 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

35

code 14 (pfix) is used. The decimal number 1000 in
binary is 1111101000. Because this requires ten bits, and
the data portion of standard instructions is four bits,
three steps are required to load this value into the oper-
and register. Line 8 includes the code for the “load
literal” function, so at this time, the A register 71 will be
loaded with the binary value of 1000. This causes the
transfer of the contents of the A register (which are 0)
to the B register 72.

Line 9 calls for an indirect function, the operation
“greater than”. This causes a comparison of the A and
B registers. Unless the B register contents are greater
than the A register contents, this operation will result in
FALSE (0).

Line 10 is the “jump nonzero” operation. If the re-
sults of line 9’s operation were true, then the A register
would be set to a nonzero value, and line 10 would
cause a jump of 9 lines forward, indicated by the num-
ber “9” in the data part of the code. This should jump
the program ahead to line 21, the output portion. As-
suming that 1000 rotations have not yet been counted,
line 11 is next executed. This load from workspace
function has an operand of + 1, which means the offset
from the reference address is + 1. At this memory ad-
dress will be found the address of the channel named
“rotation” and this address will be loaded from the
workspace into the A register 71. Line 12 causes a syn-
chronise operation. Line 13 again loads the address of
the channel “rotation” and line 14 again synchronises to
complete the input operation. In this simple example, no
data is transferred. Line 15 now loads the variable
which is in workspace, offset 0, into the A register, i.e.
loads the current value of “rotations” into the A regis-
ter. Line 16 literally adds the data value 1 to the con-
tents of the A register. Line 17 stores the contents of the
A register in the workspace at an offset equal to 0.
Hence, the variable “rotations” has now been incre-
mented in response to receipt of data from the channel
“rotation”. Line 18 is a pause operation which allows
the next process to be executed, adding this present
process to the end of the list. Note that at this point in
the program, the contents of the A register 71 and B
register 72 are not relevant to the process. Lines 19 and
20 execute a jump backwards using the negative prefix
function. Line 22 loads the contents of the workspace
which is offset 2 locations from the reference location.
This will be the address of the channel named “mile”
and it will be loaded into the A register. A sync opera-
tion is performed at line 23. The output is completed by
a further “sync” which occurs at line 25. At line 26
another pause is inserted to cause the next process to
schedule and to add this process to the end of the linked
list. At lines 27 and 28, a jump backwards is executed
using negative prefixing. The second process relating to
the variable “miles” uses the workspace 172. The work-
space 172 has a word location 177 containing the ad-
dress for the “mile” channel 176 which is used to pro-
vide an input to the process of workspace 172. A further
word location 178 has the address of a second input
which in this case is a channel 179 called channel “fuel”
forming part of a serial link arranged to receive a mes-
sage from an external fuel gauge (not shown) each time
a gallon of fuel is consumed. The workspace 172 has a
further word location 180 having the address of an
output channel 181 called channel “consumption”
forming part of a serial link arranged to output the
distance travelled while the last gallon of fuel was con-
sumed. Clearly the process in workspace 172 needs to

20

25

30

35

40

45

50

55

60

65

36
communicate with the process in workspace 171 in
order to obtain via channel 176 messages indicating the
number of miles travelled. The instruction sequence and
program from the process in workspace 172 are as fol-
lows:

Instruction sequence

Function Program in above defined
code Data OCCAM
VAR miles:
SEQ
Ll
1d1 0 6 0 miles:=0
stw O 1 0 WHILE TRUE
L2: ALT
Idw 0 I mile ? ANY
dv 0 4 0
opr eqz i3 1
jmz 13 9 9
dw 1 0 I
opr sync 13 11
dw 1 0 i
opr sync 13 11
Idw 0 1] 0 miles := miles + |
adl 1 7 1
stw 0 1 o
pfix 14 1
j 14 8 0
L3:
Idw 2 0 2 fuel ? ANY
dv 0 4 0
opr eqz 13 1
jmz L4 9 12
ldw 2 0 2
opr sync 13 11
ldw 2 0 b3
opr sync 13 11
SEQ
idw 3 0 3 consumption ! miles
ldw 0 0 0
stv 1 5 1
opr sync 13 11
dw 3 0 3
opr sync 13 11
0 6 0 miles:=0
stw 0 1 0
L4:
opr pause 13 9
nfix 15 [
§ 12 8 0

COMMUNICATION BETWEEN PROCESSES ON
DIFFERENT MICROCOMPUTERS

A network of interconnected microcomputers is
shown in FIG. 11 in which four microcomputers are
illustrated. It will be understood that the network may
be extended in two or three dimensions as required.
Each of the microcomputers is of similar structure and
is interconnected with the serial link of another mi-
crocomputer by two unidirectional wires 185 and 186
each of which extends between the output pin 27 on one
microcomputer and the input pin 26 of another mi-
crocomputer. The wires 185 and 186 are each used
solely for these two pin to pin connections and are not
shared by other microcomputers or memory connec-
tions. Communication between processes in different
microcomputers is effected in generally similar manner
using an identical sequence of synchronise operations
and this will be described with reference to FIGS. 2, 11,
12 and 13. In place of the channel 40 (FIG. 2), a serial
link has an input channel 45 and an output channel 46
each consisting of a process register 47 and data register
48 which can be addressed in the same way as the word
locations for the memory channels 40 to 43. They are

Page 35 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

37

however operated by control logic 50 which will be
described further with reference to FIGS. 15 and 16. In
FIG. 11, an output channel is shown with a data register
187 and a process register 188. An input channel is
shown having a process register 189 and a data register
190. The control logic shown in FIG. 2 is not shown in
FIG. 11, but it will be understood that such logic is
present.

When data is transmitted through serial links between
two microcomputers, it is in the form of a series of data
strings transmitted serially in the form of packets as
shown in FIGS. 134 and 135. A data packet is transmit-
ted by an output pin 27 to an input pin 26 and has the
form shown in FIG. 13a. It starts with two successive
bits of value 1 followed by 16 data bits and a final stop
bit of value 0. An acknowledge packet, as shown in
FIG. 135 is sent from the output pin 27 of a microcom-
puter receiving a data packet to the input pin 26 of the
microcomputer which sent the data packet. The ac-
knowledge packet consists of a start bit of value one
followed by a stop bit of value 0. The output control
logic of each serial link arranges for each output pin 27
to transmit bits of value O continuously when it is not
sending data or acknowledge packets and consequently
the input control logic ignores all signals on the input
pins 26 until it receives a “1” start bit of a packet.

When the process register 47 (FIG. 2) of the input or
output channel 45, 46 holds the workspace pointer
(WPTR) of a process, the control logic 50 is able to
generate requests (called input or output requests) to the
CPU (12) for the CPU 12 to schedule the process by
adding its workspace pointer to the list awaiting execu-
tion. The sync logic 10 provides a selector which is used
by the CPU 12 to examine each of the request signals
from the serial links in turn. Whenever an active process
is descheduled by execution of the “wait” procedure,
the CPU 12 looks to see if there are any requests from
a serial link. If there are several external requests, the
CPU 12 services all of them in sequence before execut-
ing the next process on the list. The CPU 12 services
any requests by scheduling the process held in the pro-
cess register of the channel which generated the re-
quest, the resetting the process register 47 to NIL. The
process register 47 of the input or output channels in a
link 25 contains the special value READY when that
channel is ready to perform communication. The sync
operation will cause the procedure “run” which detects
the special value READY and instead of scheduling a
process, activates the control logic 50 in the link. The
control logic in a link may perform a synchronise opera-
tion on a channel. The synchronise operation tests the
process location of the channel. If the value is NIL, it
replaces the value with the special value READY and
waits until a sync operation caused by a process instruc-
tion on the process register resets the value to NIL.
Otherwise, it generates a request to the CPU 12 to
schedule the process in the process register as described
above, and the CPU then resets the value of the process
register to NIL. As a result, a process may use the sync
operation to synchronise with the control logic 50 in a
link 25 in the same way as it is used to synchronise with
another process.

The output control logic 50 in a link 25 first synchro-
nises with a process using the process register in the
output channel, when transmits data in data packets
from the data register in the output channel via the
output pin 27 (FIGS. 2 and 11), then waits for an ac-
knowledge packet signal on the input pin 26, then syn-

10

15

20

25

30

35

40

45

50

55

60

65

38

chonises with the process again using the process regis-
ter in the output channel. The output control logic 50
performs this operation repeatedly. The input control
logic in a link first waits for data from the input pin 26
to arrive in the data register in the input channel, then
synchronises with a process using the process register in
the input channel, then synchronises again with the
process using the process register in the input channel,
then transmits the acknowledge packet signal to the
output pin 27. The input control logic performs this
operation repeatedly.

In the following, it is assumed that a process x oper-
ated by microcomputer 1 in FIG. 11 wishes to output
data through a serial link to a process y operated by
microcomputer 2. To effect this output, the process x
stores the data to be output in the data register 187 of
the output channel and executes a sync operation on the
process register 188 to cause the serial link to start trans-
mission of the data through the pin 27. The process then
executes a further sync operation on the same process
register 188 to wait until an acknowledge packet is
received through the input pin 26 of microcomputer 1.
The acknowledge packet signifies that the process y
operated by microcomputer 2 has input the data. To
input, the process y executes a sync operation on the
process register 189 of the input channel of microcom-
puter 2 to wait for the data packet to arrive from the pin
26 of the microcomputer 2. It then takes the data from
the data register 190 and executes a further sync opera-
tion to cause the acknowledge signal to be transmitted
from the output pin 27 of microcomputer 2.

FIG. 12 shows sequentially the contents of the pro-
cess registers 188 and 189 during a typical sequence of
operations occurring when the process x and y commu-
nicate via the serial link. Reference numerals 188a-¢
represent successive states of the contents of the process
register 188 and reference numerals 189a-¢ similarly
represent successive states of the contents of the process
register 189. First, process x addresses the output chan-
nel of microcomputer 1 and loads the data to be output
to the data register 187 and performs a sync operation
on the output process register 188. Assuming that the
process register 188 contains the special value READY
1884, indicating that the serial link is ready to output,
the sync operation resets the value of the process regis-
ter 188 to NIL 188b. As a result the control logic causes
the data from the data register 187 to be transmitted via
the single wire connection 185 to the input data register
190 in the microcomputer 2. Provided that process y is
not yet waiting for the input, the control logic in mi-
crocomputer 2 changes the value of the process register
189 from NIL 1892 to READY 1895, indicating that the
data has been received. Process y then executes a sync
operation on the process register 189, which has the
effect of changing the value of the process register from
READY 1895 to NIL 189c. Assuming that microcom-
puter 2 is ready to transmit an acknowledge signal to
microcomputer 1, the control logic changes the value of
process register 189 back to READY 189d. Process y
then takes the data from the data register 190 of the
input channel and executes a further sync operation on
the process register 189. This resets the process register
189 to NIL 189¢. As a result the control logic transmits
an acknowledge signal through the single wire connec-
tion 186. This acknowledge signal is received by the
input pin 26 of the microcomputer 1 operating process
x. Assuming that process x executes a second sync oper-
ation before the acknowledge signal is received, process

Page 36 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

39
x is descheduled by the procedure “wait”, and its work-
space pointer “X” is stored in the process register 188
(188c). When the acknowledge packet is received the
control logic of the serial link generates a request to the
CPU of microcomputer 1 to schedule process x. This
request is serviced by the CPU of microcomputer 1 as
soon as the current process is descheduled and the CPU
adds process x to the end of the list and resets the pro-
cess register to NIL (1884). The control logic now
resets the process register to READY (188¢), thereby
indicating that the link is ready for a further output. The
state of the serial links is now the same as it was before
the communication took place, as shown in the se-
quence of FIG. 12, ready for the next communication.
FIG. 14 illustrates the operation on two separate mi-
crocomputers of the processes previously described
with reference to FIG. 11. In this case however the
workspace 171 for counting rotations is on a microcom-
puter 191 whereas the workspace 172 for counting miles
is on a separate microcomputer 192. The two mi-
crocomputers 191 and 192 are interconnected through
respective serial links 25. Similar reference numerals are
used in FIGS. 14 and 10 for similar parts. The only
change is that channel “mile” 176 in FIG. 10 is replaced
in FIG. 14 by a channel “mile” 176a forming an output
channel of a serial link in microcomputer 191 and chan-
nel “mile” 1765 forming an input channel of a serial link
in microcomputer 192. The sequence of instructions and
program used to operate the two processes in FIG. 14
are generally similar to those already described for
FIG. 10 except that the address of channel “mile” used
by each of the processes will now be the address of a
channel of a serial link rather than a channel in memory.

DESCRIPTION OF LINK CONTROL LOGIC

The control logic 50 (FIG. 2) for each of the input
and output channels of the serial links will now be de-
scribed in further detail with reference to FIGS. 15 and
16 in which FIG. 15 shows the control logic for the
output channel 46 and FIG. 16 shows the control logic
for the input channel 45.

To output, the control logic 50 (FIG. 2) of a link first
synchronises with a process using the output process
register 47 (FIG. 15), then transmits the data from the
output data register 48 to the pin 27, then waits for the
acknowledge signal from the pin 26, then synchronises
with a process again using the output process register
47. The control logic 50 performs this operation repeat-
edly.

To input, the control logic 50 (FIG. 2) of a link first
waits for data to arrive from the input pin 26 and trans-
fers it to the input data register 48, then synchronises
with a process using the input process register 47 (FIG.
16), then synchronises again with the process using the
input process register, then tranmits the acknowledge
signal to the pin 27. The control logic 50 performs this
operation repeatedly. -

The values taken by the output and input process
registers 47 may be NIL indicating that neither a pro-
cess nor the control logic is waiting to synchronise,
READY indicating that the control logic is waiting to
synchronise, or it may be the workspace pointer of a
process waiting to synchronise.

In a link, each process register 47 and each data regis-
ter 48 is connected to the bus 16 through an address
decoder 193. The bus 16 incorporates signal lines for the
address, data, and control. Control includes a “write”
signal, a “‘read” signal and a “busy” signal. The “busy”

—

4]

20

25

30

35

45

50

55

635

40
signal is used to ensure that both the CPU and the link
control logic do not attempt to change the value of the
process register simultaneously.

Each process register 47 in a link incorporates logic
194 to detect if the value in the process register is
READY, NIL or a workspace pointer.

The output data register 48 (FIG. 15) is connected to
the output pin 27 through an AND gate 195 and an OR
gate 196. The input data register 48 (FIG. 16) is con-
nected directly to the input pin 26.

Associated with each process register in a link is a
request latch 197 which may be tested by the CPU.
Whenever the CPU performs a WAIT procedure, the
state of all request latches is tested. If a request latch is
set, the process whose workspace pointer is held in the
corresponding process register is scheduled by adding
its workspace pointer to the end of the list. The request
latch is cleared whenever the CPU writes to the process
register.

The input and output of data through the link is con-
trolled by four state machines 282, 283, 284 and 285.
Each state machine consists of a state register to hold
the current state, and a programmable logic array. The
programmable logic array responds to the value of the
state register and the input signals to the state machine,
and produces a predetermined pattern of output signals
and a new value for the state register. A counter 286 is
used to count bits as they are transmitted through the
link, and a further counter 287 is used to count bits as
they are received through the link.

The input and output channel control and data state
machines have the following inputs and outputs,
wherein the name of the input or output indicates the
purpose of the signal.

OUTPUT CONTROL STATE MACHINE 285

(FIG. 15)
reference signal
numeral name purpose
200 Mbusy Memory bus busy
201 Reset Transputer reset
202 Pregready Process Register = READY
203 Pregnil Process Register = NIL
204 Pregwptr Process Register holds a
workspace pointer
205 Datagone Data transmitted from
output data register
264 Ackready Acknowledge received
by input state machine
outputs:
210 Setrequest Set cpu request
211 Datago Initiate data transmission
212 SetPregready Set Process Register to READY
213 SetPregnil Set Process Register to NIL
265 Acktaken Confirm receipt of acknowledge

OUTPUT DATA STATE MACHINE 284

(FIG. 15)
reference signal
numeral name purpose
inputs:
201 Reset Transputer reset
1 Datago Initiate data transmission
220 Countzero Test if bit count zero
261 Ackgo Initiate acknowledge transmission
outputs:
221 Loadcount Set Bit Counter to number of

bits to be transmitted

Page 37 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

Page 38 of 99

4,680,698
41 42
-continued -continued
OUTPUT DATA STATE MACHINE 284 OUTPUT CONTROL STATE MACHINE 285
(FI1G. 15) State Inputs Outputs Next state
reference signal 5 "
numeral _ name purpose syncl (AMbusy) / \Pregwptr Setrequest syncreq]
222 Deccount ?ecreasc bil‘ counter by one syncreql APregnil syncreq]
223 Oneout el output pin to one syncreql Pregnil sendl
224 Dataout Set output pin to least significant a1 AD. dl
bit of shift register sen atagone Datago sen
225 Shiftout Shift data register one place 10 send1 Datagone send2
205 Datagone Transmission of data complete send2 Datagone Scn,dz
260 Ackgone Transmission of acknowledge complete send2 ADatagone waitack]
waitackl AAckready waitack
waitackl Ackready waitack2
waitack2 Ackready Acktaken waitack2
15 waitack2 AAckready sync2
INPUT CONTROL STATE MACHINE 283 sync2 Mbusy i sync2
(FIG. 16) i
reference signal sync2 {AMbusy) / \Pregm] SetPregready syncreq2
numeral name urpose
- L sync2 (AMbusy) / \Prcgwptr Setrequest syncreq?
Anputs: 20 syncreq2 APregnil syncreq2
200 Mbusy Memory bus busy syncreq2 Pregnil syncl
201 Reset Transputer reset
262 Dataready Data received from pin
242 Pregready Process Register = READY
243 Pregnil Process Register = NIL
244 Pregwptr Process Register holds a 25 QUTPUT DATA STATE MACHINE 284
workspace pointer
260 Ackgone Transmission of acknowledge State Inputs Outputs Next state
complete any Reset idle
OI.IIELIIS:
220 Setrequest Set cpu request idle (ADatago) / \ (AAckgo) idle
222 SetPregready Set Process Register to READY 30 idle Ackgo Oneout ackflag
222 SetPregnil Set Process Register to NIL
261 Ackgo Initiate acknowledge transmission idle (AAckgo} / \ Datago Oneout dataflag
263 Datataken Confirm receipt of data ackflag ackend
dataflag Oneout databits
Loadcount
35 databits ACountzero DecCount databits
INPUT DATA STATE MACHINE 282 Shiftout
{FIG. 16)] Dataout
reference signal databits Countzero dataend
numeral name purpose dataend Datago Datagone dataend
- dataend ADatago idle
Anputs: 40 ackend Ackgo Ackgone ackend
201 Reset Transputer reset ackend AAckgo idle
230 Datain Data from pin
231 Countzero Test if bit count zero
outputs:
240 Loadcount Set Bit Counter to number of 45
bits to be received INPUT CONTROL STATE MACHINE 283
241 Deccount Decrease bit counter by one State Input Outputs Next stat
244 Shiftin Shift data register one place e ke ol ad
taking least significant bit any Reset SetPregnil recejvel
from pin receivel ADataready receivel
245 Setdataready Reception of data complete receivel Dataready syncl
246 Setackready Reception of acknowledge complete 50 syncl Mbusy syncl
. syncl (AMbusy) / \ Pregnil SetPregready syncreql
The sequences of each state machine are set out
below with reference to present state, next state, input syncl (Mbusy) /\ Pregwptr Setrequest syncreql
and output of each machine. 55 syncreql APregnil syncreql
In any state, the outputs listed under the “outputs” ~ syncreql Pregnil sync2
column are one, and all other outputs are zero. All 2 Mbusy syne2
inputs are ignored except those mentioned in the “in- sync2 (AMbusy) / \ Pregnil SetPregready syncreq2
puts” column. The symbols A, V and A are used to
denote the boolean operations and, or and not respec- ¢ Y72 (8Mbusy) / \ Pregwptr Setrequest syncreq2
tively. syncreq2 APregnil syncreq?
syncreq2 Pregnil receivel
receive2 Dataready Datataken receivel
OUTPUT CONTROL STATE MACHINE 285 miei“z ﬁDﬂ;madY . “:-"e"dl
Stat Input Output Next stat acksend! Ackgone Ackgo acksendl
: it i - s 65 acksend] Ackgone acksend2
any Reset SetPregnil syncl acksend? Ackgone acksend?
syncl Mbusy syncl acksend2 AAckgone receivel

syncl (AMbusy) / \Prcgni] SetPregready syncreql

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

43
INPUT DATA STATE MACHINE 282
State Inputs Outputs Next state
any Reset idle
idle ADatain idle
idle Datain start
start ADatain SetAckready idle
start Datain LoadCount databits
databits ACountzero Shiftin databits
DecCount

databits Countzero Shiftin dataend
dataend — SetDataready idle

As shown in FIG. 16, the input control logic includes
a flip-flop 280 connected to the output 246 of the input
data state machine 282. A further flip-flop 281 is con-
nected to the output 245 of the input data state machine
282. Both control state machines are controlled by
clock pulses derived from the clock 28. For some of the
links, both data state machines are also controlled by
clock pulses derived from the clock 28. For the link
shown in FIGS. 15 and 16, the data state machines are
controlled by clock pulses derived from a different
clock 22 related in phase to clock 28, which allows this
link to operate at a lower speed. Two different clock
frequencies can be obtained in order to achieve maxi-
mum efficiency depending on the type of microcom-
puter network which is operated. When microcomput-
ers are grouped closely together communications be-
tween them can be carried out more quickly in which
case a higher clock frequency can be used. A lower
clock frequency can be used to enable satisfactory com-
munication where the microcomputers are more remote
and require a lower operating speed.

In both the input and output channels the control
state machine monitors the content of the process regis-
ter 47 and when appropriate generates a CPU request
on line 199 by setting the latch 197.

The output control state machine 285 first synchro-
nises with a process using the output process register 47.
It then uses the “datago” signal 211 to cause the output
data state machine 282 io output the data in the output
data register 48 through the pin 27. The output data
state machine 284 sends the data in the manner de-
scribed with reference to FIG. 13a and shifts the data in
the register 48 until a count in the counter 286 expires.
When it has done this it returns the “datagone” signal
205 to the output control state machine to indicate that
the transfer of data is complete and that the “datago™
signal should be removed. The output control state
machine then waits for the *“‘ackready” signal 264 from
the latch 280, signifying that the input data state ma-
chine 282 has received an acknowledge packet as de-
scribed in F1G. 136 from the pin 26. In response to the
“ackready” signal 264, the output control state machine
outputs an “acktaken” signal 265, which resets the latch
280. The output control logic then uses the output pro-
cess register 47 to synchronise again with the outputting
process.

The input data state machine 282 and the microcom-
puter at the other end of the link is waiting for “start
bit” to appear on the input pin 26. When a data packet
is detected, the input data state machine 282 of that
microcomputer shifts data into the data shift register 48
until the counter 287 indicates that the appropriate num-
ber of bits have been received, and then sets the “data
received” latch 281. The input control state machine
283 detects the “dataready” signal 262 and responds by
resetting the “‘data received” latch 281. It then synchro-

5

10

20

35

40

45

50

S5

60

65

4

nises with an inputting process using the input process
register 47. It then synchronises again with the input-
ting process using the process register 47 to confirm
that the process has taken the data from the data register
48, and then uses the *“‘ackgo” signal 261 to cause the
output data state machine to transmit an acknowledge
packet via the pin 27. When the output data state ma-
chine 284 is not transmitting data it generates the start
and stop bits which constitute the acknowledge packet
described in FIG. 13b. The input data state machine 282
of the microcomputer which transmitted the data
packet detects the acknowledge packet and sets the
“acknowledge received” latch 280. As described above,
the output control state machine 285 of the transmitting

“microcomputer has been waiting for this and on detect-
ing the signal resets the latch 280 and performs a second
synchronise operation. The state of the link logic in
both the output and input links is now the same as it was
before the communication took place so that it is ready
for the next transmission.

CHIP AND MEMORY FORMATION

As mentioned above, the microcomputer of this ex-
ample is particularly advantageous in having sufficient
memory in the form of RAM on the chip (integrated
circuit device) to enable the microcomputer to operate
without the necessity for external memory, although
external memory can be used when required. There are
a number of problems in providing sufficient space for
adequate memory on the same chip as the processor. It
is necessary to minimise the area required for each
memory cell as well as reducing noise interference in
the RAM from asynchronously operating circuitry
such as a processor on the same chip, while at the same
time providing a satisfactory manufacturing yield of
acceptable microcomputers from a number of silicon
chips, particularly as the memory may be the largest
and densest component created on the chip.

In order to minimise the chip area required for each
memory cell, this example uses static RAM cells
(SRAM) using high impedance resistive load rather
than the more conventional depletion transistor loads or
complementary pull-up transistors. The manufacturing
technology used in this example employs a film of high
resistivity polycrystalline silicon in which the resistive
loads are formed. The memory may have 32K bits of
SRAM where each cell consists of transistors having
gates formed in a film of polycrystalline silicon. The
transistor gates and resistive loads may be formed in the
same, or different films of polycrystalline silicon.

Resistor load SRAMs are susceptible to interference
from electrical noise injected into the silicon material in-
which they are formed and stored data can be corrupted
by any minority carriers which may be present. In order
to shield the SRAM from noise generated by other on
chip circuitry and from minority carriers injected by
other on chip circuitry the SRAM is formed in an elec-
trically isolated area of silicon as shown in FIG. 17. An
n-channel substrate 300 is formed with separate p-wells
301, and 302. The arry of RAM cells are isolated from
other circuitry and associated substrate noise by locat-
ing the RAM array in the p-well marked 301. This
isolates the RAM cells from minority carriers generated
in the substrate by the well-to-substrate potential barrier
and any minority carriers generated within the well
have a high probability of being collected in the sub-
strate. In FIG. 17, the RAM array will be an n-channel

Page 39 of 99

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007 Page 40 of 99

4,680,698

45
array located in the p-well 301. Any n-channel transis-
tors of peripheral circuitry are isolated from the RAM
array by placing them in a further p-well 302.

This technique is fully compatible with either NMOS
or P-well CMOS manufacturing technology. In the
current example P-well CMOS is used and any p-chan-
nel transistors of peripheral circuitry are placed on the
n-substrate and isolated from the RAM array by the
well-to-substrate potential barrier. Each well contain-
ing a memory array is surrounded by a metal ground
which contacts the memory array well around its pe-
riphery via a heavily doped p diffusion. Within the
memory array there is a p diffusion contacting the well
to ground for each pair of cells. Substrate bias is unnec-
essary.

In order to provide acceptable manufacturing yield
of products from silicon chips, memory redundancy is
incorporated. The memory is divided into rows and
columns accessible respectively by row and column
decoders. In addition to the normal rows and normal
columns the redundancy provides some additional rows
and columns together with spare row and column de-
coders in order to obtain access to the spare rows and
columns. The spare column decoders and spare row
decoders each incorporate fuses which for example can
be open circuited by use of a laser so that when any
defective rows or columns are determined during test,
fuses can be open circuited by laser techniques to dis-
able the row or column decoder of any normal rows or
columns which have been found to be defective and the
replacement row or column from the redundant rows
and columns can be brought into an enabled position by
programming the appropriate spare row decoder or
spare column decoder with the address of the defective
row or column.

In order to allow N-well CMOS manufacturing tech-
nology to be used the following alternative isolation
technique may be employed. Referring to FIG. 18 a low
resistivity P type substrate (405) is used on which a high
resistivity P type epitaxial layer is formed.

The cell array is formed in this epitaxial layer in re-
gion (401) and is entirely surrounded by a deep N-well
diffusion (402). Minority carriers generated by other
circuitry in region (403) will be attracted to the N-wells
(402) where they become harmless majority carriers, or
will recombine in the heavily doped P-type substrate
(405). P-channel transistors are placed in N-wells (404)
where they are isolated by the well to substrate poten-
tial barrier.

ADDITIONAL MATERIAL

The invention is not limited to the details of the fore-
going example. For instance, although the serial links
shown in FIG. 2 have separate process registers 47, the
function provided by the registers 47 may be effected by
memory locations in the RAM 19. In this case the CPU
must be able to identify the serial link which it is serving
and this may be achieved by connecting each channel of
each serial link separately to the sync logic 10 in FIG. 2.

One set of data registers and buses is shown in FIG.
3 and in some cases it may be desirable to include two
such sets in one microcomputer, or even to have two
CPUs in one microcomputer.

The principle described above of using pfix and nfix
functions to vary the length of operand is applicable to
a microcomputer of any word length.

The invention is not limited to a machine operating
with 16 bit words nor to 16 bit operand registers, e.g.

15

25

30

35

45

50

55

60

65

46

processors having a word length of 8 bits or multiples of
8 bits may use these instructions. The invention is par-
ticularly applicable to 32 bit word microcomputers.

The CPU may include further registers, in an evalua-
tion stack, such as a CREG or even DREG in addition
to the A and B registers. Some functions and operations
may then be modified to allow the additional registers.
For example:

Areg := Breg may be replaced by SEQ
Areg := Breg
Breg := Creg
Creg := Dreg
Breg := Areg may be replaced by SEQ
Dreg := Creg
Creg := Breg
Breg := Areg

Other functions or operations may of course be added
to exploit the extra registers. Although the illustrated
embodiment described herein and shown in FIG. 3
includes only an A register and a B register, in a pre-
ferred embodiment of the present invention, three regis-
ters are used in a stack.

It will be appreciated that in the above description,
the function set lists a plurality of functions followed by
an extendable list of operations which may be selected
by use of the indirect function “operate”. In all cases
these functions and operations can be considered as
forms of instruction usable in the program to operate
the microcomputer. However in order to obtan the
advantages discussed above for a fixed format of *in-
struction” as shown in FIG. 5, the list of functions and
operations can be considered as a set of primary instruc-
tions (consisting of the direct functions, prefixing func-
tions and indirect functions) and a set of secondary
instructions (consisting of the operations which may be
selected by use of the indirect function). To maximise
efficiency, the primary instructions which are most
commonly used require only 4 bits of the instruction
format shown in FIG. 5 and so the other 4 bits can be
used for data to be loaded into the operand register 65
and used as an operand for the instructions. For the
secondary instructions which are less commonly used,
all 8 bits of the instruction format shown in FIG. 5 are
needed to identify the instruction required. Conse-
quently the fixed format of the instruction shown in
FIG. 5 allows no data to accompany a secondary in-
struction and secondary instructions therefore operate
on data held in registers other than the operand register
65.

Although the instruction format shown in FIG. 4
comprises 8 bits divided into two halves, it will be un-
derstood that other bit lengths may be used and the
division into.function and data need not necessarily
provide equal bit lengths for the two parts.

It is to be appreciated that the present arrangement
described herein provides a combination which dramat-
ically improves the efficiency and throughput of the
microcomputer. By using instructions having a constant
format, by having a function set where the most often
used functions are directly available whereas other
functions are indirectly available, by arranging for com-
munication between processes and synchronisation
among them, by permitting point-to-point communica-
tion between microcomputers, and by providing mem-
ory on the same chip as each microprocessor, a mi-
crocomputer according to various aspects of the inven-

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007

4,680,698

47

tion can achieve a speed of 10 million instructions per
second. An array housed on a board of only 10 inches
by 20 inches should be able to achieve a speed of 1000
million instructions per second. A Transputer (trade
mark) microcomputer array using OCCAM (trade
mark) should be able to achieve speeds approximately
two orders of magnitude faster, than, for example, a
Motorola 68000 using PASCAL. A single Transputer
programmed in OQCCAM should be about two or three
times faster than a single 68000 microprocessor using
PASCAL. In the prior art, when microcomputers are
added in an array, the incremental gain in performance
is progressively less and less with an increase in proces-
sors. However, by using the microcomputer of this
example, the increase in performance is a linear function
of the number of processors. Thus it will be appreciated
that the present combination achieves dramatically in-
creased performance over the state of the art.

We claim:

1. A network of interconnected microcomputers,
each microcomputer comprising:

(a) a single integrated circuit chip having a substrate

of semiconductor material of a first type,

(b) an on-chip high density RAM array having at
least one K byte for holding a program containing
instructions for execution by said on-chip proces-
sor,

(c) a plurality of communication links each forming
an interconnection with an adjacent microcom-
_puter in the network,

(d) an instruction pointer circuit for addressing said
RAM to obtain program instructions therefrom,

(e) an instruction receiving circuit coupled to said
RAM for receiving said instructions from said pro-
gram siored in said RAM,

(f) an instruction decoder circuit coupled to said re-
ceiving circuit for decoding instructions received
by said instruction receiving circuit,

() a plurality of on-chip transistors comprising cir-
cuitry operable independently of the operation of
said RAM,

(h) first isolation well means formed in said substrate
of a semiconductor material of different type than
said substrate, said first isolation well means con-
taining all of said memory cells of said high density
RAM array, and

(i) second isolation well means separate from said first
isolation well means and formed in said substrate of
a semiconductor material of different type than
said substrate, said second isolation well means
containing some of said transistors which are oper-
able independently of said operation of said RAM,

whereby each microcomputer in the network operates
in accordance with instructions from program in its
on-chip RAM and each on-chip RAM is protected from
noise due to operation of independently operating tran-
sistors.

2. A microcomputer comprising an on-chip processor
and on-chip memory on a single integrated circuit chip
having a substrate of semiconductor material of a first
type, wherein said on-chip memory comprises a high
density RAM array having at least 1K bytes for holding
a program containing instructions for execution by said
on-chip processor, said microcomputer including:

(a) an instruction pointer circuit for addressing said

RAM to obtain program instructions therefrom,

20

30

35

40

50

60

65

48

(b) an instruction receiving circuit coupled to said
RAM for receiving said instructions from said pro-
gram stored in said RAM,

(c) an instruction decoder circuit coupled to said
instruction receiving circuit for decoding instruc-
tions received by said instruction receiving circuit,

(d) a plurality of on-chip transistors comprising cir-
cuitry operable independently of the operation of
said RAM,

(e) first isolation well means formed in said substrate
of a semiconductor material of different type than
said substrate, said first isolation well means con-
taining all of said memory cells of said high density
RAM array, and

(f) second isolation well means separate from said first
isolation well means and formed in said substrate of
a semiconductor material of different type than
said substrate, said second isolation well means
containing some of said transistors which are oper-
able independently of said operation of said RAM,

whereby said high density RAM is located on the same
chip as independently operating transistors and is pro-
tected from noise due to independent operation of said
transistors.

3. A microcomputer according to claim 2 wherein
said memory provides at least four K bytes of RAM.

4. A microcomputer according to claim 3 wherein
said memory comprises a plurality of RAM cells
formed with high impedance resistive loads and transis-
tors.

5. A microcomputer according to claim 4 on which
said resistive loads are formed in a film of polycrystal-
line silicon.

6. A microcomputer according to claim 2 comprising
a CMOS structure having an n-type substrate with one
or more isolation wells of p-type semiconductor.

7. A microcomputer according to claim 6 in which
said memory cells include n-channel transistors located
within said p-type well or wells.

8. A microcomputer according to claim 2 having a
substrate of low resistivity p-type semiconductor on
which a high resistivity p-type epitaxial layer is located,
said memory cells being located within said epitaxial
layer and surrounded by an n-type region to isolate the
memory cells.

9. A microcomputer according to claim 2 in which
said memory array comprises a main memory array and
a redundant memory array, together with means for
enabling use of redundant memory if defective memory
elements occur in said main memory array.

10. A microcomputer according to claim 9 in which
said redundant memory array incorporates redundant
rows and columns of memory elements interconnect-
able with said main memory array through fuse ele-
ments.

11. A microcomputer according to claim 2 compris-
ing a single silicon chip on which is located said proces-
sor and further comprising communication channels,
said programmable RAM together with said communi-
cation channels permitting message transmission to or
from a process executed by said processor.

12. A microcomputer according to claim 11 wherein
said communication channels include communication
links permitting process to process communication with
other microcomputers.

13. A microcomputer according to claim 12 further
comprising control means for said processor responsive
to functions selected from a function set which include

Page 41 of 99

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 42 of 99

4,680,698

49
data transfer between registers, between memory and
registers, and which enable synchronization of message
transfer through said communication channels.

14. A microcomputer according to claim 2 wherein
said processor executes a sequence of instructions each
one byte long and each having the same format of bit
positions, thereby reducing the chip area required by

5

15

20

25

30

35

45

50

55

65

50
the processor, said registers each having a bit length
which is an integral number of bytes.
15. A microcomputer according to claim 2 in which
said program is recorded in said memory on the same

integrated circuit chip as the processor.
[] * x [] *

. Case 2:05-cv-00494-TIW—Document225-6—Fited-04/62/200+——Page436f99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 1 of 26
DATED : July 14, 1987 :

INVENTOR(S) : May, et al.

Itis certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below: Title Page:

Correct the title to read --MICROCOMPUTER WITH
HIGH DENSITY RAM IN SEPARATE ISOLATION WELL ON SINGLE CHIP--.

Column 11, lines 23 through 28 delete exist-
ing text and insert in its place --

SEQ

P2
P3

Column 11, lines 36 through 40, delete
existing text and insert in its place --

SEQ
out ! x

Column 11, lines 45 through 50, delete
existing text and insert in its place --

PAR
Pl
p2

P3

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 2 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 11, lines 57 through 61, delete
existing text and insert in its place --

PAR
in ? x
out ! y
Column 12, lines 5 through 13, delete exist-
ing text and insert in its place --
IF
condition 1
Pl
condition 2
P2
condition 3
P3
Column 12, lines 20 through 25 delete exist-
ing text and insert in its place --
IF
Xx >0
1= y+1
X < 0

e - =6~ Filed 04/02/2007 Page 45 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 3 of 26

DATED :July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 12, lines 30 through 38 delete exist-
ing text and insert in its place --

ALT
input 1
Pl
input 2
P2
input 3
P3

Column 12, lines 48 through 55 delete exist-
ing text and insert in its place --

ALT
count ? ANY
counter := counter + 1
total ? ANY
SEQ
out ! counter
counter :=0 -

Column 13, lines 1 through 3, delete existing
text and insert in its place --

WHILE x > 5
X :=xXx -5 —

. Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 46 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 4 of 26
DATED - July 14, 1987

INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 13, lines 15 through 18 delete exist-
ing text and insert in its place --

VAR v :

Column 13, lines 25 through 27 delete exist-
ing text and insert in its place --

PROC square (n, sqr)
sqr :=n * n

Column 14, lines 63 through 70; column 15,
lines 1 through 15; and column 16,
lines 1 to 6, delete existing text and
insert in its place --

Case 2:05-cv-00494-TJW ___Document 225-6 __ Filed 04/02/2007 _ Page 47 of 99

PATENT NO.
DATED
INVENTOR(S) :

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

4,680,698 Page 5 of 26
July 14, 1987

May, et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

WO & WP WO NI W

OO B W

PROC run (w)
IF
w <> READY
SEQ

memory [LPTR - 2] = w
LPTR :=w

w = READY

SKIP

PROC wait
SEQ
memory [WPTR - 1] := IPTR
for each external request from a serial link
SEQ
run (link [process])
link [process] := NIL
WPTR := memory [WPTR - 2]
IPTR := memory [WPTR - 1]

PROC moveto (w)
SEQ
IF
WPTR = LPTR
LPTR (= W
WPTR <> LPTR
memory [w = 2] := memory [WPTR - 2]
WPTR := w --

~ Case 2:05-cv-00494-TIW—Decument-225-6——Filed-04/02/2007—Page-48-6+-99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNOG. : 4,680,698 Page 6 of 26
DATED ! July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Columns 15, 1lines 17 through 70 and Columns 17-22
lines 1 through 39, delete existing text and insert in its

place --

load from workspace (function code 0)

Definition: SEQ
BREG := AREG
AREG := memory [WPTR + OREG]

Purpose: to load into the A register the value
of a location in the current process
workspace.

store to workspace (function code 1)

Definition: SEQ ‘
memory [WPTR + OREG] := AREG
AREG := BREG
Purpose: to store a value in a location in
the current process workspace

. Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007—Page 450199

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 7 of 26
DATED : July 14, 1987

INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

load pointer into workspace (function code 2)

Definition: SEQ
BREG := AREG
AREG := WPTR + OREG

Purpose: to load into the A register a pointer
to a location in the current process
workspace

to load a pointer to the first location
of a vector of locations in the current
process workspace.

. load from workspace and increment (function code 3)

| Definition: SEQ
BREG := AREG
AREG := memory [WPTR + OREG]
memory [WPTR + OREG] := AREG + 1

Purpose: to load into the A register the value
of a location in the current process
workspace, and increment the location

to facilitate the use of workspace
locations as loop counters, incrementing
towards zero

to facilitate the use of workspace
locations as incrementing pointers to
vectors of words or bytes

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 50 of 9
UNITED STATES PATENT AND TRADEMARK OFFICE

PATENT NO.
DATED
INVENTOR(S) :

CERTIFICATE OF CORRECTION

4,630,698 Page 8 of 26
July 14, 1987
May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
carrected as shown below:

load from vector (function code 4)

Definition: AREG := memory [AREG + OREG]

Purpose: to lcad into the A register a value

from an outer workspace
to load a value from a vector of values
to load a value, using a value as a

pointer (indirection) - in this case
OREG = 0

store to vector (function code 5)

Definition: SEQ

memory [BREG + OREG] := AREG
AREG := BREG :

Purpose: to store a value in a location in

an outer workspace
to store a value in a vector of values
to store a value, using a value

as a pointer (indirection) - in
this case OREG = 0

©

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 9 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

load literal (function code 6)

Definition: SEQ
BREG := AREG
AREG := OREG
Purpose: to load a value
add literal (function code 7)
Definition: AREG := AREG + OREG
Purpose: to add a value

to load a pointer to a location
in an outer workspace

to load a pointer to a location
in a vector of values

jump (function code 8)
Definition: IPTR := IPTR + OREG

Purpose: to transfer control forward or
backwards, providing loops, exits
from loops, continuation after
conditional selections of program

Case 2:05-cv-00494-TIJW ™ Document 225-6 — Fited04702/2607 —Page 52 0f 99
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 10 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

jump non zero (function code 9)

Definition: IF
AREG <> 0
IPTR := IPTR + OREG
AREG = 0
SKIP
Purpose: to transfer control forwards or

backwards only if a non-zero value
is loaded, providing conditional
execution of sections of program
and conditional loop exists

to facilitate comparison of a wvalue
against a set of values

load pointer into code (function code 10)

Definition: SEQ
BREG := AREG
AREG := IPTR + OREG
Purpose: to load into the A register the

address of an instruction to load
the address of a vector of data
forming part of the program

—— Case 2:05tv-60494-TJW Document 225-6

Filed 04/02/2007

Page 53 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NGO, 4,680,698 Page 11 of 26
DATED July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

call procedure (function code 11)

Definition: SEQ
memory [WPTR - 1] := IPTR
IPTR := AREG
AREG := WPTR
moveto (WPTR + OREG)
Purpose: to provide an efficient procedure

call mechanism

to facilitate code sharing, where
two identical procedures are
executed on the same processor

Indirect Functions (function code 13)

operate
Definition:

Purpose:

operate (OREG)

perform an operation, using the

contents of the operand register
(OREG) as the code defining the
operation required.

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 54 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 12 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Prefixing Functions
prefix (function code 14)
Definition: OREG := OREG << 4

Purpose: to allow instruction operands which
are not in the range 0 - 15 to be
represented using one or more
prefix instructions

negative prefix (function code 15)
Definition: OREG := (NOT OREG) << 4
Purpose: to allow negative operands to be
represented using a single negative

prefix instruction followed by zero
or more prefix instructions.

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 55 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNG. : 4,680,698 Page 13 of 26
DATED : July 14, 1987

INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Operations (function code 13)

reverse (operation code 0)

Definition: SEQ
OREG := AREG
AREG := BREG
BREG := OREG

Purpose: to exchange the contents of the
A and B registers

to reverse operands of asymmetric
operators, where this cannot
conveniently be done in a compiler

Case 2:05-cv-00494-TJW Document 225-6 Fited 0470212007 Page 56 0f 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 14 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

Itis certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

equal to zero (operation code 1)

Definition: IF
AREG = 0
AREG := TRUE
AREG <> 0
AREG := FALSE
Purpose: to test that A holds a non zero value

to implement logical (but not
bitwise) negation

to implement

A=0 as eqz
A <>0 as eqz, eqz
ifA=0 ... as jnz

if A<>0 ... as egqgz, jnz

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007— Page 57 0f 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 15 of 26
DATED ! July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

greater (operation code 2)

Definition: IF
BREG > AREG
AREG := TRUE
BREG < = AREG
AREG := FALSE

Purpose: to compare A and B (treating them
as twos complement integers), loading
-1 (true) if B is greater than A, 0
(false) otherwise

to implement B < A by reversing
operands

to implement B <= A as (gt, eqz),
and B >= A by reversing operands
and (gt, eqz)

~ Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007

Page 58 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 16 of 26

DATED : July 14,

1987

INVENTOR(S) : May, et al.

It is certified that errar appears in the ahaove-identified patent and that said Letters Patent is hereby

corrected as shown below:

and (coperation code 3)

Definition:

Purpose:

AREG := AREG / \ BREG

to load to bitwise AND of A and B,
setting each bit to 1 if the
corresponding bits in both A and B
are set to 1, 0 otherwise

to logically AND two truth values

or (operation code 4)

Definition:

Purpose:

AREG := BREG \ / AREG

to load the bitwise OR of A and

B, setting each bit to 1 if either
of the corresponding bits of A and
B is set, 0 otherwise

to logically OR two truth values

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 590f%9

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 17 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the abave-identified patent and that said Letters Patent is hereby
corrected as shown below:

exclusive or (operation code 5)

Definition: AREG := BREG >< AREG

Purpose: to load the bitwise exclusive OR
of A and B setting each bit to 1
if the corresponding bits of A
and B are different, 0 otherwise

to implement bitwise not as
(141 -1, xor)

add (operation code 6)
Definition: AREG := BREG + AREG
Purpose: to lcad the sum of B and A

to compute addresses of words
or bytes in vectors

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 60 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 18 of 26
DATED s July 14, 1987

INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

subtract (operation code 7)

Definition: AREG := BREG - AREG
Purpose: to subtract A from B, loading
the result
to implement
A =B ' as sub, eqz
A <> B as sub, eqz, eqz
if A =B as sub, jnz,...
if A <> B as sub, eqz, jnz,...

run process (operation code 8)

Definition: SEQ
memory [AREG - 1] := BREG
run (AREG)

Purpose: to add a process to the end of the
active process list

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 61 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 19 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shawn below:

pause (operation code 9)

Definition: SEQ
run (WPTR)
wait ()
Purpose: to temporarily stop executing

the current process

to share the processor time
between the processes currently
on the active process list

join (operation code 10)

Definition: IF
memory [AREG] = 0
moveto (memory [AREG + 1])
memory [AREG] <> 0

SEQ
memory [AREG : = memory [AREG] - 1
wait ()
Purpose: to join two parallel processes; two

words are used, one being a counter,
the other a pointer to a workspace.
When the count reaches 0, the
workspace is changed

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION
PATENTNO. : 4,680,698

DATED : July 14, 1987
INVENTOR(S) : May, et al.

Page 20 of 26

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

synchronize (operation code 11)

Definition: IF
memory [AREG] = NIL
SEQ
memory [AREG] := WPTR
wait ()
memory [AREG] <> NIL
SEQ
run (memory [AREG])
memory [AREG] := NIL
Purpose: to allow two processes to

synchronize and communicate
using a channel

return (operation code 12)

Definition: SEQ
move to (AREG)

IPTR := memory [WPTR - 1]
AREG := BREG

Purpose: to return from a called procedure

- Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 63 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 21 of 26

ODATED : July 14,

1987

INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

rotate bytes (operation code 13)

Definition: AREG :

Purpose:

to
to
to
to

= (AREG << 8) \/ (AREG >> (bitsperword - 8))

rotate the bytes in the A register
allow 8 bit byte values to be combined
form a single word value

allow a word value to be split

into several component 8 bit values

shift right (operation code 14)

Definition:

Purpose:

AREG := AREG >> 1

to shift the contents of the A
register one place right

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 64 0f 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 22 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

shift left (operation code 15)
Definition: AREG := AREG << 1

Purpose: - to shift the contents of the A
register one place left -

Column 33, lines 63 through 70, and column 34, lines 1
to 4, delete the existing text and insert in its place --

1. VAR rotations:
2. WHILE TRUE
3
4

SEQ
. rotations:= 0
5. WHILE rotations < 1000
6. SEQ
7. ~ rotation ? ANY
8. rotations := rotations +1

9. mile ! ANY -

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 23 of 2‘5‘(‘D
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 34, lines 20 through 50, delete existing
text and insert in its place ~--

Instruction Sequence Program in OCCAM language
Function
Code Data
VAR rotations:
WHILE TRUE
SEQ
1. L1:
2. 141 0 6 0 rotations := 0
3. stw 0 1 . 0 .
4. L2: WHILE rotations <1000
SEQ
5. l1dw 0 0 o
6. pfix 14 3
7. pfix 14 14

8. 141 1000 6 8

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 66 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 24 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Instruction Sequence Program in OCCAM Language
Function
Code Data

9. opr gt 13 2

10. jnz L3 9 9

11. ldw 1 0 1 rotation ? ANY

12. opr sync 13 11

13. ldw 1 0 1

14. opr sync 13 11

15. ldw 0 0 0 rotations:=rotations + 1
" 16. adl 1 7 1

17. stw 0 1 0

18. . opr pause 13 9

19. nfix 15 0

20. j L2 8 0

21. L3:

22. ldaw 2 0 2 mile ! ANY

23. opr sync 13 11

24. ldw 2 0 2

25. opr sync 13 11

26. opr pause 13 °

27. nfix 15 2

28. j Ll 8 7 -

Column 36, lines 7 through 43, delete existing text
and insert in its place --

Case 2:05-cv-00494-TJW— Document 225-6 — Filed 0470272007 —Page 67 0f 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,680,698 Page 25 of 26
DATED : July 14, 1987

INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Instruction Sequence Program in above defined
Function -OCCAM Language
Code Data
VAR miles:
SEQ
Ll:
141 0 6 0 miles :=
stw 0 1 0 WHILE TRUE
L2: ALT
ldw 1 0 1 mile ? ANY
1dv 0 4 0
opr eqz 13 1
jnz 13 9 9
ldw 1 0 1
opr sync 13 11
ldw 1 0 1
opr sync 13 11
ldw 0 0 0 miles := miles + 1
adl 1 7 1
stw 0 1 ¢]
pfix 14 1
3 L4 8 0
L3:
ldw 2 0 2 fuel ? ANY
ldv 0 4 0
opr eqz 13 1
jnz L4 9 12
ldw 2 0 2

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 68 of 99

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,680,698 Page 26 of 26
DATED : July 14, 1987
INVENTOR(S) : May, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Instruction Sequence Program in above defined
Function OCCAM Language
Code Data
opr sync 13 11
ldw 2 0] 2
opr sync 13 11
SEQ |
law 3 0 3 consumption ! miles |
ldw 0 0 0 ;‘
stv 1 5 1 ;
opr sync 13 11 }
1dw 3 0 3 |
opr sync 13 11 3
ldl 0 6 0 miles := 0 |
stw 0 1 ¢ {
L4: \
opr pause 13 9 j
nifx 15 1
3 L2 8 0

Signed and Sealed this
Fifteenth Day of November, 1988

Attest:

DONALD 1. QUIGG

Attesting Oﬁicer Commissioner of Patents and Trademarks

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 69 of 99

Exhibit O

O g
g H RV IVEE T WL R I £ ASRRY Sas Tt
e demi - vy SN .

e —— A Ay 1

ey

RE Y

| e e g

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 70 of 99

. .
‘UNITED STATES DEPARTMENT OF COMMERCE
Patent lnd Trademark Office

Address : COMMlSSIONEH OF PATENTS AND TRADEMARKS
: : Washington, D.C. 20231

T T — I !‘
. . ~ ()

[semaLNUMBER | FUNG DATE | FIRST NAMED INVENTOR [ATTORNEY DOCKET No. |
‘ IRE : Q41 ZVE
@7/392,334 Qz/Q3/89 MODORE < ama412WiEH
EXAMINER _ 1
ENG, T
FLEHR. HOHEACH, TEST, _ |
ALERITTON & HEREERT ‘. [amronT | FAPER NOWBER]
SUITE 3400 — Z
FOUR EMBARCADERD CENTER 2315
cAN FRANCISCO. CA 94111 o
) DATE MAILED: 12/31/92
This is a communication from the axaminer in charge of your application.
COMMISSIONER OF PATENTS AND TRADEMARKS
ﬁmmﬁm”“'w‘mm ﬁmtommﬂum_wﬂ This action is made final.
A shortened mmwwbmtombmmmmtome_?__g_:_mw.),_{_ days from the date of this letter. |

Failure to respond within the period for response will cause the appiication to become abandoned. 35U.8.C. 133

Partl THE FOLLOWING ATTACHMENT(8) ARE PART OF THIS ACTION:

1. ﬂL Notice of References Cited by Examiner, PTO-892. 2. [Notice re Patent Drawing, PTO-048.
3. [0 Notice of Art Cited by Applicant, PTO-1449. 4. O Notice of informal Patent Application, Form PTO-152.
8. [J information on How to Effect Drawing Changes, PTO-1474. e O

PartR SUMMARY OF ACTION
1. ﬂ Claims /, 3 , b — /3 ’é 3 o ﬁ,v.a/ Sd—0 are pending in the application.

Of the above, claims L 13 -13, /14-— 95, a—wr % 8 = 2O are witharawn from consideration.

iﬂcnum I, 4‘; :5“, /(7[,: 15 ot 3] have been canceled.
3. O claims : are allowed.

. ¢&um 3~,, 6-t{(, 44*30; 3¢ — 477 are rejected.

s. O clams are objected to.

s. O ciaims are subject to restriction or election requirement.

r. O This application has been filed with informal drawings under 37 C.F.R. 1.85 which are acceptabie for examination purposes.
f. O Formal drawings are required in response to this Office action.

s. [J The corrected or substitute drawings have been received on Under37CFn.1s4theoodrawtngs
are (] acceptable. (] not acceptabie (see explanation or Notice re Patent Drawing, PTO-848).

10. [J The proposed additional or substitute sheet(s) of drawings,fledon__________ has (have) been L] approved by the
examiner. [] disapproved by the examiner (see explanation).

11. O e proposed drawing correction, filed on has been [] approved. O disapproved (see explanation).

12 [0 Acknowledgment is made of the claim for priority under U.S.C. 119. The certified copy has [] been received O not been received -

O been fited in parent application, serial no. . filed on

B

43. O since this application appears to be in condition for allowance except for formal matters, prosecution as to tho merits is closed in
accordance with the practice under Ex parte Quayle, 1935 C.D."11; 453 0.G. 213. :

‘14, O Other

ST~

EXAMINER'S ACTION

749FH-181

/

SR A R eyt

R LISt

. e

——ry o~

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 ~ Page 71 of 99

Serial No. 389334 -2-

Art Unit 2315

15. In the communication filed on October 2, 1992, applicants
elect Group II with traverse. The cleims are properly restricted
for the reasons set forth in the last office action.

16. In the communication, applicants stated that claim 26 serves
es a linking claim and that a complete examination of claim 26
vill require consideration of the art for both groups. The
examiner disagrees. In considering restriction, the claims are
agssumed to be patentable (MPEP 806.05 (a)). The art for Group I
and II is separately claimed in claim 1 and 3. In other words,
each of the Group I and II does not rely on the other for
patentability. In examining claim 26, it does not require to
congider the detail claimed in claim 2 which is in Group I. In
examining claim 13, it does not require to consider all the
details claimed in claim 36. In exemining claim 16, it doés not
require to consider all the details claimed in cleim 39. 1In
examining cleim 41, it does not require to consider all the
deteils claimed in 21. 1In examining cleaim 2, it does not requife
to consider all the detail claimed in claim 6. In examining
claim 24, it does not require to consider all the details claimed
in claim 46. In examining claim 3, it does not require to

consider the detail in claim 59-62.

17. In concluseion, the independent cleims vhich respecliively and

solely claim the subject matter in a group is evidence that they

do not rely on the detail claimed in the combination claims (one

749FH-182

B

B

..

Grr B

—

-~

Lan AR OIIIROIN RS- /M 1 - (s

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 72 of 99

Serial No. 389334 -3-

Art Unit 2315

of the dependent cleims in the gset of independent claim 26) for
patentability. The restriction therefore is proper.

18. The remark in line 11-13 of page 2 of the October 2
communication is not understood. Claim 22 is neither in Group II
nor Group X.

19. Claim 12 is inadvertently omitted in the last office action.
The error is regretted. Claim 12 should«L{ — 6}1N7pj?,

20. Claims 6, 10, 11, 26-30 aﬁa 31-37 are rejected under 35
U.S5.C. § 112, second paragraph, as being indefinite for failing
to particularly point ocut and distinctly claim the subject matter
vhich applicant regards as the invention.

21. With respect to claim 6, the components (means for storing a
top item, means for storing a next item aend the at least one
stack register) of the firat push down stack as recited do not
appear to render the push down stgck to operate as a stack. Note
that a stack is such that qn;giemSpropagatet from one end of the
stack to another via the stages in the stack. The stack a=s
recited in the claim does not do that. Further, the claim fails
to recite hov the components of the stack are interconnected so
as to form a stack having stages between the input and the output
of the stack. _The second pugh down sfack has similar defectis.
Register file is not a stack.

22. Claiﬁ 6 further faile tq recit; how each of the means as

recited functionally coacts with each other so as to achieve any

749FH-183

PRI

R

CES Ao Ok R AN

W AR b,

—————
r T

Case 2:(15-cv-00494-TJW Document 225-6 Filed 04/02/2007 - Page 73 of 99

Serial No. 389334 -4-

Art Unit 2315

meaningful function or improvement. Although each of the means
are recited to be interconnected, no meaningful coact is =seen.

For example, the means for storing top item of the first stack

which is for providing a top item to ALU is recited for providing

the same to another stack. The second stack as recited hes
nothing to do with arithmetic operation. It is not seen why it
should receive a top item as the ALU. More example, the second
sgtack ig recited to be connected to the means for storing top
item bidirectionally. Hovever, the means for storing top item
has not been recited for receiving anything from the second
stack. It eppears to the examiner that they should not be
bidirectionally connected and controlled because the means for
storing top item is part of another stack and it should receive
itemsg from the next stage of its own stack and not from another

stack (the second atack).

23. Other claims (claims 27-29 and 37-38, for example) vhich
recite stack have similar defects as claim 6.

24. 1In claims 1@ and 33, it is not clear vhat is meant by "to
provide ; microloop in said instruction register®. HNote that an
IR is commonly for storing instruction. ;urther, it is not seen
how the supplying of control/reset signals to counters would
provide & micrcloop in an instruction. register.

25. Function'of the counter as recited in claims 11 end 34 is

not clear. It is not seen hov the ‘counter which is recited for

749FH-184

+ e i, e R A

T N ————— o

S

PR Yy

+ C——

Case 2:05-cv-00494-TJW - Document 225-6 Filed 04/02/2007 - Page 74 of 99

Serial No. 389334 s

Art Unit 2315

contralling supply of instructione can select varisble width
operand. Further, cleims 11 feils to recite vhere the variables
wvidth operaend ies stored.

26. In claim 26, function of the multiplexing means is not
clear. A multiplexer which is commonly for multiplexing is
recited to provide different types of data on a bus. Where do
the rov addresses, column addresses and data come from and go to?
27. In claim 335, function‘of the means for fetching is not
clear. A fetching means which/is commonly for fetching ie
erronecusly recited for assembly and storing instructions.

28. In claim 39, it is not clear vhat is meant by "different
memory access timing for different sizes of DRAM®". 1Is it
referring to different storing capacity sizes, to different
amount of instructions accessed at a time or to different
physical sizes? Further wvith respect to claim 39, it is not seen
hov the sensing circuit and the driver circuit as recited can
render the microprocessor to provide different sizes of DRAM.

29. Claim 41 is not understood. It is not clear vhat is meant

by "ring counter -- to provide different clock speed -- depending
on at least one of temperature, voltage and microprocessor
fabrication process --". How does the clock response to the
temperature, voltage and microprocessér fabrication process?

30. In claim 42, vwhat is meant by "I/0 interface -- to

exchange -- signals -- vith said I/0 interface --"7 What is

749FH-185

BE o it

. arpEn

e

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 75 of 99

Serial No. 389334 -6~

Art Unit 2315

connected to the I/0 interface and exchange with_vho? Claim 42
further fails to recite how the clock and the 1/0 interface
functionally cocact wvith each other soc as to perform any
meaningful operation.

31. Claims 44 and 45 fail to recite function of each of the
elements recited therein and how theybare functionally coact vwith
each other such that desired result can be achieved.

32. Claims 37-38 are rejected under 35 USC 112 and cobjected to
under 37 CFR 1.75 (b) as unduly multiplied.

33. Claims 37-38 are almost igentical to parent claim 27-29.

34. The follovwing is a quotation of 35 U.5.C. § 103 vhich forms
the basis for all obviousness rejections set forth in this Office
action:

A patent may not be obtained though the invention is not
identically disclosed or described as set forth in section
102 of this title, if the differences betveen the subject
matter sought to be patented and the prior art are such that
the subject matter as a vhole would have been obvious at the
time the invention was made to a person having ordinary
skill in the art to which said subject matter pertains.
Patentability shall not be negatived by the manner in which
the invention wvas wmade.

Subject matter developed by another person, vhich qualifies
as prior art only under subgection (£f) or (g) of section 102
of this title, shall not preclude patentability under this
section where the subject matter and the claimed invention
vere, at the time the invention was made, ovned by the same
person or subject to an obligation of assignment to the same
person.

35. Claime 3, 6-10, 26-30 and 32-33 are rejected under 335 U.S.C.
§ 103 as being unpatentable over Takahira.

v
36. See at least Figure 2 and the'corresponding description in

749FH-186

e

R

L e s O

Trea o

[P g

o e LR T

Case 2:05-cv-00494-TJW - Document 225-6 Filed 04/02/2007 ~Page 76 of 99

Serial No. 38389334 -7~

Art Unit 2315

the mpecification of Takahira. The draving shovs-a data
processing system having a CPU, memory, EEPROM, RAM, ROH, clock
circuit, register file, status register, index register X and Y,
program counter H and L for fetching instructions, ALU,
accumulator, stacks and stack pointer,‘instruction register,
instruction decoder and a bus. With respect to claim 3, Takahira

does not specify hov many instructions can be fetched per memory

cycle.

<1;fz of ordinary ekill in £ﬁe art should readily reccgnize
that, for the same machine, more ingtructions can be fetched if
the memory cycle is extended longer. Hovw long a memory cycle
should be is merely a matter of design choice because it is
dependent on the speed of the elements used and on the
engineering design.
37. With respect to claim 7, one of ordinary skill in the art
should readily recognize that for the same given amount of time
more instructions can be fetched if the previous instruction is
not a memory instruction because it is well known that a memory
instruction takes longexr time to executed.-

38. With respect to claim 10, looping is well known in

programming art. One of ordinary skill in the art should readily
recognize that. the proceessing system of Takahira as shown in

Figure 2 is capable of looping‘because it also has program

counters.

749FH-187

gt

v e o e 2O N N L R b

g

o AR SIRIGIIS . AIIATGUINIBIIY 1 A 4 fes B gy

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 77 of 99

Serial No. 389334 -8-

Art Unit 2315

39, Claims 11 and 34 are rejected under 35 U.S.C. § 1@3 ags being

unpatentable over Takehira in view of Heath.
4@. Takahira discloses claim combination set forth above.
Takahira does not state vhether his operand is of variable
length. Heath shovs such in lines 31 et seq. of column 5. It
would have been obvious to make Takahira’s operand variable
length because it voﬁld be more flexible.

aof (T Onk
41. ClaimdSﬁhis'rejected under 35 U.S.C. § 103 as being
unpatentable over Takahira and Heath in viewv of Bruinhoret.
42. Takahira and Heath disclose claim combination set forth
above. Takahira does not gtate vhether his program in PROH is
transferred to RAM. Such is vell knovn in the art as sheown by
Bruinhorst in lines 43 et seq. of column 15. It would have been
obvious to load from PROM to RAH in Takahire as taught by
Bruinhorst because it is more flexible in programming.
43. Claims 36, 37 and 38 are rejected under 35 U.S.C. § 1@3 a=s

being unpatentable over Takahira, Heath, Bruinhorst further in

view of Derchak.

44. Takahira, Heath and Bruinhorst disclose claim combination

set forth above. Takahira does not show é DHMA. DMA is well
known in the art. Derchak shows such. It would have been

obvious to a person of ordinary skill in the art to incorporate a

DMA as taught ﬁy Derchak in Takeshira because that would render

Takahira’s system more efficient.

749FH-188

T

| IR R u o,

>

AR LRV e e

e

o

Case 2:QS-CV-OO494-TJW - Document 225-6 Filed 04/02/2007 Page 78 of 99

Serial No. 389334 -9-

Art Unit 2313

45. Claims 39 and 40 are rejected under 35 U.s.C. § 103 es being
unpatentable over Takahira, Heath, Bruinhorst, Derchak further in
viev of Kimoto.

46. Takahira does not state vwhether his microprocessor is
capable of accessing the memory at a desired variable access
time. Such is vell known in the art as shown by Kimoto. It
would have been obvious to a person of ordinary skill in the art
to access the memory of Takahiras as taught by Kimoto because the
system of Takahira would run more efficiently.

47. Claims 41-45 are rejected under 35 U.S.C. § 103 as being
unpatentable over Takahira, Heath, Bruinhoret, Derchak, Kimoto

further in view of K&ma&%

48. Takahira does not state vhether ﬁis clock is of variable

clock rate. Variable rate clock is wvell known in the art.

HM%/"“ (?’p% con)
.Kémoéﬂ;shovs Buc§& + would have been obvious to a person of

ordinary skill in the art to incorporate a variable speed clock
in Tekahira’s system if the circuits require.
49. With respect to cleims 42-43, Takahira shows en I/0

«

interface 13 in Figure 2.

50. Claims 46 and 47 are allovable 1if the 35 USC 112, second
paragraph rejection is overcome.
S1. Applicant7s arguments vith respect to claims 3, 6-11 and 26-

30 and 32-45 have been considered bhut are deemed to be moot in

viev of the new grounds of rejection.

'

749FH-189

O I ——— . o, i s o

R .

ey r

O

s

o g B W A e e

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 79 of 99

Serial No. 389334 -10-

Art Unit 2315

52. The prior art cited on July 10, 1992 has not been considered
because the class and subclass information is missing.
Any ingquiry concerning this communication should be directed

to David Eng at telephone number (703) 308-1635.

=

FAVID Y. ENG
RIMATY EXAMINER

DE/kw i w
December 29, 1992 UNIT 232

749FH-190

e <

5 A S ST

Case 2:05-cv-00494-TJW . Document 225-6 Filed 04/02/2007 .. Page .80.0f 99

TO SEPARATE, HOLD TOP AND BOTTOM EDGES, SNAP-APART ANDAD"-S;A&D CARBON 7
v e ave b Tasoowam orme | o] RO mrraciuent
07&5’7, 33¢ | A3/5 | e
NOTICE OF REFERENCES CITED APPLICANT(S
U.S. PATENT DOCUMENTS S
v e DOCUMENT NO. DATE NAME cLass | cLass | APPROPRIATE
nldole| 7lolst 1/ 3/2 8] Donclok . Bylps 7 ‘
o l13 5716 97 7| 3lus/8 Y Bns 5F [36¢|Pes 7.
c|3llo| A 43l A U7/ 71| rleeth By|as 7,
°L}1J5'€r7/;l//f4ﬂ a0 1o 6 zﬁ
V817 ol516| HT/6/0)| Ky b g ldcs]
leo Bl b | o 1o/ U] Takikns |BE| 62T |10/ 2458
G
H
‘ '
b J
K
FOREIGN PATENT DOCUMENTS
E L
M
N
o
P
Q
OTHER REFERENCES (Including Author, Title, Date, Pertinent Pages, Etc.)
R
s
E .
i u
e /9>
* A copy of this reference is not being furnished with this office action.
(See Manual of Patent Examining Procedure, section 707.05 (a).)

749FH-191

o S

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 81 of 99

Exhibit P

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 82 of 99

s sty SRR SRR B T T 5 o e
.

e e L,

T

A a0

Py v

a7 - T
oo :
b - ;
»
J i
i

!

XX\

In re application of:) Examiner: David Y. Eng
) ' |
CHARLES H. MOORE ET AL.) Group Art Unit: 2302 P j
) p
Serial No. 07/389,334) San Francisco, CA i
) . :
Filed: August 3, 1989) v
) § i)
For: HIGH PERFORMANCE, LOW)
COST MICROPROCESSOR)
)
CERTIFICATE OF MAILING
I hereby certify that this correspondence is being
deposited with the United States Postal Service as
First Class Mail in an envelope addressed to:
Commissioner of Patents and Trademarks,
- Washington, DC 20231 on _June 30,1993 .
s AN
AMENDMENT
Commissioner of Patents
and Trademarks

Washington, D.C. 20231
Sir:

In response to the Office Action dated December 31, 1992, please amend
the above application as follows:

In the Claims: . |
Rgwrite claims o716 1{26, of 2 36 37 34, 35, 3639, of B,

44,&1«[1 45 as follows:

NANO-001US
Resp. to 3rd. O.A.

749FH-202

———

e SATMANE WL T A

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 83 of 99

3(Twice Amended). A microprocessor system, comprising a cet..ral
processing unit, a memyry, a bus connecting said central processing unit to said
memory, and means conyected to said bus for fetching instructions for said central
processing unit on said b)\s from said memory, said means for fetching instructions
being configured and conndcted to fetch multiple sequential instructions from said
memory in parallel and suppiy the multiple sequential instructions to said centra
processing unit during a singlé memory cycle.

6(Twice Amended). The microprocessor system of Claim 3 in which said
central processing unit includes an\ arithmetic logic unit and a first push down stack
connected to said arithmetic logic unit, said first push down stack further including
means for storing a top item connectkd to a first input of said arithmetic logic unit to
provide the top item to the first input,\means for storing a next item connected to a
second input of said arithmetic logic unjt to provide the next item to the second
input, [and at least one stack register cofnected to said means for storing a next item
to receive the next item from said means Yor storing a next item when pushed down
in said push down stack,] said arithmetic 1&gic unit having an output connected to
said means for storing a top item, a second Jush down stack, said means for storing
a top item being connected to provide an inpit to said second push down stack and a
control means connected between said means for storing a top item and said second
push down stack for controlling provision of th¥ input to said second push down
stack, said second push down stack [comprises] additionally being configured as a
register file and said means for storing a top item &nd said second push down stack
additionally configured as the register file are bidiregtionally connected.

|
J / (Amended). The microprocessor system of Claim }' additionally
comprising means connected to said means for fetching multiple instructions for
iple instructions if multiple instructions fetched by

said means for fetchlng multiple instructions require a memory access, said means

for fetching multiple instructions fetching additional multiple instructions if decoding

the multiple instructions shows that the multiple instructions do not require a

ImMemory access.

¢

NANO-001US
Resp. to 3rd. O.A.

749FH-203

. —————O L X

kW U s .« .

PR it ot B R

Case 2:05-cv-00494-TJW Document 225-6

Filed 04/02/2007 Page 84 of 99

e ——

oA S

“~ X0(Twice Amended). The microprocessor system of additionally
comprising a loop counter connected to receive a decrement control signal from said
means for decoding, said means for decoding being configured to supply the reset
control signal to said counter and the decrement control signal to said loop counter in
response to a MICROLOOP instruction in the multiple instructions to provide a
microloop withi iple i ions in said instruction register for a number of
repetitions controll aid | ‘

ST

q &Amendcd). The microprocessor system of Claim‘,}/addiﬁonally
comprising an instruction register for the multiple instructions and a variable width
opera i iple i ions connected to said means for
fetching instructions, means connected to said instruction register for supplying the
multiple instructions in succession from said instruction register, a counter
connected to control said means for supplying the multiple instructions to supply the
multiple instructions in succession:

means for decoding the multiple instructions connected to receive the
multiple instructions in succession from the means for supplying the multiple
instructions, said counter being connected to said means for decoding to receive
incrementing and reset control signals from said means for decoding, said means for
decoding beihg configured to control said counter in response to an instruction
utilizing [a] the variable width operand stored in said instruction register. and means
connected to said counter to select the variable width operand for use with the
instruction utilizing the variable width operand in response to said counter.

o

\%6_3;5 26T

processing unit, a dynamic random accegS memory, a bus connecting said central

andogfl acéess memory, and multiplexing means on

NANO-001US
Resp. to 3rd. O.A.

75

749FH-204

V—— e

Case 2:05-cv-00494-TIJW _ Document 225-6

A A AP b ..

Filed 04/02/2007 Page 85 of 99

processing unit to said dynamic random acce ' mory and to provide data from
said dynamic random access memory Ao:' entral proce ing upit, and

means connected to §ard bygfor Yetching instructions for said central
processing unit on said bus from /a1 ic random access memory, said means

for fetching instructions beipg’confjgtred to fetch multiple sequential instructions
from said dynamic rand o./ cess memory in parallel and supply the multiple
instructions to said ¢g brocessingTinit during a single memory cycle.
0 :

27(Twite Amended). The microprocessor system of Claim 26In which
said central processing unit includes an arithmetic logic unit and a first push down
stack conngCted to said arithmetic logic unit, said first push down stack including
means fof storing a top item connected to a first input of said arithmetic logic unit to
provigé the top item to the first input, and means for storing a next item connected to
a segond input of said arithmetic logic unit to provide the next item to the second
input, [and at least one] a remainder of said first push down stack [register] being
donnected to said means for storing a next item to receive the next item from said
means for storing a rgxt item when pushed down in said push down stack, said
arithmetic logic unit having an output connected to said means for storing a top item.

o ¢ o

. —/0)
1 , '%cndcd). The microprocessor system of Claim 287in which said

second push down stack [comprises] ti a register file and
said means for storing a top item and said second push down stack additionally
configured as the register file are bidirectionally connected.

36(Amended). The microprocessor system of Claim 29 additionally
comprising means connected to said means for fetching multiple instructions for
determining by decoding the multiple instructions if multiple instructions fetched by
said means for fetching multiple instructions require a memory access, said means
for fetching multiple instructions fetching additional multiple instructions if decoding
the multiple instructions shows thag the multiple instructions do not require a

memaory access.

7

’) -4-
NANO-001US
Resp. to 3rd. O.A.

749FH-205

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 86 of 99

A] Sl e .3 3.

e

4 #5 (3
33(Amended). The microprocessor system of Claim 32 additionally

comprising a loop counter connected to receive a decrement control signal from said
means for decoding, said means for decoding being configured to supply the reset

control signal to said counter and the decrement control signal to said loop counter in
response toa NHCROLDOP instruction in the multlple instructions m].hm_th;

34(Twice Amended). The micrgpfbcessor system of Claim 33 in which
said means for decoding is configurgdfo control said counter in response to [an
instruction] one of the multipleffistruction zingavaﬁablewidthoperandsmd

in said instruction register with the multiple instructions, said microprocessor system

_ additionally compising means connecied to said counter to select the variable width

operand for ps€ with the instruction 1tilizing the variable width operand in response
to a state6F said cgunter resulting from control of said counter by said means for
decoding

In 1L PN S D ks AR, o - oe

o

35(Amended). The microprocessor systém of Claim 34 additionally
comprising a programmable read only memag containing instructions connected to
said bus, means connected to said bus for fetching instructions for said central
processing unit on said bus, said meang for fetching instructions including means
for assembling a plurality of instrucyons from said programmable read only
memory, [and] storing the pluraligy of instruchio in said dynamic random access
memory and subsequently supplying the olurhlity of instructions from said dynami

random acce memory 1o §2
’,

- 36(Amended), The microprocessor system of Claim 35 additionally
comprising a direct fiemory access processing unit having the capacity to fetch and
execute instructiofts, said bus connectmg said direct memory access processing unit
to said dynamj€ random access memory, said dynamic random access memory
containing jAfstructions for said central processing unit and said direct memory
access prdcessing unit, said direct memory access processing unit including means

) T4 ‘5"
NANO-001US
Resp. to 3rd. O.A.

77

v o

749FH-206

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 87 of 99

%

for fetching instructiprfs for said central processing unit on said bus and-for fetching

instructions for séid direct memory access processing unit on said bus.

X

R aataiiaa

X

Ve

)

39(Tw1ce Amended). The mlcroprocessor system.of Clainr [38] 3@ in
which said mlcmprocessor system is configured to provide different memory access
timing for different storing capacity sizes of said dfnamic random access memory by
including a sensing circuit and a driver circpif, and an output enable line connected
between said dynamic random accessaflemory, said sepsifg circuit and said driver
circuit, said sensing circuit being<onfigured to providea ready signal when said
output enable line reaches p#fredetermined electrical level after a memory read !
operation Hor’of different capacitance © aid b as a result of the differen
storing capacity sizes of said dynamic random acce emory, said microprocessor
system being/Configured so that said driver circuit provides an enabling signal on
said oupfit enable line responsive to the ready signal. '

AW o P R

41(Twice Amended). The microprgtessor system of Claim 40 in which
said microprocessor system is configuregAo operate at a variable clock speed, said
microprocessor system additionally gefmprising a ring counter variable.speed system
clock connected to said central ppocessinpyunit, said central processing unit and said
ring counter variable speed sysfem clock Yeipg provided in a single integrated
» circuit, said ring counter yériable speed §yStem clock being configured to provide
different clock speed j4d said central processing unit gs_a_m_\m_oimgs;sm

L i Gl i

| e
Q"‘(’ '_’?ﬁAmended) The microprocessor system of Claim 4 additionally

Q comprising an input/output interface connected between said microprocessor system

<

and an external memory bus to exchange coupling control signals, addresses and
data [with] between said central processing unit and said input/output interface, and

" . a second clock independent of said ring counter variable speed system clock

NANO-001US
Resp. to 3rd. O.A.

,2 ﬂ,

749FH-207

o ———————— T ©

o et

.

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 88 of 99

W\

"

“connected to said input/output interface mmwmlﬁmmwmsi

mwmwmmm&mﬁmmmw

- e

5 v e <
.

*

345 A g o P

e o gl NGO SIVRARN . 4 T 3% PR -

e
f

¢

R
N

44(Twice Amended). The microprocessor system O (1dim 43 in which
said first push down stack has a first plurality of stack re, oisters having stack
memory elements configured as latches, a second plurdlity of stack registers having
stack memory elements configured as a randograccess memory, said first and
second plurality of stack registers and saigC ntral processing unit being provided in
a single integrated circuit with a top orfe of said secong vlurality of stack registers
being connected to said a bottoQ > of said first plurality of stack registers, and a
third plurality of stack regigiérs havmg stackmemory elements configured as a
random access memory€xternal to said siagle integrated circuit, with a top one of

said third plurality of stack registers being connected to a bottom one oOf said SCCONG
plurality of stackTegisters, said microprocessor system being configured to Operats
said first. seg6nd and third plurality of stack re oisters hierarchicall

] ;

nterconpected

e | 257
%5(Twice Amended). The microprocessor system of Claim 44 additionally
comprising a first pointer connected to said first plurality of stack registers, a second
pointer connected to said second plurality of stack registers, and a third pointer
connected to said third plurality of stack registers, said microprocessor system being
configured e sai : hird plurali ack Tegisters
hierarchically as interconnected stacks by having said central processing unit being
connected to pop items from said first plurality of stack registers, said first stack
pointer being connected to said second stack pointer to pop a first plurality of items
from said second plurality of stack registers when said first plurality of stack
registers are empty from successive pop operations by said central processing unit,
said second stack pointer being connected to said third stack pointer to pop a second
plurality of items from said third plurality of stack registers when said second
plurality of stack registers are empty from successive pop operations by said central
processing unit.

[d 11@ 11rst. secong 3d
i nn

e e i
i

NANO-001US
Resp. to 3rd. O.A.

77

749FH-208

[P S

A —————— - e Wl SR A AR
|

|

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 89 of 99

/ :
Cancel claims 48.

Add the following new claims:

LA, T AW,

S

2 . :
$-34 The microprocessor system of Claim 2in which the decoding
determines if the multiple instructions do not require a memory access by astate of a
bit of each of the multiple instructions.

_#2. The microprocessor system of Claim #1'in which the bit is a most
significant bit of the multiple instructions. / 2

fos#

73. The microprocessor system of Claim 3@ in which the decoding
determines if the multiple instructions do not require a memory access by a state of a
bit of each of the multiple instructions. / @

s ' e
74. The microprocessor system of Claim 773 in which the bit is a most
significant bit of the multiple instructions. [q
gt - ~
75. The microprocessor system of Claim 36 additionally comprising a
variable speed system clock connected to said central processing unit and a fixed
speed system clock connected to control said means for fetching instructions for said
central processing unit and for fetching instructions for said direct memory access
processing unit.—.

p———— L

e e e

>

SR AT L R Rt S RT EE o

REMARKS
Claims 3, 6-11, 26-30 and 32-47 are presently under examination in the

application. The allowability of claims 46 and 47, if amended to overcome the
rejection under 35 U.S.C. § 112, is noted. Claims 37-38 have been canceled to

advance the prosecution of the application.

NANO-001US
Resp. to 3rd. O.A.

&0

749FH-209

e i R, R o

e i TR A T

e

R)

M s ot

b RE PR ST LS

o

Case 2:05-cv-00494-TIJW ‘ Document 225-6 Filed 04/02/2007 Page 90 of 99

L

Claims 6, 10, 11, 26-30 and 31-37 were rejected under 35 US.C.§112
as indefinite. In response, claims 6, 10, 11, 26, 27, 29, 34, 35, 39, 41,42, 44 and
45 have been rewritten to define the invention with more particularity.

In claim 6, the first push down stack is now recited as further including the
means for storing a top item connected to a first input of the arithmetic logic unit to
provide the top item to the first input and the means for storing a next item connected
to0 a second input of said arithmetic logic unit to provide the next item to the second
input. Thus, as the Examiner correctly notes, these items do not render the first
push down stack to operate as a stack. These items are in addition to the
conventional construction of the first push down stack which allow it to operate as a
stack. Similarly, the second push down stack is now recited as additionally being
configured as a register file. In both cases, the recited language is in addition to
conventional organization of the stacks which allow them to operate as stacks.

The Examiner is correct that a register file is not a stack. However, a stack
which posses an organization which emulates registers is still a stack. Such an
organization conveys the benefits of both stacks and registers while avoiding the
limitations of either. Since the elements of both stacks that allow them to operate as
stacks are conventional, they have not been recited beyond specifying these elements
as being push down stacks.

The recited structure of claim 6 permits use of the tec ique of placing local
variables on the stack, which allows automatic nesting of procedures and their local
variables, simply by pushing new variables on the stack to allocate new space.

The two stacks as now claimed serve distinct functions. The first push
down stack is exemplified by the stack 74 in Figures 2 and 13. The stack 74 in fact
allows arithmetic operations to be carried out on operands supplied from it to the
ALU and receives ALU results as a result of the recited connections.

The second push down stack is exemplified by the stack 134 in Figures 2
and 13. The RSTACK 134 stores return addresses for subroutine nesting as well as

local storage for subroutines. :
The defined relationship between the two stacks is that they are linked to a

bidirectional buffer, which allows the stacks to exchange individual contents. Two
instructions, POP-STACK-PUSH-RSTACK and POP—RSTACK-PUSH—STACKe

. -9-

NANO-001US
Resp. to 3rd. O.A.

749FH-210

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 91 of 99

move the top items of one stack to the top item of the other. WRITE-LOCAL-
VARIABLE and READ-LOCAL-VARIABLE write or read the top arithmetic stack
item to the local variables stored on the RSTACK 134, |

The underlying rationale for using two stacks is to remove the processing
bottleneck found in single stack machines. This much is taught, for example, by the
) : Moore et al prior art U.S. Patent 5,070,451, discussed in the Information Disclosure

Statement of record. Those familiar with languages like FORTH which make
extensive use of the dual stack concept are comfortable with the dual stack
arrangement. The addition of a register array embedded in the second stack as
claimed eliminates the stack machine problem of either storing local variables on the
stack or in off-chip memory. Storing local variables on either stack becomes very
clumsy with prior art dual stacks once the number of variables exceeds three. Off-
chip variables access far slower than on-chip registers.

Similarly, claims 27-29 have been rewritten to specify that the first push
down stack functions both to supply operands to and receive results from the ALU,
as well as being a conventional push down stack. The second push down stack is
also now specified as operating both as a register file and as a conventional push
down stack.

Claims 10 and 33 have been rewritten to require that the MICROLOOP
instruction in the multiple instructions provide a microloop within the multiple
instructions in the instruction register and that the loop counter controls the number
of repetitions of the microloop. It is believed that the provision of the microloop and
the function of the loop counter are now clear.

Claims 11 and 34 have been rewritten to specify that the variable width
; operand is stored in the instruction register and that the variable width operand is
' selected for use with the instruction utilizing the variable width operand in response
to the counter. As is explained at page 33 of the specification with reference to
Figure 20, the instruction decoder tests the counter to determine the position of a
JUMP op-code in the four instruction group and assumes that the remaining bits in ‘
the instruction group are the JUMP operand. Since the JUMP instruction’s position
in the four instruction group determines the length of the operand, a single JUMP op-

v Lt
AN .

e e ———— S

e A S Tt ymemims

e BT .

BEL AR ey e

PR

——— + . SN TGRS . Sy

’ - -10-
NANO-001US :
Resp. to 3rd. O.A.

749FH-211

R

O N

S o e i Sy

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 92 of 99

code may have three different length operands. With these amendments, the
function of the counter in these claims is now believed to be clear.

Claim 26 has been rewritten to specify that the multiplexer provides
maultiplexed row addresses, column addresses and data on the bus from the central
processing unit to the dynamic random access memory and data from the dynamic
random access memory to the central processing unit. The instructions are now
specified as being from the dynamic random access memory. The function of the
multiplexer is now believed to be clear, and the locations from which the row
addresses, column addresses, data and instructions come are now specified.

Claim 35 has been rewritten to specify that the means for fetching
instructions includes means for assembling a plurality of instructions from the
programmable read only memory, storing the plurality of instructions in the dynamic
random access memory and subsequently supplying the plurality of instructions
from the dynamic random access memory to the central processing unit on said bus.
Thus, it is now clear that the means for fetching instructions is capable of fetching a
plurality of instructions because it also includes a means for assembling the plurality
of instructions from the programmable read only memory and storing the plurality of
instructions in the random access memory, from which they are supplied to the
central processing unit. The function of the means for fetching is now believed to be
clear.

Claim 39 now specifies different storing capacity sizes of the dynamic
random access memory and that the ready signal is provided when the output enable
line reaches a predetermined electrical level after a memory read operation as a
function of different capacitance on the bus as a result of the different storing
capacity sizes of the dynamic random access memory. The different sizes of DRAM
and the ability of the system to provide different memory timing for the different
sizes of DRAM is now believed to be clear.

Claim 41 now specifies that the ring counter variable speed system clock is
configured to provide different clock speed to the central processing unit as a result
of transistor propagation delays, depending on at least one of temperature, voltage
and microprocessor fabrication process for the single integrated circuit. The clock
thus indirectly responds to temperature, voltage and microprocessor fabrication

-11-
NANO-001US
Resp. to 3rd. O.A.

749FH-212

[....,, ™~
N

eh

AN

o

[

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 93 of 99

process by responding to transistor propagation delays, which are determined by
those parameters. Claim 41 is therefore believed to be clanﬁed.

Claim 42 now recites an input/output interface connected between the
microprocessor system and an external memory bus to exchange coupling control
signals, addresses and data between the central processing umfand the input/output
interface. The claim now further calls for a second clock mdependcnt of the ring
counter variable speed system clock connected to the input/output interface to
provide clock signals for operation of the input/output interface asynchronously
from the central processing unit. It is therefore believed that the function of the
input/output interface is now clear and the function of the second clock to allow
asynchronous operation of the input/output interface with respect to the central
processing unit has been clarified.

Claims 44 and 45 have been rewritten to specify the interconnections
among the first, second and third plurality of stack registers and to specify that the
microprocessor system is configured to operate the first, second and third plurality
of stack registers hierarchically as interconnected stacks. It is believed that these
claims now recite the function of the elements and how they functionally coact with
one another to achieve a desired result.

Based on the above changes to the claims and remarks, it is believed that all
of the claims are now definite in form. The rejection of claims 6, 10, 11, 26-30 and
31-37 under 35 U.S.C. § 112 is believed to be overcome.

Claims 3, 6-10, 26-30 and 32-33 were rejected under 35 U.S.C.§103 as
unpatentable over Takahira et al., U.S. Patent 5,036,460. In response, in addition
to the above-discussed changes to the claims, claims 3, 7, 26 and 30 have been
rewritten to define the invention better over the prior art, and new claims 71-74 have
been added to provide more complete protection for the invention. This rejection is
believed to be overcome by the above changes to the claims and the following
remarks.

Claim 3 has been rewritten to specify that the means for fetching is
configured and connected to fetch multiple sequential instructions from the memory
in parallel and to supply the multiple sequential instructions to the central processing
unit during a single memory cycle. A system including such a means for fetching is

| 2
NANO-001US
Resp. to 3rd. O.A.

749FH-213

Pt

o o

e —— bt ko s 8 AP U <l PR o A

TIOR3 AT O~ arass ..

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 94 of 99

not taught or suggested by Takahira et al. Takahira et al. disclose only the parallel
movement of data within a memory, solely for the purpose of writing to an
EEPROM. The system of claim 3 is a low-cost technique which allows balancing a
very fast CPU with a very slow memory to produce a fast computing system.

In the rejection, the Examiner argues that it would be obvious to extend the
memory cycle in Takahira et al. to allow multiple instruction fetching. This
argument misunderstands the subject matter of the claim. As claimed, the multiple
instructions are fetched in parallel during a single memory cycle. Because they are
fetched in parallel, no substantial extension of the memory cycle is required to fetch
the multiple instructions. Even if the Examiner is correct that it would be obvious to
extend a memory cycle to allow multiple instruction fetching, doing so as posited by
the Examiner would not give the claimed subject matter.

The rejection contains no separate discussion of the subject matter of claim
6. The above clarifying changes made to that claim and remarks with respect to the
§ 112 rejection also make it clear that the subject matter of claim 6 is not suggested
by Takahira et al. That reference contains no teaching or suggestion of dual stacks
which are operable as both stacks and registers.

Claims 7 and 30 have been rewritten to require determining by decoding
the multiple instructions if multiple instructions fetched by the means for fetching
multiple instructions require a memory access. Making the determination in this
manner means that it can be done in 2.5 nanoseconds in the described embodiment,
as pointed out at page 38, line 19 of the specification. No such determination,
whether or not done by decoding, is taught or suggested by Takahira et al. New
claims 71-74 provide further details on how the decoding is carried out, and are also
not taught or suggested by Takahira et al.

Claim 9 adds structure to the microprocessor system of claim 3 to handle
SKIP instructions. Claim 32 adds the same structure to the microprocessor system
of claim 30. Takahira et al. contains no teaching of how SKIP instructions are
handled in the system there disclosed.

Claim 10 adds to the microprocessor system of claim 9 a loop counter for

controlling the number of repetitions of a microloop within the multiple instructions.
In the rejection of this claim, the Examiner equates the loop counter to the program

. -13-
NANO-001US
Resp. to 3rd. O.A.

749FH-214

.

PRI B

e s s S AP IO RNE PN R

e

\ g

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 95 of 99

s
counter in Takahira et al, used for controlling software looping. In fact, claim 10 is
directed to a hardware accelerator for microloop repetition and is not suggested by a
conventional program counter to control software looping.

Claim 26 includes the fetching of multiple sequential instructions from the
memory in parallel and supplying the multiple sequential instructions to the central
processing unit during a single memory cycle as in claim 3 and the provision of a
multiplexed bus connected between the memory and the central processing unit for
supplying addresses and data between the central processing unit and the memory.
No such combination is shown or suggested by Takahira. The above comments
with respect to the rejection of claim 6 are equally applicable to the subject matter
added to the microprocessor system by claim 29. The above comments with respect
to the rejection of claim 10 are equally applicable to the subject matter added to the
microprocessor system by claim 33.

Based on the above changes to the claims and remarks, the rejection of
claims 3, 6-10, 26-30 and 32-33 under 35 U.S.C. § 103 as unpatentable over
Takahira et al. is believed to be overcome.

Claims 11 and 34 were rejected under 35 U.S.C. § 103 as unpatentable
over Takahira et al. in view of Heath, U.S. Patent 3,603,934. The above remarks
with respect to the rejection of claim 3 are equally applicable to the rejection of claim
11. The above amendments to these claims clarify the function of the counter in
these claims to control selection of the variable width operand by determining the
position of the instruction utilizing the variable width operand. The bare mention of
variable width operands in Heath fails to teach or suggest the subject matter added to
the microprocessor system by claims 11 and 34. This rejection is believed to be
overcome.

Claims 12 and 35 were rejected under 35 U.S.C. § 103 as unpatentable
over Takahira et al. and Heath in view of Bruinshorst, U.S. Patent 4,376,977. The
loading of instructions from a PROM to RAM as disclosed by Bruinshorst fails to
teach or suggest the use of a bus in unmultiplexed form for reading instructions from
a PROM and the dynamic reconfiguration of the saime bus to multiplexed form for
row addresses, column addresses and data during the transmission of the
instructions to the RAM, as recited in claim 12. The above remarks with respect to

-14-
NANO-001US
Resp. to 3rd. O.A.

749FH-215

-

«MW-‘
w5 B
1 A

TpA L 1A

L5 A g o N

T O e

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 96 of 99

the rejections of claims 34, 33, 32, 30, 29, 28, 27 and 26 arc equally applicable to
the rejection of claim 35. The rejection of claims 12 and 35 is therefore believed to
be overcome.

Claims 36, 37 and 38 were rejected under 35 U.S.C. § 103 as
unpatentable over Takahira et al., Heath, Bruinshorst, further in view of Derchak,
U.S. Patent 4,067,059. In response, claim 36 has been rewritten to distinguish the
invention better over the prior art. Claims 37-38 have been canceled to advance the
prosecution of the application. New claim 75 has been added to provide more
cxnnphncpwo&xﬁonfbrtheinvenﬁon.'Theabovetxnnnunnsvﬁﬂxnuqxxntothe
rejections of claims 35, 34, 33, 32, 30, 29, 28, 27 and 26 are equally applicable to
this rejection. '

As described at page 15, lines 8-11, claim 36 has been rewritten to specify
that the direct memory access processing unit is capable of fetching and executing
instructions. Like the central processing unit, it is therefore also a stored program
processing unit. In making the rejection, the Examiner has equated the subject
matter added to the system by claim 36 to direct memory access, as shown by
Derchak. However, as pointed out by Derchak at column 1, lines 29-39,
conventional direct memory access controllers do not have the capability to fetch
their own instructions, as required by rewritten claim 36. Instead, instructions and
data necessary for the direct memory access controller are supplied to the direct

memory access controller by the central processing unit. The Derchak patent deals
with the sharing of a direct memory access controller among multiple peripherals,
and there is no indication that the direct memory access controllers in Derchak have
the capability to fetch their own instructions, as claimed.

New claim 75 further distinguishes from these references by specifying a
variable speed system clock for the central processing unit and a fixed speed system
ckxﬂ:connecuuin>conurﬂtherneansfbrféuﬂﬁnginsuucﬁonsfbrsaﬂicenuzl-
processing unit and for fetching instructions for said direct memory access

processing unit, as shown in Figure 17.

The system of claim 75 allows a division of computing work between that
vdﬁchisnuﬂ4hnc(LK))mmiﬂuuvﬂﬁchisnot@nmmyﬂﬁngehnﬂ.Fhuﬂ4hne

’ -15-
NANO-001US
Resp. to0.3rd. O.A.

749FH-216

oot st P

R

R

YR st s b+

Case 2:05-cv-00494-TJW Document 225-6 Filed 04/02/2007 Page 97 of 99

computing work is driven either by time or external events. The crystal clock in
Figure 17 is the time base for the /O interface 432.

Everything else, such as calculating, sorting and performing logical
operations, is by nature asyncronous with the real world. The optimal
implementation for such computing wark is whatever produces results faster. The
variable speed clock for the CPU 70 in Figure 17 clocks execution as fast as

_possible, given the voltage, temperature and process parameters of the CPU,

without having to be concerned with slowing down for 1/O considerations.

The invention of claim 75 achieves efficiencies by dividing the real-time
component of the direct memory access processing unit from the non-real time
component of the central processing unit. In this system, two processors with
independent instruction streams, independent program counters and even
independent instruction sets coexist in a loosely coupled fashion, synchronizing only
when necessary to exchange information.

If the CPU clock were the same as the direct memory access clock, CPU
instructions would have to be slowed down to less than their fastest speed, because,
while the operation of a crystal is near constant over voltage and temperature, the
operation of transistors is not. If the direct memory access clock were the same as
the variable speed CPU clock, no time precise direct memory access could be
performed because no time standard would exist.

For these reasons, an independent basis for patentability of new claim 75
over this prior art is present. Based on the above changes to claim 36 and remarks,
its rejection under 35 U.S.C. § 103 is believed to be overcome.

Claims 39 and 40 were rejected under 35 U.S.C. § 103 as unpatentable
over Takahira et al., Heath, Bruinshorst, Derchak, further in view of Kimoto et al.,
U.S. Patent 4,870,562. The above comments with respect to the rejection of claim
36 are equally applicable to this rejection. Claim 39 has been rewritten to make it
clear that the different memory access timing is provided for different storing
capacity sizes of the dynamic random access memory as a function of different
capacitance on the bus as a result of the different storing capacity sizes of the
dynamic random access memory. No such operation is suggested by Kimoto et alL
Kimoto et al. involves executing instructions at faster speeds when fetched from on-

) : -16-
NANO-001US
Resp. to 3rd. O.A.

7T49FH-217

e i 5

|

PRI YT

Susgie W WA AT M T

‘a4 WS

- —————— " —

Case 2:05-cv-00494-TJW Document 225-6

board memory and slower speeds when fetched from external memory. This is
essentially an instruction cache patent and has nothing to do with sensing memory
expansion by measuring capacitance attached to a memory bus, as claimed. The
rejection of claims 39 and 40 is believed to be overcome.

Claims 41-45 were rejected under 35 U.S.C. § 103 as unpatentable over

_Takahira et al., Heath, Bruinshorst, Derchak, Kimoto et al., further in view of

Martin. The above remarks with respect to the rejection of claims 39 and 40 are
equally applicable to this rejection. Additionally, claim 41 has been rewritten to
require that the ring counter variable speed system clock provide a different clock
speed to the central processing unit as a result of transistor propagation delays
depending on temperature of the integrated circuit containing the MmiCroprocessor
system.

The Martin patent is directed to a similar problem as claims 41-45,butan
external temperature sensor measures ambient temperature, which is at best only an
indirect approximation of the integrated circuit temperature. In claim 41, the ring
counter in the integrated circuit serves as a direct measure of propagation delays,
which are a function of the integrated circuit temperature. No such direct
measurement of integrated circuit temperature is contemplated by Martin, nor is
varying clock speed on the basis of voltage or integrated circuit fabrication process,
the other two factars recited in claim 41. The above comments with respect to the
rejection of claim 36 and the subject matter of new claim 75 are applicable to the
rejection of claims 42-43. None of these references teach or suggest the

hierarchically interconnected stack registers of claims 44-45. The rejection of claims -

41-45 is believed to be overcome.

In the Office Action, the Examiner indicates that the references cited in the
Information Disclosure Statement have not been considered because the class and
subclass information for the references was not supplied. In response, PTO Form
1449 is being resubmitted to include this information. Applicants note that copies of
the references were included with the Information l?isclosuxe Statement, and it is
therefore not clear why the class and subclass information was necessary to consider
these references.

h -17-
NANO-001US
Resp. to 3rd. O.A.

749FH-218

Filed 04/02/2007 _..Page 98 of 99

—

Case 2:05-cv-00494-TIJW _ Document 225-6

Filed 04/02/2007 Page 99 of 99

A three-month extension of time to reply to the Office Action is requested.
A check for $420.00 to cover the fee for this extension is enclosed. Please charge

any additional extension of time fee or credit any overpayment to Deposit Account
No. 03-3117(Order No.

NANO-001US). A copy of this page is enclosed for
charging purposes.

All of the claims in the application are believed to be patentable over the

'pn'or art. This application is believed to be in condition for allowance, and

allowance is solicited.

{
Respectfully submitted,
COOLEY GODWARD CASTRO '
HUD ON & TA -,

Val : -
,/y T g

h "~ Willis E. Higgins

; Reg. No. 23,025

:

; Five Palo Alto Square

i Fourth Floor

Palo Alto, California 94306-2155

Telephone: (415) 843-5145

B LS e SRR

k ’ NANO-001US
Resp. to 3rd. O.A.

-18-

J—

749FH-219

	Exhibit N.pdf
	US 4680698.pdf

	Exhibit O.pdf
	Exhibit P.pdf

