EXHIBIT A

US005809336A

United States Patent [(111 Patent Number: 5,809,336
Moore et al. 451 Date of Patent: Sep. 15, 1998
[54] HIGH PERFORMANCE MICROPROCESSOR 4338,675 7/1982 Palmercocvevvneiveuiiinennnns 364/748
HAVING VARIABLE SPEED SYSTEM 4,398,265 8/1983 Puhl et al 395/882
CLOCK 4,453,229 6/1984 Schaire 395/250
4,503,500 3/1985 Magan 395/800
[75] Inventors: Charles H. Moore, Woodside; Russell 4,539,655 971985 Trussell et al. woooovvoveinscrcn 395/280
H. Fish, IIL Mt. View, both of Calif. 4,553,201 11/1985 Pollack 395/183.22
» ’ 4,627,082 12/1986 Pelgrom et al. ... 377/63
. . P s 4,670,837 6/1987 Sheels 395/550
{731 Assignee: P:ftnot Scl'entlﬁc Corporation, San 4680698 7/1987 Edwards et al. 395/800
Diego, Calif. 4,761,763 8/1988 Hicks 395/286
5,414,862 5/1995 Suzukietal. ... 395/750
[21] Appl. No.: 484,918 .
) Primary Examiner—David Y. Eng
[22] Filed: Jun. 7, 1995 Attorney, Agent, or Firm—Cooley Godward LLP
Related U.S. Application Data 571 ABSTRACT
[62] Division of Ser. No. 389,334, Aug. 3, 1989, Par. No. /»highperformance, low cost microprocessor system having
5,440,749. a variable speed system clock is disclosed herein. The
microprocessor system includes an integrated circuit having
[51] Int.CL GOGF 1/04 a central processing unit and a ring oscillator variable speed
[52] U:S' Cl. - 395/845 system clock for clocking the microprocessor. The central
[58] Field of Searchocreiniiinnne 395/500, 551, processing unit and ring oscillator variable speed system
395/555,845 clock each include a plurality of electronic devices of like
. type, which allows the central processing unit to operate at
[56] References Cited a variable processing frequency dependent upon a variable
U.S. PATENT DOCUMENTS speed of the ring oscillator variable speed system clock. The
microprocessor system may also include an inmput/output
3,967,104 6/1976 Brantingham 364/709.09 interface connected to exchange coupling control signals,
3,980,993 9/1976 Bredart et al. .. - 395/550 address and data with the central processing unit. The
Z’ggg’ggg 514 }g;; g;“ﬁ:tte‘:t:' : gggg ;g input/output interface is independently clocked by a second
>] T .
4,050,096 9/1977 Bemnett ... 39504 Clock connected thereto.
4,112,490 9/1978 Pohlman et al. 395/287
4,315,308 2/1982 JacksOnccovceereeemnenienennienens 395/853 10 Claims, 19 Drawing Sheets
RING OSCILLATOR 430 CRYSTAL CLOC
K
VARIABLE SPEED
CLOCK 434
1436 /"432
3)
| REQUEST -
13 o
cPu |e—READY 1, 0
DATA / ADDRESS INTERFACE

90,136—J

EXTERNAL MEMORY BUS

U.S. Patent Sep. 15, 1998 Sheet 1 of 19
54 z
f_—A_ﬁ o)
8855008 %3 0
h et Aaw2LYP e
- occocco>o§oa:052
100 naQ (n | 121 0 l?a ndl
-
58 62(6
D30 0 , 66
D29 [
52J
D28 SH-BOOM
D27 O MICROPROCESSOR
_ D26 O
VDD 356 50 56
(D25 O
D24 T 44-PIN PLCC
52< D23 O)
D22 O
D21

D19
D17
D1

D16

n o
wmw O
>

(D20

D3

Q< Dis
Q< D2

FIG._1

5,809,336

U.S. Patent Sep. 15, 1998 Sheet 2 of 19 5,809,336

GATE I INTERNAL DATA BUS

[146 144 120-
J
<+ INCREMENTER F 80 62 /76
| TOP OF STACK
~~-122 86
128 138 [— NEXT ITEM 75
84
+| XREGISTER / g#;‘@,’g‘ETER
[9p]
\124 8 74/1 16 DEEP
a e
130 140 c&g 90
92
PROGRAM 9 | | 108
g -1 COUNTER ~
=
~ & STACK -
% AN 102 <| POINTER ~
142 E 70
132 z _| RSTACK
104 | POINTER 17
Y REGISTER _IaopE)
~~-136 106 | REGISTER oy
INSTRUCTION
RSE&U&N L 108] REGISTER Lo
.
& DMA CPU
LOCAL
VARIABLES
16 DEEP
| 118
MEMORY
» CONTROLLER =
153

151 32

ADDRESS/ CONTROL \\50
DATA LINES

FIG._2

U.S. Patent Sep. 15, 1998 Sheet 3 of 19 5,809,336

DQ1 e
DQ2f=
DQ3}=
DQ4 =

r D19 —
D18 - 256 X 4

D17| >
D16 «© DRAM
524 D15 -
D14
D13 > 10F 8
D12 >
. D11

AQ

OE/
54 W/
CASO

RASO |

U.S. Patent Sep. 15, 1998 Sheet 4 of 19 5,809,336

108 ~—{ | INSTR 1 INSTR 2 INSTR 3 INSTR 4 Ic_

190 - 190 < 190~ 190~ ‘ 3
[as]
172 = ~-174 ~~176 178
a
<
4'8 8 “'8 ‘1'8 ,182 Z
1 r ; 5
‘dmicro | 2
130 MULTIPLEXER H B
PROGRAM - g
COUNTER " 170- | g~186 180
2
7
i 4 90 -
(]
(@]
<
-
< INTERNAL SIGNALS
i
= REQUESCT o
= INSTRUCTION,
1361 490 FETCH-AHEAD
196
11
118
32 |[Memory |} 3
+—= CONTROLLER |+ *

198

ADDRESS/ CONTROL
DATA LINES

FIG._4

US Patent Sep. 15, 1998 Sheet 5 of 19 5,809,336

246

SYSTEM CLOCK 244

TRANSFER SIZEI
250 -1 COUNTER |
248 220

236
]
MEMORY CYCLE r—L—| 222
ACKNOWLEDGE 234
| TRANSFER SIZE
240 — -1 COUNTER
238 216 — 218
DMA INSTRUCTION DONE [~-242 112

INTERNAL ADDRESS BUS
INTERNAL DATA BUS

24 DMA PROGRAM 24
- 7 —J COUNTER
232

214 90 -

212 224
, L

DMATO & DMAT/O &
RAM ADDRESS RAM ADDRESS
REGISTER REGISTER

226 210

o

MEMORY CYCLE
REQUEST 228

™~~136

Y

32 - IMEMORY | 32
> » CONTROLLER =

ra
L4

32 6

ADDRESS/ CONTROL
DATA LINES

FIG._5

U.S. Patent

Sep. 15, 1998 Sheet 6 of 19 5,809,336
RAS(I)M 268" Y
r D31 [MEMORY _ 565
. : & 10 L7270 DRAMRAS
e * | bECODE § —>
D20 LOGIC ' 272 7] 260
D19 > A11 CE/
D18 A10
D17 > A9
D16 » A8
24 Dbis A7 4K X 8
D14 A6
D13I as (264 EPROM
D12 Ad
D11 L »{ A3
D10 AD 260 276
Dg A1 A A N~
. D8 A/ B8838858 8
SH-BOOM 50 w
r D7
D6
DS |
52 < ggc
D2 fe
D1
. DO
60~_
CAS
274

FIG._6

U.S. Patent Sep. 15, 1998 Sheet 7 of 19 5,809,336

296
Ta Y
J4
/-286 rzaa /290
1 o ' u2 | ' us | U4 N
us
—— SH'BOOM ‘
280
N Ui
us
< 296
292
50 Lo /
T = 282 o)
296 ~|
\ 294 _— u7z
X1 298
P SN 0 R
J6 300
= 'r ; |
0 3

FIG._7

U.S. Patent Sep. 15, 1998 Sheet 8 of 19 5,809,336

il

u10 uti

L=

280 \

FIG._8

U.S. Patent Sep. 15, 1998 Sheet 9 of 19 5,809,336

32K BYTES 32K BYTES
311 311
N
312
316
T Y RSTACK
| j =
ALy ' CLOCK/TIMING -
INSTRUCTION Lc 6 I N\ 376 HEG
DECODE '
376\\ DMA CPU A/’374
e |
32K BYTES 32K BYTES
311 ~d) L-371
\\ / LA

FIG._9

5,809,336

Sheet 10 of 19

Sep. 15, 1998

U.S. Patent

oL "Old

103713S Wvd

KB
2
0se n...\\va,
s
VO
(43 5 SLig
S$S3HAqQyv
ovd JSYD
sVv0 [0y
B S
40
T = oy
6
WvHQ [by NSvH
051 —
sllg ss3yaavy
H3QYO HOIH
73S WOHd
VT Ho-
F I - ang gLt
103138 1O313S vlva/ss3adaav sng
Woud WvY WNHILX3 yyva/ssadaay
TYNHILNI

5,809,336

Sheet 11 of 19

Sep. 15, 1998

U.S. Patent

LL"OId

\\\\\

C V.iva] 1

Z
%
2
Tk

Sllg Ss3Haav
NOYd m_>:_m>>._.

/////////// ‘s

N

/M/

N r 119-8]

N3N L WOHd
...... ”BM

0

o //\\V\\.,. =~

WnMu#msm%%

/mﬂcanﬂEu

N e NS iSxT]

N\ <€ - 3

/T/AD:AD:

N<Nr o} T a3

”D/DA”DAM %
...... mF/w.\\W I \

/WA N 23

NEY NE)

/B” VWI

NNRER

NNEER
|||||| B\ . S

\\\\8

ALY
103138
L WOHd |

0 6s

EXTERNAL ADDRESS / DATA BUS

€ () (on) 8 B (6) (v

5,809,336

Sheet 12 of 19

Sep. 15, 1998

U.S. Patent

826" ey Sty 2y By
- 28¢
H3LNNOD YA —
€l Ec [174
aze’ v— Vv 'V ="y mmw
] XNN
, XN ommJ Snd SS3HAav a3axnw \wmﬁmmg
sng 9¢4 » .
ss3Haay —__\ _ v—"y
TYNHILNI [|
061
TYNDIS Em SNE viva
183N03Y ——» TYNOIS hmuma TYNHILNI
vina 1S3N03H
[= Ndo o6
1S3n03y TOHINOD SNE ™~ ose
&m/ﬁ ALIHOIHd she > 13534 — "
@32IAHAS TLNN 24 o =
INIS3Hd AVLS il I
S1S3nND3d sng v .
X e ALHoiad. (Q3131dN0D SS300V) 5 L
Q@ ¥ r O AQv3H AHOWIW 7 W mmn/r_.'
g9 SR coy 86 o o 35 —2svo
s = < B 00p z
- < £ (3TOAD AHOWIW »] X —2svy
5 & 31vHINID) NNY 1 o6/ | 2 —> 15wy
<~ 2
h ~—— _ 9gg/

1S3N03H Ndo

3o

5,784,584

33

to said instruction fetching means to fetch the next
instruction group during the execution of a current of
said instruction groups.

16. The microprocessor of claim 1 wherein said instruc-
tion supplying means includes:

a decoder connected to an output of said counter, and

a plurality of gates interposed between said instruction

register and said central processing unit, said gates
being controlled by signals from said decoder.

17. The microprocessor of claim 1 wherein said instruc-
tion decoding means includes means for determining a width
of said operand. said width being related to position in said
instruction register of said one of said instructions of said
first of said instruction groups.

18. The microprocessor of claim 1 wherein said first of
said instruction groups includes a first instruction and mul-
tiple operand bytes. said instruction decoding means includ-
ing means for determining a width of said operand associ-
ated with said first instruction based on position of said first
instruction within said instruction register.

19. The microprocessor of claim 18 wherein said instruc-
tion supplying means includes gating means for selecting
one or more of said multiple operand bytes within said
instruction register corresponding to said operand.

20. A microprocessor comprising;

a central processing unit;

an instruction register operatively coupled to said central

processing unit;

instruction fetching means for providing sequential

instructions within instruction groups to said instruc-
tion register wherein certain of said instruction groups
include at least one instruction that. when executed,
causes an access to an operand of an instruction or both,
said operand or instruction being located at a predeter-
mined position from a boundary of said instruction
groups;

instruction decoding means having a means for generating

a counter control signal and an operand control signal;

a counter that is connected to receive said counter control

signal from said instruction decoding means;
operand selection means that is responsive to said operand
contro] signal from said instruction decoding means;

instruction supplying means, responsive to said counter to
select said predetermined position. for successively
coupling said sequential instructions of said certain of
said instruction groups to said central processing unit;

said instruction supplying means being further responsive
to said counter and said operand selection means for
selection and supplying operands from said predeter-
mined position in said instruction groups to said central
processing unit; and

said instruction decoding means providing said counter

control signal and said operand control signal to cause
said instruction supplying means to select from said
instruction groups said operand or instruction or both
associated with particular ones of said sequential
instructions.

21. The microprocessor of claim 20 wherein said instruc-
tion decoding means, upon recciving a SKIP one of said
sequential instructions from a current one of said instruction
groups, configures said instruction fetching means to fetch a
next one of said instruction groups to said instruction
register. supplies the counter control signal to reset said
counter to zero and configures said imstruction supplying
means to supply a first one of said sequential instructions.

35

45

55

65

34

22, The microprocessor of claim 21 further including
means for determining whether a predefined condition exists
within said miecroprocessor system. and

means for controlling response of said instruction decod-

ing roeans to said SKIP instruction and said predefined
condition to execute or not execute said SKIP instruc-
tion based on existence of said predefined condition.

23. The microprocessor of claim 2@ further comprising a
loop counter, said instruction decoding means. responsive to
a MICROLOQP instruction within said instruction register.
providing a decrement signal to said loop counter and
priding the counter control signal to reset said counter to
zero. and said instruction supplying means being configured
to supply from said instruction register said sequential
instructions. beginning with the first instruction in said
instruction register, from a current one of said instruction
groups, to said central processing unit.

24. The microprocessor of claim 23 further comprising:

means for determining whether a predefined condition

exists within said microprocessor system. and

means for controlling response of said instruction decod-

ing means to said MEICROLOOP instruction and said
predefined condition to execute or not execute said
MICROLOOP instruction based on existence of sald
predefined condition.

25. The microprocessor of claim 20 wherein said instruc-
tion decoding means includes means, responsive to ones of
said sequential instructions of predetermined type. for sup-
plying control signals to said instruction fetching means
such that a subsequent one of said instruction groups is
provided to said instruction register.

26. The microprocessor of claim 25 wherein said instruc-
tion decoding means includes means for configuring said
instruction supplying means to supply a remainder of a
current one of said instruction groups within said instruction
register as said operand to said central processing unit.

27. The microprocessor of claim 25 further comprising
means for determining whether a predefined condition exists
within said microprocessor system., and means for control-
ling response of said instruction decoding means to branch-
type ones of said instructions and said predefined condition
to execute or not execute said branch-type ones of said
instructions based on existence of said predefined condition.

28. The microprocessor of claim 2# wherein said instruc-
tion decoding means are configured to supply control signals
to said instruction fetching means such that a subscquent one
of said instruction groups is supplied as an opecrand in
response to one of said sequential instructions.

29. In 2 microprocessor system including a central pro-
cessing unit. memory. and an instruction register. a method
for providing instructions and operands from said memory
to said central processing unit comprising the steps of:

providing instruction groups to said instruction register

from said memory wherein certain of said instruction
groups include at least onc imstruction that., when
executed, causes an acoess to an operand or an instruc-
tion or both, said operand or instruction being located
at a predetermined position from a boundary of said
instruction groups;

decoding said at least one instruction to determine said

predetermined position;

locating said predetermined position; and

supplying, from said instruction groups. using the prede-

termined location. said operand or instruction or both to
said central processing unit.

* k k¥ X

U.S. Patent Sep. 15, 1998 Sheet 13 of 19 5,809,336

REGISTER ARRAY COMPUTATION STACK

DATA BUS
80

4
REGISTER 0
REGISTER 1
REGISTER 2
REGISTER 3
REGISTER 4
REGISTER 5
REGISTER 6
REGISTER 7

ALU TOP OF STACK
NEXT ITEM

134

74

REGISTER
ADDRESS BUS j

I STACK POINTER]

FIG._13

U.S. Patent Sep. 15, 1998 Sheet 14 of 19 5,809,336

ON CHIP ON CIRCUIT BOARD
412 p 410
READY 150\ DRAM DRAM 150
OE-BAR OE-BAR
/-752 _ ® & ¢
OUTPUT ENABLE
= p 418 N— 50
OE-BAR VOLTS
5 414
FEW MEMORY CHIPS
416
MANY MEMORY CHIPS

5 TIME (NANOSECONDS)

FIG._15

U.S. Patent Sep. 15, 1998 Sheet 15 of 19 5,809,336

32-BIT INSTRUCTION REGISTER

8BITS | 8BITS | 8BITS | 8BITS I
108 —

\420 j 420
‘ 1
| 3 (7%
‘ 2-BIT
MULTIPLEXER COUNTER

| ,
INSTRUCTION l RESET COUNTER

DECODE LOGIC INCREMENT COUNTER
LATCH NEXT
INSTRUCTION
GROUP
CONTROL SIGNALS

PHASE 0 PHASE 1 PHASE 2 PHASE 3
)

430 / L431 ._./ L431——/ ‘

FIG._18

U.S. Patent Sep. 15, 1998 Sheet 16 of 19 5,809,336

RING OSCILLATOR |- 430
VARIABLE SPEED CRYSTAL CLOCK
CLOCK H 434
Y 70 (~436 432
REQUEST
CPU I_ READY '} 1o
|, DATA/ADDRESS INTERFACE
90,136J '
l ® & & 0 00 l
EXTERNAL MEMORY BUS
PHASE
3 433
f
2
498
1
433
0

TIME

FIG._19

U.S. Patent Sep. 15, 1998 Sheet 17 of 19 5,809,336

32-BIT INSTRUCTION REGISTER
8BITS | 8BITS | 8BITS | 8BITS]

> .
>
o
O
)
m
wn
w
[wy]
C
w
440 3 SELECTS
DECODER
R y] f‘ 180
e 2-BIT
MULTIPLEXER COUNTER
I
INSTRUCTION
DECODE LOGIC

CONTROL SIGNALS

FIG._20

5,809,336

U.S. Patent Sep. 15, 1998 Sheet 18 of 19
I DATA (-452
ON-CHIP ') 2ADDRESS LINES
LAZS;*EE" }: e 2 BIT CACHE
456 | WRITE POINTER
>.
| =
DATA 3 S| —460
w L
X ¥
O Q
< <
Al 5
458 4 ADDRESS LINES ‘
2 READ 4-BIT ON-CHIP
) WRITE | STACK POINTER
458 |
ON-CHIP I
RAM |
452 —> é
=
] o
458 | > E
- X ¥
Q Q
|
458 Il
J §
DATA
y Lzo ADDRESS LINES : :
EXTERNAL i ' READ 20-BIT EXTERNAL
|
‘I’R&MJ ﬂ.: WRITE | STACK POINTER

FIG._21

'U.S. Patent Sep. 15, 1998 Sheet 19 of 19 5,809,336

DOWN

COUNTER COUNT

472

ZERO DETECT

474 478 80
AREGISTER | SHIFTER ALU 470
) 1 C REGISTER
XOR
476 | 480
B REGISTER SHIFTER |
;— |<—<7 3
SHIFT
RIGHT
LEAST SIGNIFICANT BIT FlG._22
DOWN
472 /| COUNTER = COUNT
L. ZERO DETECT
474 482 80
AREGISTER | SHIFTER 470
| —])
siEr 1 SNJ*] CREGISTER
LEFT ADD
476 480
B REGISTER SHIFTER |
SHIFT
RIGHT
LEAST SIGNIFICANT BIT FIG._23

5,809,336

1

HIGH PERFORMANCE MICROPROCESSOR
HAVING VARIABLE SPEED SYSTEM
CLOCK

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a division of U.S. application Ser. No.
07/389,334, filed Aug. 3, 1989, now U.S. Pat. No. 5,440,
749.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a simplified,
reduced instruction set computer (RISC) microprocessor.
More particularly, it relates to such a microprocessor which
is capable of performance levels of, for example, 20 million
instructions per second (MIPS) at a price of, for example, 20
dollars.

2. Description of the Prior Art

Since the invention of the microprocessor, improvements
in its design have taken two different approaches. In the first
approach, a brute force gain in performance has been
achieved through the provision of greater numbers of faster
transistors in the microprocessor inlegrated circuit and an
instruction set of increased complexity. This approach is
exemplified by the Motorola 68000 and Intel 80X86 micro-
processor families. The trend in this approach is to larger die
sizes and packages, with hundreds of pinouts.

More recently, it has been perceived that performance
gains can be achieved through comparative simplicity, both
in the microprocessor integrated circuit itself and in its
instruction set. This second approach provides RISC
microprocessors, and is exemplified by the Sun SPARC and
the Intel 8960 microprocessors. However, even with this
approach as conventionally practiced, the packages for the
microprocessor are large, in order to accommodate the large
number of pinouts that continue to be employed. A need
therefore remains for further simplification of high perfor-
mance Microprocessors.

With conventional high performance microprocessors,
fast static memories are required for direct connection to the
microprocessors in order to allow memory accesses that are
fast enough to keep up with the microprocessors. Slower
dynamic random access memories (DRAMSs) are used with
such microprocessors only in a hierarchical memory
arrangement, with the static memories acting as a buffer
between the microprocessors and the DRAMSs. The neces-
sity to use static memories increases cost of the resulting
systems.

Conventional microprocessors provide direct memory
accesses (DMA) for system peripheral units through DMA
controllers, which may be located on the microprocessor
integrated circuit, or provided separately. Such DMA con-
trollers can provide routine handling of DMA requests and
responses, but some processing by the main central process-
ing unit (CPU) of the microprocessor is required.

SUMMARY OF THE INVENTION

Accordingly, it is an object of this invention to provide a
microprocessor with a reduced pin count and cost compared
to conventional microprocessors.

It is another object of the invention to provide a high
performance microprocessor that can be directly connected
to DRAMSs without sacrificing microprocessor speed.

10

20

25

30

35

45

50

60

65

2

It is a further object of the invention to provide a high
performance microprocessor in which DMA does not
require use of the main CPU during DMA requests and
responses and which provides very rapid DMA response
with predictable response times.

The attainment of these and related objects may be
achieved through use of the novel high performance, low -
cost microprocessor herein disclosed. In accordance with
one aspect of the invention, a microprocessor system in
accordance with this invention has a central processing unit,
a dynamic random access memory and a bus connecting the
central processing unit to the dypamic random access
memory. There is a multiplexing means on the bus between
the central processing unit and the dynamic random access
memory. The multiplexing means is connected and config-
ured to provide row addresses, column addresses and data on
the bus.

In accordance with another aspect of the invention, the
microprocessor system has a means connected to the bus for
fetching instructions for the central processing unit on the
bus. The means for fetching instructions is configured to
fetch multiple sequential instructions in a single memory
cycle. In a variation of this aspect of the invention, a
programmable read only memory containing instructions for
the central processing unit is connected to the bus. The
means for fetching instructions includes means for assem-
bling a plurality of instructions from the programmable read
only memory and storing the plurality of instructions in the
dynamic random access memory.

In another aspect of the invention, the microprocessor
system includes a central processing unit, a direct memory
access processing unit and a memory connected by a bus.
The direct memory access processing unit includes means
for fetching instructions for the central processing unit and
for fetching instructions for the direct memory access pro-
cessing unit on the bus.

In a further aspect of the invention, the microprocessor
system, including the memory, is contained in an integrated
circuit. The memory is a dynamic random access memory,
and the means for fetching multiple instructions includes a
column latch for receiving the multiple instructions.

In still another aspect of the invention, the microprocessor
system additionally includes an instruction register for the
multiple instructions connected to the means for fetching
instructions. A means is connected to the instruction register
for supplying the multiple instructions in succession from
the instruction register. A counter is connected to control the
means for supplying the multiple instructions to supply the
multiple instructions in succession. A means for decoding
the multiple instructions is connected to receive the multiple
instructions in succession from the means for supplying the
multiple instructions. The counter is connected to said
means for decoding to receive incrementing and reset con-
trol signals from the means for decoding. The means for
decoding is configured to supply the reset control signal to
the counter and to supply a control signal to the means for
fetching instructions in response to a SKIP instruction in the
multiple instructions. In a modification of this aspect of the
invention, the microprocessor system additionally has a loop
counter connected to receive a decrement control signal
from the means for decoding. The means for decoding is
configured to supply the reset control signal to the counter
and the decrement control signal to the loop counter in
response to a MICROLOOP instruction in the multiple
instructions. In a further modification to this aspect of the
invention, the means for decoding is configured to control

5,809,336

3

the counter in response to an instruction utilizing a variable
width operand. A means is connected to the counter to select
the variable width operand in response to the counter.

In a still further aspect of the invention, the microproces-
sor system includes an arithmetic logic unit. A first push
down stack is connected to the arithmetic logic unit. The first
push down stack includes means for storing a top item
connected to a first input of the arithmetic logic unit and
means for storing a next item connected to a second input of
the arithmetic logic unit. The arithmetic logic unit has an
output connected to the means for storing a top item. The
means for storing a top item is connected to provide an input
to a register file. The register file desirably is a second push
down stack, and the means for storing a top item and the
register file are bidirectionally connected.

In another aspect of the invention, a data processing
system has a microprocessor including a sensing circuit and
a driver circuit, a memory, and an output epable line
connected between the memory, the sensing circuit and the
driver circuit. The sensing circuit is configured to provide a
ready signal when the output enable line reaches a prede-
termined electrical level, such as a voltage. The micropro-
cessor is configured so that the driver circuit provides an
enabling signal on the output enable line responsive to the
ready signal.

In a further aspect of the invention, the microprocessor
system has a ring counter variable speed system clock
connected to the central processing unit. The central pro-
cessing unit and the ring counter variable speed system
clock are provided in a single integrated circuit. An input/
output interface is connected to exchange coupling control
signals, addresses and data with the input/output interface. A
second clock independent of the ring counter variable speed
system clock is connected to the input/output interface.

In yet another aspect of the invention, a push down stack
is connected to the arithmetic logic unit. The push down
stack includes means for storing a top item connected to a
first input of the arithmetic logic unit and means for storing
a next item connected to a second input of the arithmetic
logic unit. The arithmetic logic unit has an output connected
to the means for storing a top item. The push down stack has
a first plurality of stack elements configured as latches and
a second plurality of stack elements configured as a random
access memory. The first and second plurality of stack
elements and the central processing unit are provided in a
single integrated circuit. A third plurality of stack elements
is configured as a random access memory external to the
single integrated circuit. In this aspect of the invention,
desirably a first pointer is connected to the first plurality of
stack elements, a second pointer connected to the second
plurality of stack elements, and a third pointer is connected
to the third plurality of stack elements. The central process-
ing unit is connected to pop items from the first plurality of
stack elements. The first stack pointer is connected to the
second stack pointer to pop a first plurality of items from the
second plurality of stack elements when the first plurality of
stack elements are empty from successive pop operations by
the central processing unit. The second stack pointer is
connected to the third stack pointer to pop a second plurality
of items from the third plurality of stack elements when the
second plurality of stack elements are empty from succes-
sive pop operations by the central processing unit.

In another aspect of the invention, a first register is
connected to supply a first input to the arithmetic logic unit.
A first shifter is connected between an output of the arith-
metic logic unit and the first register. A second register is

15

25

30

35

40

45

55

4

connected to receive a starting polynomial value. An output
of the second register is connected to a second shifter. A least
significant bit of the second register is connected to The
arithmetic logic unit. A third register is connected to supply
feedback terms of a polynomial to the arithmetic logic unit.
A down counter, for counting down a number corresponding
to digits of a polynomial to be generated, is connected to the
arithmetic logic unit. The arithmetic logic unit is responsive
to a polynomial instruction to carry out an exclusive OR of
the contents of the first register with the contents of the third
register if the least significant bit of the second register is a
“ONE” and to pass the contents of the first register unaltered
if the least significant bit of the second register is a “ZERO”,
until the down counter completes a count. The polynomial to
be generated results in said first register.

In still another aspect of the invention, a result register is
connected to supply a first input to the arithmetic logic unit.
A first, left shifting shifter is connected between an output of
the arithmetic logic unit and the result register. A multiplier
register is connected to receive a multiplier in bit reversed
form. An output of the multiplier register is connected to a
second, right shifting shifter. A least significant bit of the
multiplier register is connected to the arithmetic logic unit.
A third register is connected to supply a multiplicand to said
arithmetic logic unit. A down counter, for counting down a
number corresponding to one less than the number of digits
of the multiplier, is connected to the arithmetic logic unit.
The arithmetic logic unit is responsive to a multiply instruc-
tion to add the contents of the result register with the
contents of the third register, when the least significant bit of
the multiplier register is a “ONE” and to pass the contents
of the result register unaltered, until the down counter
completes a count. The product results in the result register.

The attainment of the foregoing and related objects,
advantages and features of the invention should be more
readily apparent to those skilled in the art, after review of the
following more detailed description of the invention, taken
together with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an external, plan view of an integrated circuit
package incorporating a microprocessor in accordance with
the invention. .

FIG. 2 is a block diagram of a microprocessor in accor-
dance with the invention.

FIG. 3 is a block diagram of a portion of a data processing
system incorporating the microprocessor of FIGS. 1 and 2.

FIG. 4 is a more detailed block diagram of a portion of the
microprocessor shown in FIG. 2.

FIG. 5 is a more detailed block diagram of anothcr portion
of the microprocessor shown in FIG. 2.

FIG. 6 is a block diagram of another portion of the data
processing system shown in part in FIG. 3 and incorporating
the microprocessor of FIGS. 1-2 and 4-5.

FIGS. 7 and 8 are layout diagrams for the data processing
system shown in part in FIGS. 3 and 6.

FIG. 9 is a layout diagram of a second embodiment of a
microprocessor in accordance with the invention in a data
processing system on a single integrated circuit.

FIG. 10 is a more detailed block diagram of a portion of
the data processing system of FIGS. 7 and 8.

FIG. 11 is a timing diagram useful for understanding
operation of the system portion shown in FIG. 12.

FIG. 12 is another more detailed block diagram of a
further portion of the data processing system of FIGS. 7 and
8.

5,809,336

5

FIG. 13 is a more detailed block diagram of a portion of
the microprocessor shown in FIG. 2.

FIG. 14 is a more detailed block and schematic diagram
of a portion of the system shown in FIGS. 3 and 7-8.

FIG. 15 is a graph useful for understanding operation of
the system portion shown in FIG. 14.

FIG. 16 is a more detailed block diagram showing part of
the system portion shown in FIG. 4.

FIG. 17 is a more detailed block diagram of a portion of
the microprocessor shown in FIG. 2.

FIG. 18 is a more detailed block diagram of part of the
microprocessor portion shown in FIG. 17.

FIG. 19 is a sct of waveform diagrams useful for under-
standing operation of the part of the microprocessor portion
shown in FIG. 18.

FIG. 20 is a more detailed block diagram showing another
part of the system portion shown in FIG. 4.

FIG. 21 is a more detailed block diagram showing another
part of the system portion shown in FIG. 4.

FIGS. 22 and 23 are more detailed block diagrams show-
ing another part of the system portion shown in FIG. 4.

DETAILED DESCRIPTION OF THE
INVENTION
Overveiw

The microprocessor of this invention is desirably imple-
mented as a 32-bit microprocessor optimized for:

HIGH EXECUTION SPEED, and

LOW SYSTEM COST.

In this embodiment, the microprocessor can be thought of
as 20 MIPS for 20 dollars. Important distinguishing features
of the microprocessor are:

Uses low-cost commodity DYNAMIC RAMS to run 20

MIPS

4 instruction fetch per memory cycle

Onp-chip fast page-mode memory management

Runs fast without external cache

Requires few interfacing chips

Crams 32-bit CPU in 44 pin SOJ package

The instruction set is organized so that most operations
can be specified with 8-bit instructions. Two positive prod-
ucts of this philosophy are:

Programs are smaller,

Programs can execute much [aster.

The bottleneck in most computer systems is the memory
bus. The bus is used to fetch instructions and fetch and store
data. The ability to fetch four instructions in a single
memory bus cycle significantly increases the bus availability
to handle data.

Turning now to the drawings, more particularly to FIG. 1,
there is shown a packaged 32-bit microprocessor 50 in a
44-pin plastic leadless chip carrier, shown approximately
100 times its actual size of about 0.8 inch on a side. The fact
that the microprocessor 50 is provided as a 44-pin package
represents a substantial departure from typical microproces-
sor packages, which usually have about 200 input/output
(I/0) pins. The microprocessor 50 is rated at 20 million
instructions per second (MIPS). Address and data lines 52,
also labelled D0-D31, are shared for addresses and data
without speed penalty as a result of the manner in which the
microprocessor 50 operates, as will be explained below.
DYNAMIC RAM

In addition to the low cost 44-pin package, another
unusual aspect of the high performance microprocessor 50 is

15

20

25

30

35

40

45

50

55

60

65

6
that it operates directly with dynamic random access memo-
ries (DRAMS), as shown by row address strobe (RAS) and
column address strobe (CAS) /O pins 54. The other I/O pins
for the microprocessor 50 include V,, pins 56, V¢ pins 58,
output enable pin 60, write pin 62, clock pin 64 and reset pin
66.

All high speed computers require high speed and expen-
sive memory to keep up. The highest speed static RAM
memories cost as much as ten times as much as slower
dynamic RAMs. This microprocessor has been optimized to
use low-cost dynamic RAM in high-speed page-mode.
Page-mode dynamic RAMs offer static RAM performance
without the cost penalty. For example, low-cost 85 nsec.
dynamic RAMs access at 25 nsec when operated in fast
page-mode. Integrated fast page-mode control on the micro-
processor chip simplifies system iaterfacing and results in a
faster system.

Details of the microprocessor 50 are shown in FIG. 2. The
microprocessor 50 includes a main central processing unit
(CPU) 70 and a separate direct memory access (DMA) CPU
72 in a single integrated circuit making up the micropro-
cessor 50. The main CPU 70 has a first 16 deep push down
stack 74, which has a top item register 76 and a next item
register 78, respectively connected to provide inputs to an
arithmetic logic unit (ALU) 80 by lines 82 and 84. An output
of the ALU 80 is connected to the top item register 76 by line
86. The output of the top iterm register at 82 is also connected
by line 88 to an internal data bus 90.

A loop counter 92 is connected to a decrementer 94 by
lines 96 and 98. The loop counter 92 is bidirectionally
connected to the internal data bus 90 by line 100. Stack
pointer 102, return stack pointer 104, mode register 106 and
instruction register 108 are also connected to the internal
data bus 90 by lines 110, 112, 114 and 116, respectively. The
internal data bus 90 is connected to memory controller 118
and to gate 120. The gate 120 provides inputs on lines 122,
124, and 126 to X register 128, program counter 130 and Y
register 132 of return push down stack 134. The X register
128, program counter 130 and Y register 132 provide
outputs to internal address bus 136 on lines 138, 140 and
142. The internal address bus provides inputs to the memory
controller 118 and to an incrementer 144. The incrementer
144 provides inputs to the X register, program counter and
Y register via lines 146, 122, 124 and 126. The DMA CPU
72 provides inputs to the memory controller 118 on line 148.
The memory controller 118 is connected to a RAM (not
shown) by address/data bus 150 and control lines 152.

FIG. 2 shows that the microprocessor 50 has a simple
architecture. Prior art RISC microprocessors are substan-
tially more complex in design. For example, the SPARC
RISC microprocessor has three times the gates of the
microprocessor 50, and the Intel 8960 RISC microprocessor
has 20 times the gates of the microprocessor 50. The speed
of this microprocessor is in substaatial part due to this
simplicity. The architecture incorporates push down stacks
and register write to achieve this simplicity.

The microprocessor 50 incorporates an I/O that has been
tuned to make heavy use of resources provided on the
integrated circuit chip. On chip latches allow use of the same
I/0 circuits to handle three different things: column
addressing, row addressing and data, with a slight to non-
existent speed penalty. This triple bus multiplexing results in
fewer buffers to expand, fewer interconnection lines, fewer
I/O pins and fewer internal buffers.

The provision of on-chip DRAM control gives a perfor-
mance equal to that obtained with the use of static RAMs.
As aresult, memory is provided at % the system cost of static
RAM used in most RISC systems.

5,809,336

7

The microprocessor 50 fetches 4 instructions per memory
cycle; the instructions are in an 8-bit format, and this is a
32-bit microprocessor. System speed is therefore 4 times the
memory bus bandwidth. This ability enables the micropro-
cessor to break the Von Neumann bottleneck of the speed of
getting the next instruction. This mode of operation is
possible because of the use of a push down stack and register
array. The push down stack allows the use of implied
addresses, rather than the prior art technique of explicit
addresses for two sources and a destination.

Most instructions execute in 20 ranoseconds in the micro-
processor 50. The microprocessor can thercfore execute
instructions at 50 peak MIPS without pipeline delays. This
is a function of the small number of gates in the micropro-
cessor 50 and the high degree of parallelism in the archi-
tecture of the microprocessor.

FIG. 3 shows how column and row addresses are multi-
plexed on lines D8-D14 of the microprocessor 50 for
addressing DRAM 150 from I/O pins 52. The DRAM 150 is
one of eight, but only one DRAM 150 has been shown for
clarity. As shown, the lines D11-D18 are respectively con-
nected to row address inputs AO—-A8 of the DRAM 150.
Additionally, Lines D12-D15 are connected to the data
inputs DQ1-DQ4 of the DRAM 150. The output enable,
write and column address strobe pins 54 are respectively
connected to the output enable, write and column address
strobe inputs of the DRAM 150 by lines 152. The row
address strobe pin 54 is connected through row address
strobe decode logic 154 to the row address strobe input of
the DRAM 150 by lines 156 and 158.

DO0-D7 pins 52 (FIG. 1) are idle when the microprocessor
50 is outputting multiplexed row and column addresses on
D11-D18 pins 52. The DO-D7 pins 52 can therefore simul-
taneously be used for I/O when right justified 1/O is desired.
Simultaneous addressing and 1I/O can therefore be carried
out.

FIG. 4 shows how the microprocessor 50 is able to
achieve performance equal to the use of static RAMS with
DRAMSs through multiple instruction fetch in a single clock
cycle and instruction fetch-ahead. Instruction register 108
receives four 8-bit byte instruction words 1-4 on 32-bit
internal data bus 90. The four instruction byte 1—4 locations
of the instruction register 108 are connected to multiplexer
170 by busses 172, 174, 176 and 178, respectively. A
microprogram counter 180 is connected to the multiplexer
170 by lines 182. The multiplexer 170 is connected to
decoder 184 by bus 186. The decoder 184 provides internal
signals to the rest of the microprocessor 50 on lines 188.

Most significant bits 190 of each instruction byte 14
location are connected to a 4-input decoder 192 by lines 194.
The output of decoder 192 is connected to memory control-
ler 118 by line 196. Program counter 130 is connected to
memory controller 118 by internal address bus 136, and the
instruction register 108 is connected to the memory control-
ler 118 by the internal data bus 90. Address/data bus 198 and
control bus 200 are connected to the DRAMS 150 (FIG. 3).

In operation, when the most significant bits 190 of
remaining instructions 14 are “1” in a clock cycle of the
microprocessor 50, there are no memory reference instruc-
tions in the queue. The output of decoder 192 on line 196
requests an instruction fetch ahead by memory controller
118 without interference with other accesses. While the
current instructions in instruction register 108 are executing,
the memory controller 118 obtains the address of the next set
of four instructions from program counter 130 and obtains
that set of instructions. By the time the current set of
instructions has completed execution, the next set of instruc-
tions is ready for loading into the instruction register.

10

15

20

25

35

40

45

50

55

60

65

8

Details of the DMA CPU 72 are provided in FIG. S.
Internal data bus 90 is connected to memory controller 118
and to DMA instruction register 210. The DMA 1mstruction
register 210 is connected to DMA program counter 212 by
bus 214, to transfer size counter 216 by bus 218 and to timed
transfer interval counter 220 by bus 222. The DMA instruc-
tion register 210 is also connected to DMA 1/O and RAM
address register 224 by line 226. The DMA /O and RAM
address register 224 is connected to the memory controller
118 by memory cycle request line 228 and bus 230. The
DMA program counter 212 is comnnected to the internal
address bus 136 by bus 232. The transfer size counter 216 is
connected to a DMA instruction done decrementer 234 by
lines 236 and 238. The decrementer 234 receives a control
input on memory cycle acknowledge line 240. When trans-
fer size counter 216 has completed its count, it provides a
control signal to DMA program counter 212 on line 242.
Timed transfer interval counter 220 js connected to decre-
menter 244 by lines 246 and 248. The decrementer 244
receives a control input from a microprocessor system clock
on line 250.

The DMA CPU 72 controls itself and has the ability to
fetch and execute instructions. It operates as a co-processor
to the main CPU 70 (FIG. 2) for time specific processing.

FIG. 6 shows how the microprocessor 50 is connected to
an electrically programmable read only memory (EPROM)
260 by reconfiguring the data lines 52 so that some of the
data lines 52 are input lines and some of them are output
lines. Data lines 52 DO-D7 provide data to and from
corresponding data terminals 262 of the EPROM 260. Data
lines 52 D9-D18 provide addresses to address terminals 264
of the EPROM 260. Data lines 52 D19-D31 provide inputs
from the microprocessor 50 to memory and I/O decode logic
266. RAS 0/1 control line 268 provides a control signal for
determining whether the memory and I/O decode logic
provides a DRAM RAS output on line 270 or a column
enable output for the EPROM 260 on line 272. Column
address strobe terminal 60 of the microprocessor 50 pro-
vides an output enable signal on line 274 to the correspond-
ing terminal 276 of the EPROM 260.

FIGS. 7 and 8 show the front and back of a one card data
processing system 280 incorporating the microprocessor 50,
MSM514258-10 type DRAMs 150 totalling 2 megabytes, a
Motorola 50 MegaHertz crystal oscillator clock 282, 1/0
circuits 284 and a 27256 type EPROM 260. The I/O circuits
284 include a 74HC04 type high speed hex inverter circuit
286, an IDT39C828 type 10-bit inverting buffer circuit 288,
an IDT39C822 type 10-bit inverting register circuit 290, and
two IDT39C823 type 9-bit non-inverting register circuits
292. The card 280 is completed with a MAXI12V type
DC-DC converter circuit 294, 34-pin dual AMP type headers
296, a coaxial female power connector 298, and a 3-pin
AMP right angle header 300. The card 280 is a low cost,
imbeddable product that can be incorporated in larger sys-
tems or used as an internal development tool.

The microprocessor 50 is a very high performance (50
MHz) RISC influenced 32-bit CPU designed to work closely
with dynamic RAM. Clock for clock, the microprocessor 50
approaches the theoretical performance limits possible with
a single CPU configuration. Eventually, the microprocessor

- 50 and any other processor is limited by the bus bandwidth

and the number of bus paths. The critical conduit is between
the CPU and memory.

One solution to the bus bandwidth/bus path problem is to
integrate a CPU directly onto the memory chips, giving
every memory a direct bus the CPU. FIG. 9 shows another
microprocessor 310 that is provided integrally with 1 mega-

5,809,336

9

bit of DRAM 311 in a single integrated circuit 312. Until the
present invention, this solution has not beem practical,
because most high performance CPUs require from 500,000
to 1,000,000 trapsistors and enormous die sizes just by
themselves. The microprocessor 310 is equivalent to the
microprocessor 50 in FIGS. 1-8. The microprocessors 50
and 310 are the most transistor efficient high performance
CPUs in existence, requiring fewer than 50,000 transistors
for dual processors 70 and 72 (FIG. 2) or 314 and 316 (less
memory). The very high speed of the microprocessors 50
and 310 is to a certain extent a function of the small number
of active devices. In essence, the less silicon gets m the way,
the faster the electrons can get where they are going.

The microprocessor 310 is therefore the only CPU suit-
able for integration on the memory chip diec 312. Some
simple modifications to the basic microprocessor 50 to take
advantage of the proximity to the DRAM array 311 can also
increase the microprocessor 50 clock speed by S50 percent,
and probably more.

The microprocessor 310 core on board the DRAM die 312
provides most of the speed and functionality required for a
large group of applications from automotive to peripheral
control. However, the integrated CPU 310/DRAM 311 con-
cept has the potential to redefine significantly the way
multiprocessor solutions can solve a spectrum of very com-
pute intensive problems. The CPU 310/DRAM 311 combi-
nation eliminates the Von Neumann bottleneck by distrib-
uting it across numerous CPU/DRAM chips 312. The
microprocessor 310 is a particularly good core for
multiprocessing, since it was designed with the SDI target-
ing array in mind, and provisions were made for efficient
interprocessor communications.

Traditional multiprocessor implementations have been
very expensive in addition to being unable to exploit fully
the available CPU horsepower. Multiprocessor systems have
typically been built up from numerous board level or box
level computers. The result is usually an immense amount of
hardware with corresponding wiring, power consumption
and communications problems. By the time the systems are
interconnected, as much as 50 percent of the bus speed has
been utilized just getting through the interfaces.

In addition, multiprocessor system software has been
scarce. A multiprocessor system can easily be crippled by an
inadequate load-sharing algorithm in the system software,
which allows one CPU to do a great deal of work and the
others to be idle. Great strides have been made recently in
systems software, and even UNIX V.4 may be enhanced to
support multiprocessing. Several commercial products from
such manufacturers as DUAL Systems and UNISOFT do a
credible job on 68030 type microprocessor systems now.

The microprocessor 310 architecture eliminates most of
the interface friction, since up to 64 CPU 310/RAM 311
processors should be able to intercommunicate without
buffers or latches. Each chip 312 has about 40 MIPS raw
speed, because placing the DRAM 311 next to the CPU 310
allows the microprocessor 310 instruction cycle to be cut in
half, compared to the microprocessor 50. A 64 chip array of
these chips 312 is more powerful than any other existing
computer. Such an array fits on a 3x5 card, cost less than a
FAX machine, and draw about the same power as a small
television.

Dramatic changes in price/performance always reshape
existing applications and almost always create new ones.
The introduction of microprocessors in the mid 1970s cre-
ated video games, personal computers, automotive
computers, electronically controlled appliances, and low
cost computer peripherals.

20

10

The integrated circuit 312 will find applications in all of

the above areas, plus create some new ones. A common
generic parallel processing algorithm handles convolution/
Fast Fourier Transform (FFT)/pattern recognition. Interest-
ing product possibilities using the integrated circuit 312
include high speed reading machines, real-time speech
recognition, spoken language translation, real-time robot
vision, a product to identify people by their faces, and an
automotive or aviation collision avoidance system.
. A real time processor for enhancing high density televi-
sion (HDTV) images, or compressing the HDTV informa-
tion into a smaller bandwidth, would be very. feasible. The
load sharing in HDTV could be very straightforward. Split-
ting up the task according to color and frame would require
6, 9 or 12 processors. Practical implementation might
require 4 meg RAMs integrated with the microprocessor
310.

The microprocessor 310 has the following specifications:
CONTROL LINES
4—POWER/GROUND
1—CLOCK

. 32—DATA 1/O

35

40

45

60

65

4—SYSTEM CONTROL
EXTERNAL MEMORY FETCH
EXTERNAL MEMORY FETCH AUTOINCREMENT X
EXTERNAL MEMORY FETCH AUTOINCREMENT Y
EXTERNAL MEMORY WRITE
EXTERNAL MEMORY WRITE AUTOINCREMENT X
EXTERNAL MEMORY WRITE AUTOINCREMENT Y
EXTERNAL PROM FETCH
LOAD ALL X REGISTERS
LOAD ALL Y REGISTERS
LOAD ALL PC REGISTERS
EXCHANGE X AND Y
INSTRUCTION FETCH
ADD TO PC
ADD TO X
WRITE MAPPING REGISTER
READ MAPPING REGISTER
REGISTER CONFIGURATION
MICROPROCESSOR 310 CPU 316 CORE
COLUMN LATCH1 (1024 BITS) 32x32 MUX
STACK POINTER (16 BITS)
COLUMN LATCH2 (1024 BITS) 32x32 MUX
RSTACK POINTER (16 BITS)
PROGRAM COUNTER 32 BITS
X0 REGISTER 32 BITS (ACTIVATED ONLY FOR
ON-CHIP ACCESSES)
YO0 REGISTER 32 BITS (ACTIVATED ONLY FOR
ON-CHIP ACCESSES) ‘
LOOP COUNTER 32 BITS
DMA CPU 314 CORE
DMA PROGRAM COUNTER 24 BITS
INSTRUCTION REGISTER 32 BITS
I/0 & RAM ADDRESS REGISTER 32 BITS
TRANSFER SIZE COUNTER 12 BITS
INTERVAL COUNTER 12 BITS
To offer memory expansion for the basic chip 312, an
intelligent DRAM can be produced. This chip will be
optimized for high speed operation with the integrated
circuit 312 by having three on-chip address registers: Pro-
gram Counter, X Register and Y register. As a result, to
access the intelligent DRAM, no address is required, and a
total access cycle could be as short as 10 nsec. Each

5,809,336

11

expansion DRAM would maintain its own copy of the three
registers and would be identified by a code specifying its
memory address. Incrementing and adding to the three
registers will actually take place on the memory chips. A
maximum of 64 intelligent DRAM peripherals would allow
a large system to be created without sacrificing speed by
introducing multiplexers or buffers.

There are certain differences between the microprocessor
310 and the microprocessor 50 that arise from providing the
microprocessor 310 on the same die 312 with the DRAM
311. Integrating the DRAM 311 allows architectural changes
in the microprocessor 310 logic to take advantage of existing
on-chip DRAM 311 circuitry. Row and column design is
inherent in memory architecture. The DRAMs 311 access
random bits in a memory array by first selecting a row of
1024 bits, storing them into a column latch, and then
selecting one of the bits as the data to be read or written.

‘The time required to access the data is split between the
row access and the column access. Selecting data already
stored in a column latch is faster than selecting a random bit
by at least a factor of six. The microprocessor 310 takes
advantage of this high speed by creating a number of column
latches and using them as caches and shift registers. Select-
ing a new row of information may be thought of as per-
forming a 1024-bit read or write with the resulting immense
bus bandwidth.

1. The microprocessor 50 treats its 32-bit instruction
register 108 (see FIGS. 2 and 4) as a cache for four 8-bit
nstructions. Since the DRAM 311 maintains a 1024-bit
Jatch for the column bits, the microprocessor 310 treats the
column latch as a cache for 128 8-bit instructions. Therefore,
the next instruction will almost always be already present in
the cache. Long loops within the cache are also possible and
more useful than the 4 instruction loops in the micropro-
cessor 50.

2. The microprocessor 50 uses two 16x32-bit deep reg-
ister arrays 74 and 134 (FIG. 2) for the parameter stack and
the return stack. The microprocessor 310 creates two other
1024-bit column latches to provide the equivalent of two
32x32-bit arrays, which can be accessed twice as fast as a
register array.

3. The microprocessor S0 has a DMA capability which
can be used for I/O to a video shift register. The micropro-
cessor 310 uses yet another 1024-bit column latch as a long
video shift register to drive a CRT display directly. For color
displays, three on-chip shift registers could also be used.
These shift registers can transfer pixels at a maximum of 100
MHz.

4. The microprocessor 50 accesses memory via an exter-
nal 32-bit bus. Most of the memory 311 for the micropro-
cessor 310 is on the same die 312. External access to more
memory is made using an 8-bit bus. The result is a smaller
die, smaller package and lower power consumption than the
microprocessor 50.

5. The microprocessor S0 consumes about a third of its
operating power charging and discharging the 1/0 pins and
associated capacitances. The DRAMSs 150 (FIG. 8) con-
nected to the microprocessor 50 dissipate most of their
power in the }/O drivers. A microprocessor 310 system will
consume about one-tenth the power of a microprocessor 50
system, since having the DRAM 311 next to the processor
310 eliminates most of the external capacitances to be
charged and discharged.

6. Multiprocessing means splitting a computing task
between numerous processors in order to speed up the
solution. The popularity of multiprocessing is limited by the
expense of current individual processors as well as the

15

20

25

35

40

45

50

55

12

limited interprocessor communications ability. The micro-
processor 310 is an excellent multiprocessor candidate,
since the chip 312 is a monolithic computer complete with
memory, rendering it low-cost and physically compact.

The shift registers implemented with the microprocessor
310 to perform video output can also be configured as
interprocessor communication links. The INMOS transputer
attempted a similar strategy, but at much lower speed and
without the performance benefits inherent in the micropro-
cessor 310 column latch architecture. Serial I/O is a prereg-
uisite for many multiprocessor topologies because of the
many neighbor processors which communicate. A cube has
6 neighbors. Each neighbor communicates using these lines:

DATA IN

CLOCK IN

READY FOR DATA

DATA OUT

DATA READY?

CLOCK OUT
A special start up sequence is used to initialize the on-chip
DRAM 311 in each of the processors.

The microprocessor 310 column latch architecture allows
neighbor processors to deliver information directly to inter-
nal registers or even instruction caches of other chips 312.
This technique is not used with existing processors, because
it only improves performance in a tightly coupled DRAM
system.

7. The microprocessor 50 architecture offers two types of
looping structures: LOOP-IF-DONE and MICRO-LOOP.
The former takes an 8-bit to 24-bit operand to describe the
entry point to the loop address. The latter performs a loop
entirely within the 4 instruction queue and the loop entry
point is implied as the first instruction in the queue. Loops
entirely within the queue run without external instruction
fetches and execute up to three times as fast as the long loop
construct. The microprocessor 310 retains both constructs
with a few differences. The microprocessor 310 microloop
functions in the same fashion as the microprocessor 50
operation, except the queue is 1024-bits or 128 8-bit instruc-
tions long. The microprocessor 310 microloop can therefore
contain jumps, branches, calls and immediate operations not
possible in the 4 8-bit instruction microprocessor 50 queue.

Microloops in the microprocessor 50 can only perform
simple block move and compare functions. The larger
microprocessor 310 queue allows entire digital signal pro-
cessing or floating point algorithms to loop at high speed in
the queue.

The microprocessor 50 offers four instructions to redirect
execution:

CALL

BRANCH

BRANCH-IF-ZERO

LOOP-IF-NOT-DONE
These instructions take a variable length address operand 8,
16 or 24 bits long. The microprocessor 50 next address logic
treats the three operands similarly by adding or subtracting
them to the current program counter. For the microprocessor
310, the 16 and 24-bit operands function in the same manner
as the 16 and 24-bit operands in the microprocessor 50. The
8-bit class operands are reserved to operate entirely within
the instruction queue. Next address decisions can therefore
be made quickly, because only 10 bits of addresses are
affected, rather than 32. There is no carry or borrow gener-
ated past the 10 bits.

8. The microprocessor 310 CPU 316 resides on an already
crowded DRAM die 312. To keep chip size as small as

5,809,336

13

possible, the DMA processor 72 of the microprocessor 50
has been replaced with a more traditional DMA controller
314. DMA is used with the microprocessor 310 to perform
the following functions:

Video output to a CRT

Multiprocessor serial communications

8-bit parallel I/O
The DMA controller 314 can maintain both serial and
parallel transfers simultaneously. The following DMA
sources and destinations are supported by the microproces-
sor 310:

DESCRIPTION vo LINES

1. Video shift register OUTPUT lto3

2. Multiprocessor serial BOTH 6 lines/channel
3. 8-bit parallel BOTH 8 data, 4 control

The three sources use separate 1024-bit buffers and separate
1/O pins. Therefore, all three may be active simultaneously
without interference.

The microprocessor 310 can be implemented with either
a single multiprocessor serial buffer or separate receive and
sending buffers for each channel, allowing simultaneous
bidirectional communications with six neighbors simulta-
neously.

FIGS. 10 and 11 provide details of the PROM DMA used
in the microprocessor 50. The microprocessor 50 executes
faster than all but the fastest PROMs. PROMS are used in
a microprocessor 50 system to store program segments and
perhaps entire programs. The microprocessor 50 provides a
feature on power-up to allow programs to be loaded from
low-cost, slow speed PROMs into high speed DRAM for
execution. The logic which performs this function is part of
the DMA memory controller 118. The operation is similar to
DMA, but not identical, since four 8-bit bytes must be
assembled on the microprocessor 50 chip, then written to the
DRAM 150.

The microprocessor 50 directly interfaces to DRAM 150
over a triple multiplexed dala and address bus 350, which
carries RAS addresses, CAS addresses and data. The
EPROM 260, on the other hand, is read with non-
multiplexed busses. The microprocessor 50 therefore has a
special mode which unmultiplexes the data and address lines
to read 8 bits of EPROM data. Four 8-bit bytes are read in
this fashion. The multiplexed bus 350 is turned back on, and
the data is written to the DRAM 150.

When the microprocessor 50 detects 2 RESET condition,
the processor stops the main CPU 70 and forces a mode 0
(PROM LOAD) instruction into the DMA CPU 72 instruc-
tion register. The DMA instruction directs the memory
controller to read the EPROM 260 data at 8 times the normal
access time for memory. Assuming a 50 MHz microproces-
sor 50, this means an access time of 320 nsec. The instruc-
tion also indicates:

The selection address of the EPROM 260 to be loaded,

The number of 32-bit words to transfer,

The DRAM 150 address to transfer into.

The sequence of activities to transfer one 32-bit word
from EPROM 260 to DRAM 150 are:

1. RAS goes low at 352, latching the EPROM 260 select
information from the high order address bits. The
EPROM 260 is sclected.

2. Twelve address bits (consisting of what is normally
DRAM CAS addresses plus two byte select bits are
placed on the bus 350 going to the EPROM 260 address

15

25

30

40

50

55

65

14

pins. These signals will remain on the lines until the

data from the EPROM 260 has been read into the

microprocessor 50. For the first byte, the byte select

bits will be binary 00.

3. CAS goes low at 354, enabling the EPROM 260 data
onto the lower 8 bits of the external address/data bus

350. NOTE: It is important to recognize that, during
this part of the cycle, the lower 8 bits of the external
data/address bus are functioning as inputs, but the rest
of the bus is still acting as outputs.

The microprocessor 50 latches these eight least signifi-

cant bits internally and shifts them 8 bits left to shift
them to the next significant byte position.

Steps 2, 3 and 4 are repeated with byte address 01.

. Steps 2, 3 and 4 are repeated with byte address 10.

. Steps 2, 3 and 4 are repeated with byte address 11.

. CAS goes high at 356, taking the EPROM 260 off the
data bus.

9. RAS goes high at 358, indicating the end of the
EPROM 260 access.

10. RAS goes low at 360, latching the DRAM select
information from the high order address bits. At the
same time, the RAS address bits are latched into the
DRAM 150. The DRAM 150 is selected.

11. CAS goes low at 362, latching the DRAM 150 CAS
addresses.

12. The microprocessor 50 places the previously latched
EPROM 260 32-bit data onto the external address/data
bus 350. W goes low at 364, writing the 32 bits into the
DRAM 150.

13. W goes high at 366. CAS goes high at 368. The
process continues with the next word.

FIG. 12 shows details of the microprocessor 5¢ memory
controller 118. In operation, bus requests stay present until
they are serviced. CPU 70 requests are prioritized at 370 in
the order of: 1, Parameter Stack; 2, Return Stack; 3, Data
Fetch; 4, Instruction Fetch. The resulting CPU request signal
and a DMA request signal are supplied as bus requests to bus
control 372, which provides a bus grant signal at 374.
Internal address bus 136 and a DMA counter 376 provide
inputs to a multiplexer 378. Either a row address or a column
address are provided as an output to multiplexed address bus
380 as an output from the multiplexer 378. The multiplexed
address bus 380 and the internal data bus 90 provide address
and data inputs, respectively, to multiplexer 382. Shift
register 384 supplies row address strobe (RAS) 1 and 2
control signals to multiplexer 386 and column address strobe
(CAS) 1 and 2 control signals to multiplexer 388 on lines
390 and 392. The shift register 384 also supplies output
enable (OE) and write (W) signals on lines 394 and 396 and
a control signal on line 398 to multiplexer 382. The shift
register 384 receives a RUN signal on line 400 to generate
a memory cycle and supplies a MEMORY READY signal
on line 402 when an access is complete.
STACK/REGISTER ARCHITECTURE

Most microprocessors use on-chip registers for temporary
storage of variables. The on-chip registers access data faster
than off-chip RAM. A few microprocessors use an on-chip
push down stack for temporary storage.

Asstack has the advantage of faster operation compared to
on-chip registers by avoiding the necessity to select source
and destination registers. (A math or logic operation always
uses the top two stack items as source and the top of stack
as destination.) The stack’s disadvantage is that it makes
some operations clumsy. Some compiler activities in par-
ticular require on-chip registers for efficiency.

oW

5,809,336

15

As shown in FIG. 13, the microprocessor 50 provides
both on-chip registers 134 and a stack 74 and reaps the
benefits of both.

BENEFITS:

1. Stack math and logic is twice as fast as those available
on an equivalent register only machine. Most program-
mers and optimizing compilers can take advantage of
this feature. '

2. Sixteen registers are available for on-chip storage of
local variables which can transfer to the stack for
computation. The accessing of variables is three to four
times as fast as available on a strictly stack machine.

The combined stack 74/register 134 architecture has not
been used previously due to inadequate understanding by
computer designers of optimizing compilers and the mix of
transfer versus math/logic instructions.

ADAPTIVE MEMORY CONTROLLER

A microprocessor must be designed to work with small or
large memory configurations. As more memory loads are
added to the data, address, and control lines, the switching
speed of the signals slows down. The microprocessor 50
multiplexes the address/data bus three ways; so timing
between the phases is critical. A traditional approach to the
problem allocates a wide margin of time between bus phascs
so that systems will work with small or large numbers of
memory chips connected. A speed compromise of as much
as 50% is required.

As shown in FIG. 14, the microprocessor 50 uses a
feedback technique to allow the processor to adjust memory
bus timing to be fast with small loads and slower with large
ones. The OUTPUT ENABLE (OE) line 152 from the
microprocessor 50 is connected to all memories 150 on the
circuit board. The loading on the output enable line 152 to
the microprocessor 50 is directly related to the number of
memories 150 connected. By monitoring how rapidly OE
152 goes high after a read, the microprocessor 50 is able to
determine when the data hold time has been satisfied and
place the next address on the bus.

The level of the OE line 152 is monitored by CMOS input
buffer 410 which generates an internal READY signal on
line 412 to the microprocessor’s memory controller. Curves
414 and 416 of the FIG. 15 graph show the difference 1n rise
time likely to be encountered from a lightly to heavily
loaded memory system. When the OE line 152 has reached
a predetermined level to generate the READY signal, driver
418 generates an OUTPUT ENABLE signal on OE hine 152.
SKIP WITHIN THE INSTRUCTION CACHE

The microprocessor 50 fetches four 8-bit instructions each
memory cycle and stores them in a 32-bit instruction register
108, as shown in FIG. 16. A class of “test and skip”
instructions can very rapidly execute a very fast jump
operation within the four instruction cache.

SKIP CONDITIONS:

Always

ACC non-zero

ACC negative

Carry flag equal logic one

Never

ACC equal zero

ACC positive

Carry flag equal logic zero

The SKIP instruction can be located in any of the four
byte positions 420 in the 32-bit instruction register 108. If

the test is successful, SKIP will jump over the remaining
one, two, or three 8-bit instructions in the instruction register

25

16

108 and cause the next four-instruction group to be loaded
into the register 108. As shown, the SKIP operation is
implemented by resetting the 2-bit microinstruction counter
180 to zero on line 422 and simultaneously latching the next
nstruction group into the register 108. Any instructions
following the SKIP in the instruction register are overwritten
by the new instructions and not executed.

The advantage of SKIP is that optimizing compilers and
smart programmers can often use it in place of the longer
conditional JUMP iostruction. SKIP also makes possible
microloops which exit when the loop counts down or when
the SKIP jumps to the next instruction group. The result in
very fast code.

Other machines (such as the PDP-8 and Data General
NOVA) provide the ability to skip a single instruction. The
microprocessor 50 provides the ability to skip up to three
instructions.

MICROLOOP IN THE INSTRUCTION CACHE

The microprocessor 50 provides the MICROLOOP
instruction to execute repetitively from one to three instruc-
tions residing in the instruction register 108. The microloop
instruction works in conjunction with the LOOP COUNTER
92 (FIG. 2) connected to the internal data bus 90. To execute
a microloop, the program stores a count in LOOP
COUNTER 92. MICROLOOP may be placed in the first,
second, third, or last byte 420 of the instruction register 108.
If placed in the first position, execution will just create a
delay equal to the number stored in LOOP COUNTER 92
times the machine cycle. If placed in the second, third, or last
byte 420, when the microloop instruction is executed, it will

~test the LOOP COUNT for zero. If zero, execution will

45

50

55

60

continue with the next instruction. If not zero, the LOOP
COUNTER 92 is decremented and the 2-bit microinstruc-
tion counter is cleared, causing the preceding instructions in
the instruction register to be executed again.

Microloop is useful for block move and search operations.
By executing a block move completely out of the instruction
register 108, the speed of the move is doubled, since all
memory cycles are used by the move rather than being
shared with instruction fetching. Such a hardware imple-
mentation of microloops is much faster than conventional
software implementation of a comparable function.
OPTIMAL CPU CLOCK SCHEME

The designer of a high speed microprocessor must pro-
duce a product which operate over wide temperature ranges,
wide voltage swings, and wide variations in semiconductor
processing. Temperature, voltage, and process all affect
transistor propagation delays. Traditional CPU desigps are
done so that with the worse case of the three parameters, the
circuit will function at the rated clock speed. The result are
designs that must be clocked a factor of two slower than
their maximum theoretical performance, so they will operate
properly in worse case conditions.

The microprocessor 50 uses the technique shown in FIGS.
17-19 to generate the system clock and its required phases.
Clock circuit 430 is the familiar “ring oscillator” used to test
process performance. The clock is fabricated on the same
silicon chip as the rest of the microprocessor 50.

The ring oscillator frequency is determined by the param-
eters of temperature, voltage, and process. At room
temperature, the frequency will be in the neighborhood of
100 MHZ. At 70 degrees Centigrade, the speed will be 50
MHZ. The ring oscillator 430 is useful as a system clock,
with its stages 431 producing phase O-phase 3 outputs 433
shown in FIG. 19, because its performance tracks the
parameters which similarly affect all other transistors on the
same silicon die. By deriving system timing from the ring

5,809,336

17

oscillator 430, CPU 70 will always execute at the maximum
frequency possible, but never too fast. For example, if the
processing of a particular die is not good resulting in slow
transistors, the latches and gates on the microprocessor 50
will operate slower than normal. Since the microprocessor
50 ring oscillator clock 430 is made from the same transis-
tors on the same die as the latches and gates, it too will
operate slower (oscillating at a lower frequency), providing
compensation which allows the rest of the chip’s logic to
operate properly.
ASYNCHRONOUS/SYNCHRONOUS CPU

Most microprocessors derive all system timing from a
single clock. The disadvantage is that different parts of the
system can slow all operations. The microprocessor 50
provides a dual-clock scheme as shown in FIG. 17, with the
CPU 70 operating a synchronously to 1/0 interface 432
forming part of memory controller 118 (FIG. 2) and the I/O
interface 432 operating synchronously with the external
world of memory and I/O devices. The CPU 70 executes at
the fastest speed possible using the adaptive ring counter
clock 430. Speed may vary by a factor of four depending
upon temperature, voltage, and process. The external world
must be synchronized to the microprocessor 50 for opera-
tions such as video display updating and disc drive reading
and writing. This synchronization is performed by the I/0
interface 432, speed of which is controlled by a conventional
crystal clock 434. The interface 432 processes requests for
memory accesses from the microprocessor 50 and acknowl-
edges the presence of I/O data. The microprocessor 50
fetches up to four instructions in 2 single memory cycle and
can perform much useful work before requiring another
memory access. By decoupling the variable speed of the
CPU 70 from the fixed speed of the I/O interface 432,
optimum performance can be achieved by each. Recoupling
between the CPU 70 and the interface 432 is accomplished
with handshake signals on lines 436, with data/addresses
passing on bus 90, 136.
ASYNCHRONOUS/SYNCHRONOUS CPU IMBEDDED
ON A DRAM CHIP

System performance is enhanced even more when the
DRAM 311 and CPU 314 (FIG. 9) are located on the same
die. The proximity of the transistors means that DRAM 311
and CPU 314 parameters will closely follow each other. At
room temperature, not only would the CPU 314 execute at
100 MHZ, but the DRAM 311 would access fast enough to
keep up. The synchronization performed by the I/O interface
432 would be for DMA and reading and writing /O ports.
In some systems (such as calculators) no 1/0 synchroniza-
tion at all would be required, and the /O clock would be tied
to the ring counter clock.
VARIABLE WIDTH OPERANDS

Many microprocessors provide variable width operands.
The microprocessor 50 handles operands of 8, 16, or 24 bits
using the same op-code. FIG. 20 shows the 32-bit instruction
register 108 and the 2-bit microinstruction register 180
which selects the 8-bit instruction. Two classes of micro-
processor S0 instructions can be greater than 8-bits, JUMP
class and IMMEDIATE. A JUMP or IMMEDIATE op-code
is 8-bits, but the operand can be 8, 16, or 24 bits long. This
magic is possible because operands must be right justified in
the instruction register. This means that the least significant
bit of the operand is always located in the least significant bit
of the instruction register. The microinstruction counter 180
selects which 8-bit instruction to execute. If a JUMP or
IMMEDIATE instruction is decoded, the state of the 2-bit
microinstruction counter selects the required 8, 16, or 24 bit
operand onto the address or data bus. The unselected 8-bit

10

20

25

30

35

40

45

50

55

60

65

18

bytes are loaded with zeros by operation of decoder 440 and
gates 442. The advantage of this technique is the saving of
a number of op-codes required to specify the different
operand sizes in other microprocessors.

TRIPLE STACK CACHE

Computer performance is directly related to the system
memory bandwidth. The faster the memories, the faster the
computer. Fast memories are expensive, so techniques have
been developed to move a small amount of high-speed
memory around to the memory addresses where it is needed.
Alarge amount of slow memory is constantly updated by the
fast memory, giving the appearance of a large fast memory
array. A common implementation of the technique is known
as a high-speed memory cache. The cache may be thought
of as fast acting shock absorber smoothing out the bumps in
memory access. When more memory is required than the
shock can absorb, it bottoms out and slow speed memory is
accessed. Most memory operations can be handled by the
shock absorber itself.

The microprocessor 50 architecture has the ALU 80 (FIG.
2) directly coupled to the top two stack locations 76 and 78.
The access time of the stack 74 therefore directly affects the
execution speed of the processor. The microprocessor 50
stack architecture is particularly suitable to a triple cache
technique, shown in FIG. 21 which offers the appearance of
a large stack memory operating at the speed of on-chip
latches 450. Latches 450 are the fastest form of memory
device built on the chip, delivering data in as little as 3 nsec.
However latches 450 require large numbers of transistors to
construct. On-chip RAM 452 requires fewer transistors than
latches, but is slower by a factor of five (15 nsec access).
Off-chip RAM 150 is the slowest storage of all. The micro-
processor 50 organizes the stack memory hierarchy as three
interconnected stacks 450, 452 and 454. The latch stack 450
is the fastest and most frequently used. The on-chip RAM
stack 452 is next. The off-chip RAM stack 454 is slowest.
The stack modulation determines the effective access time of
the stack. If a group of stack operations never push or pull
more than four consecutive items on the stack, operations
will be entirely performed in the 3 nsec latch stack. When
the four latches 456 are filled, the data in the bottom of the
latch stack 450 is written to the top of the on-chip RAM
stack 452. When the sixteen locations 458 in the on-chip
RAM stack 452 are filled, the data in the bottom of the
on-chip RAM stack 452 is written to the top of the off-chip
RAM stack 454. When popping data off a full stack 450, four
pops will be performed before stack empty line 460 from the
latch stack pointer 462 transfers data from the on-chip RAM
stack 452. By waiting for the latch stack 450 to empty before
performing the slower on-chip RAM access, the high effec-
tive speed of the latches 456 are made available to the
processor. The same approach is employed with the on-chip
RAM stack 452 and the off-chip RAM stack 454.
POLYNOMIAL GENERATION INSTRUCTION

Polynomials are useful for error correction, encryption,
data compression, and fractal generation. A polynomial is
generated by a sequence of shift and exclusive OR opera-
tions. Special chips are provided for this purpose in the prior
art.

The microprocessor 50 is able to generate polynomials at
high speed without external hardware by slightly modifying
how the ALU 80 works. As shown in FIG. 21, a polynomial
is generated by loading the “order” (also known as the
feedback terms) into C Register 470. The value thirty one
(resulting in 32 iterations) is loaded into DOWN COUNTER
472. A register 474 is loaded with zero. B register 476 is
loaded with the starting polynomial value. When the POLY

5,809,336

19

instruction executes, C register 470 is exclusively ORed
with A register 474 if the least significant bit of B register
476 1s a one. Otherwise, the contents of the A register 474
passes through the ALU 80 unaltered. The combination of A
and B is then shifted right (divided by 2) with shifters 478
and 480. The operation automatically repeats the specified
number of iterations, and the resulting polynomial is left in
A register 474.
FAST MULTIPLY

Most microprocessors offer a 16x16 or 32x32 bit multiply
instruction. Multiply when performed sequentially takes one
shift/add per bit, or 32 cycles for 32 bit data. The micro-
processor 50 provides a high speed multiply which allows
multiplication by small numbers using only a small number
of cycles. FIG. 23 shows the logic used to implement the
high speed algorithm. To perform a multiply, the size of the
multiplier less one is placed in the DOWN COUNTER 472.
For a four bit multiplier, the number three would be stored
in the DOWN COUNTER 472. Zero is loaded into the A
register 474. The multiplier is written bit reversed into the B
Register 476. For example, a bit reversed five (binary 0101)
would be written into B as 1010. The multiplicand is written
into the C register 470. Executing the FAST MULT instruc-
tion will leave the result in the A Register 474, when the
count has been completed. The fast multiply instruction is
important because many applications scale one number by a
much smaller number. The difference in speed between
multiplying a 32x32 bit and a 32x4 bit is a factor of 8. If the
least significant bit of the multiplier is a “ONE”, the contents
of the A register 474 and the C register 470 are added. If the
least significant bit of the multiplier is a “ZERO”, the
contents of the A register are passed through the ALU 80
unaltered. The output of the ALU 80 is shifted left by shifter
482 in each iteration. The contents of the B register 476 are
shifted right by the shifter 480 in each iteration.
INSTRUCTION EXECUTION PHILOSOPHY

The microprocessor 50 uses high speed D latches in most
of the speed critical areas. Slower on-chip RAM is used as
secondary storage.

The microprocessor 50 philosophy of instruction execu-
tion is to create a hierarchy of speed as follows:

Logic and D latch transfers 1 cycle 20 nsec
Math 2 cycles 40 nsec
Fetch/store on-chip RAM 2 cycles 40 nsec
Fetch/store in current RAS page 4 cycles 80 nsec
Fetch/store with RAS cycle 11 cycles 220 nsec

With a 50 MHZ clock, many operations can be performed in
20 nsec. and almost everything else in 40 nsec.

To maximize speed, certain techniques in processor
design have been used. They include:

Eliminating arithmetic operations on addresses,

Fetching up to four instructions per memory cycle,

Pipelineless instruction decoding

Generating results before they are needed,

Use of tbree level stack caching.
PIPELINE PHILOSOPHY

Computer instructions are usually broken down into
sequential pieces, for example: fetch, decode, register read,
execute, and store. Each piece will require a single machine
cycle. In most Reduced Instruction Set Computer (RISC)
chips, instruction require from three to six cycles.

RISC instructions are very parallel. For example, each of
70 different instructions in the SPARC (SUN Computer’s
RISC chip) has five cycles. Using a technique called

35

45

50

55

65

20

“pipelining”, the different phases of consecutive instructions
can be overlapped.

To understand pipelining, think of building five residen-
tial homes. Each home will require in sequence, a
foundation, framing, plumbing and wiring, roofing, and
interior finish. Assume that each activity takes one week. To
build one house will take five weeks.

But what if you want to build an entire subdivision? You
have only one of each work crew, but when the foundation
men finish on the first house, you immediately start them on
the second one, and so on. At the end of five weeks, the first
home is complete, but you also have five foundations. If you
have kept the framing, plumbing, roofing, and interior guys
all busy, from five weeks on, a new house will be completed
each week.

This is the way a RISC chip like SPARC appears to
execute an instruction in a single machine cycle. In reality,
a RISC chip is executing one fifth of five instructions each
machine cycle. And if five instructions stay in sequence, an
instruction will be completed each machine cycle.

The problems with a pipeline are keeping the pipe full
with instructions. Each time an out of sequence instruction
such as a BRANCH or CALL occurs, the pipe must be
refilled with the next sequence. The resulting dead time to
refill the pipeline can become substantial when many
IF/THEN/ELSE statements or subroutines are encountered.
THE PIPELINE APPROACH

The microprocessor 50 has no pipeline as such. The
approach of this microprocessor to speed is to overlap
instruction fetching with execution of the previously fetched
instruction(s). Beyond that, over half the ipstructions (the
most common ones) execute entirely in a single machine
cycle of 20 nsec. This is possible because:

1. Instruction decoding resolves in 2.5 nsec.

2. Incremented/decremented and some math values are
calculated before they are needed, requiring only a
latching signal to execute.

3. Slower memory is hidden from high speed operations
by high-speed D latches which access in 4 nsec.

The disadvantage for this microprocessor is a more complex
chip design process. The advantage for the chip user is faster
ultimate throughput since pipeline stalls cannot exist. Pipe-
live synchronization with availability flag bits and other
such pipeline handling is not required by this microproces-
SOI.

For example, in some RISC machines an instruction
which tests a status flag may have to wait for up to four
cycles for the flag set by the previous instruction to be
available to be tested. Hardware and software debugging is
also somewhat easier because the user doesn’t have to
visualize five instructions simultaneously in the pipe.
OVERLAPPING INSTRUCTION FETCH/EXECUTE

The slowest procedure the microprocessor 50 performs is
to access memory. Memory is accessed when data is read or
written. Memory is also read when instructions are fetched.
The microprocessor 50 is able to hide fetch of the next
instruction behind the execution of the previously fetched
instruction(s). The microprocessor 50 fetches instructions in
4-byte instruction groups. An instruction group may contain
from one to four instructions. The amount of time required
to execute the instruction group ranges from 4 cycles for
simple instructions to 64 cycles for a multiply.

When a new instruction group is fetched, the micropro-
cessor instruction decoder looks at the most significant bit of
all four of the bytes. The most significant bit of an instruc-
tion determines if a memory access is required. For example,
CALL, FETCH, and STORE all require a memory access to

5,809,336

21

execute. If all four bytes have nonzero most significant bits,
the microprocessor initiates the memory fetch of the next
sequential 4-byte ipstruction group. When the last instruc-
tion in the group finishes executing, the next 4-byte instruc-
tion group is ready and waiting on the data bus needing only
to be latched into the instruction register. If the 4-byte
instruction group required four or more cycles to execute
and the next sequential access was a column address strobe
(CAS) cycle, the instruction fetch was completely over-
lapped with execution.
INTERNAL ARCHITECTURE

The microprocessor 50 architecture consists of the fol-
lowing;:

PARAMETER STACK = <——-> Y REGISTER
ALU* RETURN STACK
<===>

<---32 BITS--->
16 DEEP
Used for math and logic.

<———32 BITS——>
16 DEEP
Used for subroutine
and interrupt return
addresses as well as
local variables.

Push down stack. Push down stack.
Can overflow into Can overflow into
off-chip RAM. off-chip RAM.
Can also be accessed
relative to top of
stack.
LOOP COUNTER (32-bits, cen decrement by 1)
Used by class of test and loop
instructions.
X REGISTER (32-bits, can increment or decrement by

4). Used to point to RAM locations.
(32-bits, increments by 4). Points to
4-byte instruction groups in RAM.
(32-Bits). Holds 4-byte instruction
groups while they are being decoded
and executed.

MODE - A register with mode and status bits.

MODE-BITS:

- Slow down memory accesses by 8 if “1”. Run full

speed if “0”. (Provided for access to slow EPROM.)

- Divide the system clock by 1023 if “1” to reduce
power consumption. Run full speed if “0”. (On-chip
counters slow down if this bit is set.)

- Enable extemnal interrupt 1.
- Enable external interrupt 2.
- Enable external interrupt 3.
- Enable external interrupt 4.
- Enable external interrupt 5.
- Enable external interrupt 6.
- Enable external interrupt 7.

PROGRAM COUNTER

INSTRUCTION REG

ON-CHIP MEMORY LOCATIONS:
MODE-BITS
DMA-POINTER
DMA-COUNTER
STACK-POINTER - Pointer into Parameter Stack.
STACK-DEPTH - Depth of on-chip Parameler Stack
RSTACK-POINTER - Pointer into Return Stack
RSTACK-DEPTH - Depth of on-chip Return Stack

*Math and logic operations use the TOP item and NEXT to top Parameter
Stack items as the operands. The result is pushed onto the Parameter Stack.
*Return addresses from subroutines are placed on the Return Stack. The Y
REGISTER is used as a pointer to RAM locations. Since the Y REGISTER
is the top item of the Return Stack, nesting of indices is straightforward.

ADDRESSING MODE HIGH POINTS

The data bus is 32-bits wide. All memory fetches and
stores are 32-bits. Memory bus addresses are 30 bits. The
least significant 2 bits are used to select one-of-four bytes in
some addressing modes. The Program Counter, X Register,
and Y Register are implemented as D latches with their
outputs going to the memory address bus and the bus
incrementer/decrementer. Incrementing one of these regis-
ters can happen quickly, because the incremented value has
already rippled through the inc/dec logic and need only be

10

15

20

25

30

35

40

45

55

60

65

22

clocked into the latch. Branches and Calls are made to 32-bit
word boundaries.

INSTRUCTION SET

32-BIT INSTRUCTION FORMAT

The thirty two bit instructions are CALL, BRANCH,
BRANCH-IF-ZERO, and LOOP-IF-NOT-DONE. These
instructions require the calculation of an effective address. In
many computers, the effective address is calculated by
adding or subtracting an operand with the current Program
Counter. This math operation requires from four to seven
machine cycles to perform and can definitely bog down
machine execution. The microprocessor’s strategy is to
perform the required math operation at assembly or linking
time and do a much simpler “Increment to next page” or
“Decrement to previous page” operation at run time. As a
result, the microprocessor branches execute in a single

cycle.
24-BIT OPERAND FORM:
Byte 1 Byte 2 Byte 3 Byte 4

With a 24-bit operand, the current page is considered to be
defived by the most significant 6 bits of the Program
Counter.

16-BIT OPERAND FORM: QQQQQQQQ-WWWWWW

XX-YYYYYYYY-YYYYYYYY With a 16-bit operand,

the current page is considered to be defined by the most

significant 14 bits of the Program Counter.
8-BIT OPERAND FORM: QQQQQQQQ-QQQQQQQQ-

WWWWWW XX-YYYYYYYY With an 8-bit operand,

the current page is considered to be defined by the most

significant 22 bits of the Program Counter.
QQQQQQQQ—Auy 8-bit instruction.
WWWWWW—Ipstruction op-code.
XX—Select how the address bits will be used:

00—Make all high-order bits zero. (Page zero addressing)

0l—Increment the high-order bits. (Use next page)

10—Decrement the high-order bits. (Use previous page)

11—Leave the high-order bits unchanged. (Use current

page)

YYYYYYYY—The address operand field. This field is
always shifted left two bits (to generate a word rather than
byte address) and loaded into the Program Counter. The
microprocessor instruction decoder figures out the width of
the operand field by the location of the instruction op-code
in the four bytes.

The compiler or assembler will normally use the shortest
operand required to reach the desired address so that the
leading bytes can be used to hold other iostructions. The
effective address is calculated by combining:

The current Program Counter,

The 8, 16, or 24 bit address operand in the instruction,

Using one of the four allowed addressing modes.

EXAMPLES OF EFFECTIVE ADDRESS
CALCULATION

Example 1
Byte 1 Byte 2 Byte3 Byte 4
QQQQQQAQQ QQQQQRQQQ 00000011 10011000

The “QQQQQQQQs” in Byte 1 and 2 indicate space in
the 4-byte memory fetch which could be bold two other

5,809,336

23

instructions to be executed prior to the CALL instruction.
Byte 3 indicates a CALL instruction (six zeros) in the
current page (indicated by the 11 bits). Byte 4 indicates that

the hexadecimal number 98 will be forced into the Program’

Counter bits 2 through 10. (Remember, a CALL or
BRANCH always goes to a word boundary so the two least
significant bits are always set to zero). The effect of this
instruction would be to CALL a subroutine at WORD
location HEX 98 in the current page. The most significant 22
bits of the Program Counter define the current page and will
be unchanged.

Example 2

Byte 1 Byte2 Byte3 Byte4
000001 01 00000001 00000000 00000000

If we assume that the Program Counter was HEX 0000
0156 which is binary:

00000000 00000000 00000001 01010110=0OLD PRO-

GRAM COUNTER.
Byte 1 indicates a BRANCH instruction op code (000001)
and “01” indicates select the next page. Byte 2,3, and 4 are
the address operand. These 24-bits will be shifted to the left
two places to define a WORD address. HEX 0156 shifted
left two places is HEX 0558. Since this is a 24-bit operand
instruction, the most significant 6 bits of the Program
Counter define the current page. These six bits will be
incremented to select the next page. Executing this instruc-
tion will cause the Program Counter to be loaded with HEX
0400 0558 which is binary:

00000100 00000000 00000101 01011000=NEW PRO-

GRAM COUNTER.
INSTRUCTIONS
CALL-LONG

0000 O0XX-YYYYYYYY-YYYYYYYY-YYYYYYYY

Load the Program Counter with the effective WORD
address specified. Push the current PC contents onto the
RETURN STACK.

OTHER EFFECTS: CARRY or modes, no effect. May
cause Return Stack to force an external memory cycle if
on-chip Return Stack is full.

BRANCH

0000 OIXX-YYYYYYYY-YYYYYYYY-YYYYYYYY

Load the Program Counter with the effective WORD
address specified.

OTHER EFFECTS: NONE
BRANCH-IF-ZERO

0000 10XX-YYYYYYYY-YYYYYYYY-YYYYYYYY

Test the TOP value on the Parameter Stack. If the value is
equal to zero, load the Program Counter with the effective
WORD address specified. If the TOP value is not equal to
zero, increment the Program Counter and fetch and execute
the next instruction.

OTHER EFFECTS: NONE
LOOP-IF-NOT-DONE

0000 11YY-(XXXX XXXX)-(XXXX XXXX)-(XXXX

XXXX)

If the LOOP COUNTER is not zero, load the Program
Counter with the effective WORD address specified. If the
LOOP COUNTER is zero, decrement the LOOP
COUNTER, increment the Program Counter and fetch and
exccute the next instruction.

OTHER EFFECTS: NONE
8-BIT INSTRUCTIONS PHILOSOPHY

Most of the work in the microprocessor 50 is done by the
8-bit instructions. Eight bit instructions are possible with the

10

15

20

30

35

40

45

50

55

60

65

24

microprocessor because of the extensive use of implied

stack addressing. Many 32-bit architectures use 8-bits to

specify the operation to perform but use an additional
24-bits to specify two sources and a destination.

For math and logic operations, the microprocessor 50
exploits the inherent advantage of a stack by designating the
source operand(s) as the top stack item and the next stack
item. The math or logic operation is performed, the operands
are popped from the stack, and the result is pushed back on
the stack. The result is a very efficient utilization of instruc-
tion bits as well as registers. A comparable situation exists
between Hewlett Packard calculators (which use a stack) -
and Texas Instrument calculators which don’t. The identical
operation on an HP will require one half to one third the
keystrokes of the TI.

The availability of 8-bit inslructions also allows another
architectural innovation, the fetching of four instructions in
a single 32-bit memory cycle. The advantages of fetching
multiple instructions are:

Increased execution speed even with slow memories,

Similar performance to the Harvard (separate data and

instruction busses) without the expense,

Opportunities to optimize groups of instructions,

The capability to perform loops within this mini-cache.
The microloops inside the four instruction group are effec-
tive for searches and block moves.

SKIP INSTRUCTIONS
The microprocessor 50 fetches instructions in 32-bit

chunks called 4-byte instruction groups. These four bytes

may contain four 8-bit instructions or some mix of 8-bit and

16 or 24-bit instructions. SKIP instructions in the micropro-

cessor skip any remaining instructions in a 4-byte instruction

group and cause a memory fetch to get the mext 4-byte
instruction group. Conditional SKIPs when combined with
3-byte BRANCHES will crcate conditional BRANCHES.

SKIPs may also be used in situations when no use can be

made of the remaining bytes in a 4-instruction group. A

SKIP executes in a single cycle, whereas a group of three

NOPs would take three cycles.

SKIP-ALWAYS—Skip any remaining instructions in this
4-byte instruction group. Increment the most significant
30-bits of the Program Counter and proceed to fetch the
next 4-byte instruction group.

SKIP-IF-ZERO—If the TOP item of the Parameter Stack is
zero, skip any remaining instructions in the 4-byte
instruction group. Increment the most significant 30-bits
of the Program Counter and proceed to fetch the next
4-byte instruction group. If the TOP item is not zero,
execute the next sequential instruction.

SKIP-IF-POSITIVE—If the TOP item of the Parameter
Stack has a the most significant bit (the sign bit) equal to
“0”, skip any remaining instructions in the 4-byte instruc-
tion group. Increment the most significant 30-bits of the
Program Counter and proceed to fetch the next 4-byte
instruction group. If the TOP item is not “0”, execute the
nex! sequential instruction.

SKIP-IF-NO-CARRY—If the CARRY flag from a SHIFT
or arithmetic operation is not equal to “1”, skip any
remaining instructions in the 4-byte instruction group.
Increment the most significant 30-bits of the Program
Counter and proceed to fetch the next 4-byte instruction
group. If the CARRY is equal to “1”, cxccute the next
sequential instruction.

SKIP-NEVER (NOP) execute the next sequential instruc-
tion. (Delay one machine cycle).

SKIP-[F-NOT-ZERO—If the TOP item on the Parameter
Stack is not equal to “0”, skip any remaining instructions

5,809,336

25

in the 4-byte instruction group. Increment the most sig-
nificant 30-bits of the Program Counter and proceed to
fetch the next 4-byte instruction group. If the TOP item is
equal “0”, execute the next sequential instruction.
SKIP-IF-NEGATIVE—If the TOP item on the Parameter
Stack has its most significant bit (sign bit) set to “1”, skip
any remaining instructions in the 4-byte instruction group.
Increment the most significant 30-bits of the Program
Counter and proceed to fetch the next 4-byte instruction
group. If the TOP ilem has its most significant bit set lo
“0”, execute the next sequential instruction.
SKIP-IF-CARRY—If the CARRY flag is set to “1” as a
result of SHIFT or arithmetic operation, skip any remain-
ing instructions in the 4-byte instruction group. Increment
the most significant 30-bits of the Program Counter and
proceed to fetch the next 4-byte instruction group. If the
CARRY flag is “0”, execute the next sequential instruc-
tion.
MICROLOOPS
Microloops are a unique feature of the microprocessor
architecture which allows controlled looping within a 4-byte
instruction group. A microloop instruction tests the LOOP
COUNTER for “0” and may perform an additional test. If
the LOOP COUNTER is not “0” and the test is met,
instruction execution continues with the first instruction in
the 4-byte instruction group, and the LOOP COUNTER is
decremented. A microloop instruction will usually be the last
byte in a 4-byte instruction group, but it can be any byte. If
the LOOP COUNTER is “0” or the test is not met, instruc-
tion execution continues with the next instruction. If the
microloop is the last byte in the 4-byte instruction group, the
most significant 30-bits of the Program Counter are incre-
mented and the next 4-byte instruction group is fetched from
memory. On a termination of the loop on LOOP COUNTER
equal to “0”, the LOOP COUNTER will remain at “0”.
Microloops allow short iterative work such as moves and
searches o be performed without slowing down to feich
instructions from memory.

EXAMPLE
Byte 1 Byte 2
FETCH-VIA-X-AUTO- STORE- VIA-Y-AUTOINCREMENT
INCREMENT
Byte 3 Byte 4
ULOOP-UNTIL-DONE QQQQQQQQ

This example will perform a block move. To initiate the
transfer, X will be loaded with the starting address of the
source. Y will be loaded with the starting address of the
destination. The LOOP COUNTER will be loaded with the
nmumber of 32-bit words to move. The microloop will
FETCH and STORE and count down the LOOP COUNTER
until it reaches zero. QQQQQQQQ indicates any instruction
can follow.

MICROLOOQOP INSTRUCTIONS
ULOQP-UNTIL-DONE—If the LOOP COUNTER is not

“Q”, continue execution with the first instruction in the

4-byte instruction group. Decrement the LOOP

COUNTER. If the LOOP COUNTER is “0”, continue

execution with the next instruction.
ULOOP-IF-ZERO—If the LOOP COUNTER is not “0” and

the TOP item on the Parameter Stack is “0”, continue
execution with the first instruction in the 4-byte instruc-
tion group. Decrement the LOOP COUNTER. If the

LOOP COUNTER is “0” or the TOP item is “1”, continue

execution with the next instruction.

20

25

30

35

40

45

50

55

60

65

26

ULOQP-IF-POSITIVE—If the LOOP COUNTER is not
“0” and the most significant bit (sign bit) is “0”, continue
execution with the first instruction in the 4-byte instruc-
tion group. Decrement the LOOP COUNTER. If the
LOOP COUNTER is “0” or the TOP item is “1”, continue
execution with the next instruction.

ULOOP-IF-NOT-CARRY-CLEAR—If the LOOP
COUNTER is not “0” and the floating point exponents
found in TOP and NEXT are not aligned, continue execu-
tion with the first instruction in the 4-byte instruction
group. Decrement the LOOP COUNTER. If the LOOP
COUNTER is “0” or the exponents are aligned, continue
execution with the next instruction. This instruction is
specifically designed for combination with special SHIFT
instructions to align two floating point numbers.

ULOOP-NEVER—(DECREMENT-LOOP-COUNTER)
Decrement the LOOP COUNTER. Continue execution
with the next instruction.

ULOOP-IF-NOT-ZERO—If the LOOP COUNTER is not
“0” and the TOP item of the Parameter Stack is “0”,
continue execution with the first instruction in the 4-byte
instruction group. Decrement the LOOP COUNTER. If
the LOOP COUNTER is “0” or the TOP item is “1”,
continue execution with the next instruction.

ULOOP-IF-NEGATIVE—If the LOOP COUNTER is not
“0” and the most significant bit (sign bit) of the TOP item
of the Parameter Stack is “1”, continue execution with the
first instruction in the 4-byte instruction group. Decre-
ment the LOOP COUNTER. If the LOOP COUNTER is
“0” or the most significant bit of the Parameter Stack is
“0”, continue execution with the next instruction.

ULOOP-IF-CARRY-SET—If the LOOP COUNTER is not
“0” and the exponents of the floating point numbers found
in TOP and NEXT are not aligned, continue execution
with the first instruction in the 4-byte instruction group.
Decrement the LOOP COUNTER. If the LOOP
COUNTER is “0” or the exponents are aligned, continue
execution with the next instruction.

RETURN FROM SUBROUTINE OR INTERRUPT
Subroutine calls and interrupt acknowledgements cause a

redirection of normal program execution. In both cases, the

current Program Counter is pushed onto the Return Stack, so
the microprocessor can return to its place in the program
after executing the subroutine or interrupt service routine.

NOTE: When a CALL to subroutine or interrupt is
acknowledged the Program Counter has already been incre-
mented and is pointing to the 4-byle imstruction group
following the 4-byte group currently being executed. The
instruction decoding logic allows the microprocessor to
perform a test and execute a return conditional on the
outcome of the test in a single cycle. A RETURN pops an
address from the Return Stack and stores it to the Program

Counter.

RETURN INSTRUCTIONS

RETURN-ALWAYS—Pop the top item from the Return
Stack and transfer it to the Program Counter.

RETURN-IF-ZERO—If the TOP item on the Parameter
Stack is “0”, pop the top item from the Return Stack and
transfer it to the Program Counter. Otherwise execute the
next instruction.

RETURN-IF-POSITIVE—If the most significant bit (sign
bit) of the TOP item on the Parameter Stack is a “0”, pop
the top item from the Return Stack and transfer it to the
Program Counter. Otherwise execute the next instruction.

RETURN-IF-CARRY-CLEAR—If the exponcnts of the
floating point numbers found in TOP and NEXT are not
aligned, pop the top item from the Return Stack and

5,809,336

27

transfer it to the Program Counter. Otherwise execute the
next instruction.
RETURN-NEVER (NOP)—Execute the next instruction.
RETURN-IF-NOT-ZERO—If the TOP item on the Param-
eter Stack is not “0”, pop the top item from the Return
Stack and transfer it to the Program Counter. Otherwise
execute the next instruction.
RETURN-IF-NEGATIVE—If the most significant bit (sign
bit) of the TOP item on the Parameter Stack is a “1”, pop
the top item from the Return Stack and transfer it to the
Program Counter. Otherwise execute the next instruction.
RETURN-IF-CARRY-SET—If the exponents of the floating
point numbers found in TOP and NEXT are aligned, pop
the top item from the Return Stack and transfer it to the
Program Counter. Otherwise execute the next instruction.
HANDLING MEMORY FROM DYNAMIC RAM
The microprocessor 50, like any RISC type architecture,
is optimized to handle as many operations as possible

on-chip for maximum speed. External memory operations .

5

10

15

take from 80 nsec. to 220 nsec. compared with on-chip

memory speeds of from 4 nsec. to 30 nsec. There are times

when external memory must be accessed.

External memory is accessed using three registers:

X-REGISTER—A 30-bit memory pointer which can be
used for memory access and simultaneously incre-
mented or decremented.

Y-REGISTER—A 30-bit memory pointer which can be
used for memory access and simultaneously incre-
mented or decremented.

PROGRAM-COUNTER—A 30-bit memory poinler nor-
mally used to point to 4-byte instruction groups. Exter-
nal memory may be accessed at addresses relative to
the PC. The operands are sometimes called “Immedi-
ate” or “Literal” in other computers. When used as
memory pointer, the PC is also incremented after each
operation.

MEMORY LOAD & STORE INSTRUCTIONS

FETCH-VIA-X—Tetch the 32-bit memory content pointed
to by X and push it onto the Parameter Stack. X is
unchanged.

FETCH-VIA-Y—TFetch the 32-bit memory content pointed
to by X and push it onto the Parameter Stack. Y is
unchanged.

FETCH-VIA-X-AUTOINCREMENT—Fetch the 32-bit
memory content pointed to by X and push it onto the
Parameter Stack. After fetching, increment the most sig-
nificant 30 bits of X to point to the next 32-bit word
address.

FETCH-VIA-Y-AUTOINCREMENT—Fetch the 32-bit
memory content pointed to by Y and push it onto the
Parameter Stack. After fetching, increment the most sig-
nificant 30 bits of Y to point to the next 32-bit word
address.

FETCH-VIA-X-AUTODECREMENT—Fetch the 32-bit
memory content pointed to by X and push it onto the
Parameter Stack. After fetching, decrement the most
significant 30 bits of X to point to the previous 32-bit
word address.

FETCH-VIA-Y-AUTODECREMENT—Fetch the 32-bit
memory content pointed to by Y and push it onto the
Parameter Stack. After fetching, decrement the most
significant 30 bits of Y 1o point to the previous 32-bit
word address.

STORE-VIA-X—Pop the top item of the Parameter Stack
and store it in the memory location pointed to by X. X is
unchanged.

STORE-VIA-Y—Pop the top item of the Parameter Stack
and store it in the memory location pointed to by Y. Y is
unchanged.

20

25

30

35

40

45

50

55

60

65

28

STORE-VIA-X-AUTOINCREMENT—Pop the top item of
the Parameter Stack and store it in the memory location
pointed to by X. After storing, increment the most sig-
nificant 30 bits of X to point to the next 32-bit word
address.

STORE-VIA-Y-AUTOINCREMENT—Pop the top item of
the Parameter Stack and store it in the memory location
pointed to by Y. After storing, increment the most sig-
nificant 30 bits of Y to point to the next 32-bit word
address.

'STORE-VIA-X-AUTODECREMENT—Pop the top iterm of

the Parameter Stack and store it in the memory location

pointed to by X. After storing, decrement the most sig-

nificant 30 bits of X to point to the previous 32-bit word
address.

STORE-VIA-Y-AUTODECREMENT—Pop the top item of
the Parameter Stack and store it in the memory location
pointed to by Y. After storing, decrement the most sig-
nificant 30 bits of Y to point to the previous 32-bit word
address.

FETCH-VIA-PC—Fetch the 32-bit memory content pointed
to by the Program Counter and push it onto the Parameter
Stack. After fetching, increment the most significant 30
bits of the Program Counter to point to the next 32-bit
word address.

*NOTE When this instruction executes, the PC is pointing
to the memory location following the instruction. The
effect is of loading a 32-bit immediate operand. This is an
8-bit instruction and therefore will be combined with
other 8-bit instructions in a 4-byte instruction fetch. It is
possible to have from one to four FETCH-VIA-PC
instructions in a 4-byte instruction fetch. The PC incre-
ments afler each execution of FETCH-VIA-PC, so it is
possible to push four immediate operands on the stack.
The four operands would be the found in the four memory
locations following the instruction.

BYTE-FETCH-VIA-X—Fetch the 32-bit memory content
pointed to by the most significant 30 bits of X. Using the
two least significant bits of X, select one of four bytes
from the 32-bit memory fetch, right justify the byte in a
32-bit field and push the selected byte preceded by
leading zeros onto the Parameter Stack.

BYTE-STORE-VIA-X—Fetch the 32-bit memory content
pointed to by the most significant 30 bits of X. Pop the
TOP item from the Parameter Stack. Using the two least
significant bits of X place the least significant byte into the
32-bit memory data and write the 32-bit entity back lo the
location pointed to by the most significant 30 bits of X.

OTHER EFFECTS OF MEMORY ACCESS INSTRUC-

TIONS:

Any FETCH instruction will push a value on the Param-
eter Stack 74. If the on-chip stack is full, the stack will
overflow into off-chip memory stack resulting in an addi-
tional memory cycle. Any STORE instruction will pop a
value from the Parameter Stack 74. If the on-chip stack is
empty, a memory cycle will be generated to fetch a value
from off-chip memory stack.

HANDLING ON-CHIP VARIABLES
High-level languages often allow the creation of LOCAL

VARIABLES. These variables are used by a particular
procedure and discarded. In cases of nested procedures,
layers of these variables must be maintained. On-chip stor-
age is up to five times faster than off-chip RAM, so a means
of keeping local variables on-chip can make operations run
faster. The microprocessor 50 provides the capability for
both on-chip storage of local variables and nesting of
multiple levels of variables through the Return Stack.

5,809,336

29
The Return Stack 134 is implemented as 16 on-chip RAM
locations. The most common use for the Return Stack 134 is
storage of return addresses from subroutines and interrupt
calls. The microprocessor allows these 16 locations to also
be used as addressable registers. The 16 locations may be
read and written by two instructions which indicate a Return

Stack relative address from 0-15. When high-level proce-

dures are nested, the current procedure variables push the

previous procedure variables further down the Return Stack

134. Evenlually, the Return Stack will automatically over-

flow into off-chip RAM.

ON-CHIP VARIABLE INSTRUCTIONS

READ-LOCAL-VARIABLE XXXX—Read the XXXXth
location relative to the top of the Return Stack. (XXXX is
a binary number from 0000-1111). Push the item read
onto the Parameter Stack.

OTHER EFFECTS: If the Parameter Stack is full, the
push operation will cause a memory cycle to be generated
as one item of the stack is automatically stored to external
RAM. The logic which selects the location performs a
modulo 16 subtraction. If four local variables have been
pushed onto the Return Stack, and an instruction attempts
to READ the fifth item, unknown data will be returned.

WRITE-LOCAL-VARIABLE XXXX-~—Pop the TOP item

of the Parameter Stack and write it into the XXXXth
location relative to the top of the Return Stack. (XXXX is
a binary number from 0000-1111.)
OTHER EFFECTS: If the Parameter Stack is empty, the
pop operation will cause a memory cycle to be generated
to fetch the Parameter Stack item from external RAM.
The logic which selects the location performs a modulo
16 subtraction. If four local variables have been pushed
onto the Return Stack, and an instruction attempls (o
WRITE (o the fifth item, it is possible to clobber return
addresses or wreak other havoc.

REGISTER AND FLIP-FLOP TRANSFER AND PUSH

INSTRUCTIONS

DROP—Pop the TOP item from the Parameter Stack and
discard it.

SWAP—Exchange the data in the TOP Parameter Stack
location with the data in the NEXT Parameter Stack
location.

DUP—Duplicate the TOP item on the Parameter Stack and
push it onto the Parameter Stack.

PUSH-LOOP-COUNTER-—Push the value in LOOP
COUNTER onto the Parameter Stack.

POP-RSTACK-PUSH-TO-STACK—Pop the top ilem from
the Return Stack and push it onto the Parameter Stack.

PUSH-X-REG—Push the value in the X Register onto the
Parameter Stack.

PUSH-STACK-POINTER—Push the value of the Param-
eter Stack pointer onto the Parameter Stack.

PUSH-RSTACK-POINTER—Push the value of the Return
Stack pointer onto the Return Stack.

PUSH-MODE-BITS—Push the value of the MODE REG-
ISTER onto the Parameter Stack.

PUSH-INPUT—Read the 10 dedicated input bits and push
the value (right justified and padded with leading zeros)
onto the Parameter Stack.

SET-LOOP-COUNTER—Pop the TOP value from the
Paramelter Stack and store it into LOOP COUNTER.

POP-STACK-PUSH-TO-RSTACK—Pop the TOP item
from the Parameter Stack and push it onto the Return
Stack.

SET-X-REG—Pop the TOP item from the Parameter Stack
and store it into the X Register.

SET-STACK-POINTER—Pop the TOP item from the
Parameter Stack and store it into the Stack Pointer.

10

15

20

25

30

35

40

45

55

60

65

30
SET-RSTACK-POINTER—Pop the TOP item from the
Parameter
Stack and store it into the Return Stack Pointer.
SET-MODE-BITS—Pop the TOP value from the Parameter
Stack and store it into the MODE BITS. ‘
SET-OUTPUT—Pop the TOP item from the Parameter
Stack and output it to the 10 dedicated output bits.
OTHER EFFECTS: Instructions which push or pop the
Parameter Stack or Return Stack may cause a memory
cycle as the stacks overflow back and forth between
on-chip and off-chip memory.
LOADING A SHORT LITERAL
A special case of register transfer instruction is used to
push an 8-bit literal onto the Parameter Stack. This instruc-
tion requires that the 8-bits to be pushed reside in the last
byte of a 4-byte instruction group. The instruction op-code
loading the literal may reside in ANY of the other three bytes
in the instruction group.

EXAMPLE
BYTE 1 BYTE 2 BYTE 3
LOAD-SHORT-LITERAL ~ QQQQQQQQ QQQQQQQQ
BYTE 4
00001111

In this example, QQQQQQQQ indicates any other 8-bit
instruction. When Byte 1 is executed, binary 00001111(HEX
0f) from Byte 4 will be pushed (right justified and padded by
leading zeros) onto the Parameter Stack. Then the instruc-
tions in Byte 2 and Byte 3 will execute. The microprocessor
instruction decoder knows not to execute Byte 4. It is
possible to push three identical 8-bit values as follows:

BYTE 1 BYTE 2
LOAD-SHORT-LITERAL LOAD-SHORT-LITERAL
BYTE 3 BYTE 4
LOAD-SHORT-LITERAL 00001111
SHORT-LITERAL-INSTRUCTION

LOAD-SHORT-LITERAL—Push the 8-bit value found in
Byte 4 of the current 4-byte instruction group onto the
Parameter Stack.

LOGIC INSTRUCTIONS
Logical and math operations used the stack for the source

of one or two operands and as the destination for results. The

stack organization is a particularly convenient arrangement
for evaluating expressions. TOP indicates the top value on
the Parameter Stack 74. NEXT indicates the next to top

value on the Parameter Stack 74.

AND—Pop TOP and NEXT from the Parameter Stack,
perform the logical AND operation on these two
operands, and push the result onto the Parameter Stack.

OR—Pop TOP and NEXT from the Parameter Stack, per-
form the logical OR operation on these two operands, and
push the result onto the Parameter Stack.

XOR—Pop TOP and NEXT from the Parameter Stack,
perform the logical exclusive OR on these two operands,
and push the result onto the Parameter Stack.

BIT-CLEAR—Pop TOP and NEXT from the Parameter
Stack, toggle all bits in NEXT, perform the logical AND
operation on TOP, and push the result onto the Parameter
Stack. (Another way of understanding this instruction is
thioking of it as clearing all bits in TOP that are set in
NEXT.)

5,809,336

3

MATH INSTRUCTIONS
Math instruction pop the TOP item and NEXT to top item

of the Parameter Stack 74 to use as the operands. The results

are pushed back on the Parameter Stack. The CARRY flag
is used to latch the “33rd bit” of the ALU result.

ADD—Pop the TOP item and NEXT to top item from the
Parameter Stack, add the values together and push the
result back on the Parameter Stack. The CARRY flag may
be changed.

ADD-WITH-CARRY—Pop the TOP item and the NEXT to
top item from the Parameter Stack, add the values
together. If the CARRY flag is “1” increment the result.
Push the ultimate result back on the Parameter Stack. The
CARRY flag may be changed.

ADD-X—Pop the TOP item from the Parameter Stack and
read the third item from the top of the Parameter Stack.
Add the values together and push the result back on the
Parameter Stack. The CARRY flag may be changed.

SUB—Pop the TOP item and NEXT to top item from the
Parameter Stack, Subtract NEXT from TOP and push the
result back on the Parameter Stack. The CARRY flag may
be changed.

SUB-WITH-CARRY—Pop the TOP item and NEXT to top
item from the Parameter Stack. Subtract NEXT from TOP.
If the CARRY flag is “1” increment the result. Push the
ultimate result back on the Parameter Stack. The CARRY
flag may be changed.

SUB-X—

SIGNED-MULT-STEP—

UNSIGNED-MULT-STEP—

SIGNED-FAST-MULT—

FAST-MULT-STEP—

UNSIGNED-DIV-STEP—

GENERATE-POLYNOMIAL—

ROUND—

COMPARE—Pop the TOP item and NEXT to top item from
the Parameter Stack. Subtract NEXT from TOP. If the
result has the most significant bit equal to “0” (the result
is positive), push the result onto the Parameter Stack. If
the result has the most significant bit equal to “1” (the
result is negative), push the old value of TOP onto the
Parameter Stack. The CARRY flag may be affected.

SHIFT/ROTATE

SHIFT-LEFT—Shift the TOP Parameter Stack item left one
bit. The CARRY flag is shifted into the least significant bit
of TOP.

SHIFT-RIGHT—SHhift the TOP Parameter Stack item right
one bit. The least significant bit of TOP is shifted into the
CARRY flag. Zero is shifted into the most significant bit
of TOP.

DOUBLE-SHIFT-LEFT—Treating the TOP item of the
Parameter Stack as the most significant word of a 64-bit
number and the NEXT stack item as the least significant
word, shift the combined 64-bit entity left one bit. The
CARRY flag is shifted into the least significant bit of
NEXT.

DOUBLE-SHIFT-RIGHT—Treating the TOP item of the
Parameter Stack as the most significant word of a 64-bit
number and the NEXT stack item as the least significant
word, shift the combined 64-bit entity right one bit. The
least significant bit of NEXT is shifted into the CARRY
llag. Zero is shifled into the most significant bit of TOP.

OTHER INSTRUCTIONS

FLUSH-STACK—Empty all on-chip Parameter Stack loca-
tions into off-chip RAM. (This instruction is useful for
multitasking applications). This instruction accesses a
counter which holds the depth of the on-chip stack and
can require from none to 16 external memory cycles.

10

15

20

25

30

35

40

45

50

55

60

65

32
FLUSH-RSTACK—Empty all on-chip Return Stack loca-
tions into off-chip RAM. (This instruction is useful for

multitasking applications). This Instruction accesses a

counter which holds the depth of the on-chip Return Stack

and can require from none to 16 external memory cycles.
It should further be apparent to those skilled in the art that
various changes in form and details of the invention as
shown and described may be made. It is intended that such
changes be included within the spirit and scope of the claims
appended hereto.
What is claimed is:
1. A microprocessor system, comprising a single inte-
grated circuit including a central processing unit and an
entire ring oscillator variable speed system clock in said
single integrated circuit and connected to said central pro-
cessing unit for clocking said central processing unit, said
central processing unit and said ring oscillator variable
speed system clock each including a plurality of electronic
devices correspondingly constructed of the same process
technology with corresponding manufacturing variations, a
processing frequency capability of said central processing
unit and a speed of said ring oscillator variable speed system
clock varying together due to said manufacturing variations
and due to at least operating voltage and temperature of said
single integrated circuit; an on-chip input/output interface
connected to exchange coupling control signals, addresses
and data with said central processing unit; and a second
clock independent of said ring oscillator variable speed
system clock connected to said input/output interface.
2. The microprocessor system of claim 1 in which said
second clock is a fixed frequency clock.
3. In a microprocessor integrated circuit, a method for
clocking the microprocessor within the integrated circuit,
comprising the steps of:
providing an entire ring oscillator system clock con-
structed of electronic devices within the integrated
circuit, said electronic devices having operating char-
acteristics which will, because said entire ring oscilla-
tor system clock and said microprocessor are located
within the same integrated circuit, vary together with
operating characteristics of electronic devices included
within the microprocessor;
using the ring oscillator system clock for clocking the
microprocessor, said microprocessor operating at a
variable processing frequency dependent upon a vari-
able speed of said ring oscillator system clock;

providing an on chip input/output interface for the micro-
processor integrated circuit; and

clocking the input/output interface with a second clock

independent of the ring oscillator system clock.

4. The method of claim 3 in which the second clock is a
fixed frequency clock.

5. The method of claim 3 further including the step of:

transferring information to and from said microprocessor

in synchrony with said ring oscillator system clock.

6. A microprocessor system comprising:

a central processing unit disposed upon an integrated

circuit substrate, said central processing unit operating
at a processing frequency and being constructed of a
first plurality of electronic devices;

an entire oscillator disposed upon said integrated circuit

substrate and connected to said central processing unit,
said oscillator clocking said central processing unit at a
clock rate and being constructed of a second plurality
of electronic devices, thus varying the processing fre-
quency of said first plurality of electronic devices and

5,809,336

33

the clock rate of said second plurality -of electronic
devices in the same way as a function of parameter
variation in one or more fabrication or operational
parameters associated with said integrated circuit
substrate, thereby enabling said processing frequency
to track said clock rate in response to said parameter
variation;

an on-chip input/output interface, connected between said

said central processing unit and an external memory
bus, for facilitating exchanging coupling control
signals, addresses and data with said central processing
unit; and

an external clock, independent of said oscillator, con-

nected to said input/output interface wherein said exter-
nal clock is operative at a frequency independent of a
clock frequency of said oscillator.

7. The microprocessor system of claim 6 wherein said one
or more operational parameters include operating tempera-
ture of said substrate or operating voltage of said substrate.

8. The microprocessor sysiem of claim 6 wherein said
external clock comprises a fixed-frequency clock which
operates synchronously relative to said oscillator.

9. The microprocessor system of claim 6 wherein said
oscillator comprises a ring oscillator.

10. In a microprocessor system including a central pro-
cessing unit, a method for clocking said central processing
unit comprising the steps of:

providing said central processing unit upon an integrated

circuit substrate, said central processing unit being

15

25

34

constructed of a first plurality of transistors and being
operative at a processing frequency,;

providing an entire variable speed clock disposed upon
said integrated circuit substrate, said variable speed
clock being constructed of a second plurality of tran-
sistors;

clocking said central processing unit at a clock rate using
said variable speed clock with said central processing
unit being clocked by said variable speed clock at a
variable frequency dependent upon variation in one or
more fabrication or operational parameters associated
with said integrated circuit substrate, said processing
frequency and said clock rate varying in the same way
relative to said variation in said one or more fabrication
or operational parameters associated with said inte-
grated circuit substrate;

connecting an on chip input/output interface between said
central processing unit and an external memory bus,
and exchanging coupling control signals, addresses and
data between said input/output interface and said cen-
tral processing unit; and

clocking said input/output interface using an external
clock wherein said external clock is operative at a
frequency independent of a clock frequency of said
oscillator.

