SOFTWARE
Quite frankly, ShBoom was designed by a Forth programmer
who intends to program it in Forth. Forth provides maximum
control of the hardware to the programmer, which results in
efficient programs. ShBoom supports this.
To reach a wider range of potential users, every effort
has been made to assure ShBoom suitability for C. This includes
byte addressing, on-chip registers, stack frames and floating-
point arithmetic. Consideration is being given to signed
byte and halfword fetch/store.
Russell Fish has persuaded Richard Stahlman to provide a
GNU C compiler for ShBoom. Any C benchmarks must await the
completion of this. Forth benchmarks will become available
as development cards get used.
The ability of a compiler to utilize stack (EMPTY , FILL)
and queue (next , skip) optimize instructions remains to
be seen. They have been included to permit the programmer
to reduce the impact of DRAM memory delays. Task switching
and stack overflow are being explored with the prototype chips
to assure the instructions to minimize their cost are available.
The ability of Forth to facilitate hardware debugging is
widely recognized. This was essential in validating the prototype
chips. The high speed of ShBoom will be invaluable in testing

the various hardware that it will control.

PATRIOT 044140

Computer Cowboys

PROPRIETARY

TIMING

Central to the custom implementation is a high-speed on-chip
clock. This is a simple ring-oscillator suggested by Russell
Fish. It has several advantages over an external clock.

First, it can run extremely fast. A 7-inverter ring with
.3ns gate delay has a 4.2ns period (250 Mhz). Running such
a clock off-chip is not practical.

The purpose of this clock is to synchronize the latching
of registers. This controls both the CPU and IO processors
and their interaction through the memory interface. It is
expected that 14 (or 18) gate delays are adequate for instruction
decode and execution. The exact number will be conservatively
chosen when layout and simulation are complete.

Second, an on-chip clock tracks process variations. So
long as process (and temperature and voltage) varies consistently
across the chip, the clock will run fast {(or slow) together
with the delays it is timing. Thus each chip will run ?t
its personal maximum performance, without derating to cohform
to an external, absolute time reference. |

Third, an on-chip clock reduces parts ccunt. It might
even save a pin. However, it introduces the need to synchronize
with external events. ShBoom in unique in having an IO processor
to deal with this. It has a WAIT instruction that will delay
until an event (crystal clock tick) occurs. Thus IO can be

synchronized while CPU runs at full speed.

PATRIOT 044141

Computer Cowboys
PROPRIETARY

The advantage of a fast clock is most apparent in the CPU.
Multiply (also divide and floating-point) operations require
multiple clock cycles, typically one per bit. Their speed
is directly proportional to clock frequency.

Memory access requires a cycle to determine whether a RAS
cycle is necessary. A shorter cycle means less overhead on
every access. The duration of each DRAM control signal is
programmed at power-up, according to manufacturer's specifications
and processor speed. Since ShBoom and its memory share the
same temperature and voltage environment, their speed will
tend to track as these vary, and timing margins can be smaller.

However, this fast clock does require a careful test strategy.
Both wafer and packaged test equipment run far more slowly.

The OKI prototypes were tested at ' Mhz (and functicned at
50 Mhz). At power-up control signals will default to their
slowest timing, but this may be 50 Mhz and variable (by a
factor of 2).

The best strategy is to connect the wafer probes to a socket
on a test card, and allow ShBoom to boot up and run a self-
test. This can provide not only a go/no go decision, but
measure the speed against a time reference. If this is not
feasible, a test mode with external clock input can be provided.
Possibly on a pad that is not brought out to a pin. A couple
thousand test vectors provide good error coverage. But not

as good as can be done with self-test.

PATRIOT 044142

Computer Cowboys

PROPRIETARY

TIMING DIAGRAMS

One of the features of ShBoom is the ability to tailor
the memory interface. The prototype has 2 access modes: 8
and 32~bit. B8-bit is used to access ROM, latches and buffers.
32-bit is used for DRAM, bus interface and 16-bit data.

With 32-bit data transfers, the address and data are multiplexed
on a 32-bit bus. Bits 0-10 are used for input during address
time; bits 11-19 for multiplexed RAS/CAS address; bits 20-30
for device and memory select; bit 31 is 0 to indicate 32-bit
mode. The DRAM control signals RAS, CAS, OE and WE are generated
by ShBoom with the timing suitable for the particular chips
used. The prototype was designed for OKI 100ns parts; others
have been used successfully. The custom chip will have programmable
timing with internal clock resolution (5ns). These specify
RAS high, CAS high, CAS to OE, CAS to WE, and WE low. Timing
diagrams are available on manufacturer's DRAM data sheets.
ShBoom uses RAS read and late write, fast page mode read and
late write, and CAS before RAS refresh.

With 8-bit data transfers, address and data are not multiplexed.
Bits 0-7 are used for data; bit 8 ignored; bits 9-10 are a
byte address; bits 11-19 are the CAS address; bits 20-30 for
select; bit 31 is 1. Timing on the prototype is a full RAS
cycle; this is suitable for 120ns PROM. Custom timing is

to be determined.

PATRIOT 044143

Computer Cowboys

PROPRIETARY

INTERRUPTS

In considering the problem of real-time control, ShBoom's
concept of an IO processor evolved as an alternative to conventional
interrupts. The main problem with interrupts is the disruption
of timing they introduce at unpredictable times. This leads
to their frequently being disabled, an in effect polled.

The custom ShBoom will include conditional IO instructions
to transfer data if a signal is set. This will monitor a
number of channels at convenient times. It has an interrupt
between the IO and CPU, and it has an external interrupt to
the CPU. This latter is to handle situations we overlooked
and to reassure users about a capability they value. Various
forms of soft and hard-vector can be added; in fact, the prototype
can be given vectored interrupts with external hardware.

The purpose of interrupts is to handle asynchronous events.
These are low frequency but it's not feasible for a bus§ processor
to poll them. It is feasible for a dedicated IO processor
to poll them. For example, 960Hz serial input can be pélled

during horizontal retrace of video output.

PATRIOT 044144

